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We consider the spontaneous scattering of light due to quadratic and cubic terms in the expansion of 
the polarization of the medium in powers of the electric field. The medium is assumed to be trans­
parent at the frequency of the incident radiation and at the observed frequency. Formulas are ob­
tained for the intensity of the scattered light and for its dependence on the frequency and on the ob­
servation direction. 

TWO new types of light scattering by a substance were 
observed recentlyCl-sl and called "parametric lumines­
cence" [1, 71 (or "parametric scattering" [ 31 ) and 
"scattering of light by light." [8 - 10 1 

From the quantum point of view, parametric lumines­
cence (PL) is the result of the spontaneous decay of the 
photons of the incident light {"pump") into pairs of pho­
tons (nw3 ...... nw1 + nw2) as a result of interaction with 
matter, and is described by the third order of ordinary 
perturbation theory. When nw2 ~ kT and in the presence 
of absorption at w2 , the anti-Stokes process w3 + w2 

...... w1 is, of course, also possible. PL can be explained 
phenomenologically by assuming that the medium has a 
nonlinear polarizability of the type P1 = ;XE3 E2 • Then, 
in the presence of a pump field E3 , the thermal and (if 
W1 < w3) quantum fluctuations of the field E2 with fre­
quency w2 lead to polarization of the medium, and con­
sequently to emission of frequency wl" Thus, the quad­
ratic polarizability of the medium produces, besides the 
so-called three-photon scattering with frequency 2w3 

(see, for example, [ 111 ), one more type of scattering­
with frequencies w and (if w < w3) w3 - w, where w is 
in general arbitrary (in the interval from zero to w3 

+ kT ;n. ). 
The emission intensity at a given frequency has a 

sharp maximum in directions determined by the dis­
persion of the refractive index n(w) and by the condi­
tion of the spatial synchronism k1 + ~ = ks, which, as 
is well known, can be satisfied in anisotropic crystals. 
These directions form a circular cone with an axis 
parallel (or almost parallel) to ks· The brightness of 
the PL at low pump intensities S3 is proportional to S3 

and to the size of the scattering volume. However, at 
sufficiently large S3, induced processes, which lead to 
a superlinear dependence, come into play. In this case 
the effect can be defined as noise radiation of a para­
metric light amplifier and called "parametric super­
luminescence"-in analogy with the term used to de­
scribe the noise of quantum amplifiers. 

Analogously, scattering of light by light can be re­
garded as a four-photon process w3 + w~ ...... w1 + w2 , or 
else as radiation produced by cubic polarization P 1 

OE3 E~E~ and fluctuations of the field E2 (see [ 81 con­
cerning the contribution of quadratic polarizability to 
this process). 

In this paper we determine the intensity of the spon­
taneous scattering and its dependence on the frequency 
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and the observation direction (emission line shape) with 
allowance for dispersion. Calculations of the PL and of 
the scattering of light by light are perfectly analogous, 
and therefore principal attention is paid to PL (Sees. 1 
and 2). In Sec. 1 we consider PL in a medium that is 
transparent at all three frequencies. Since the proce­
dure for solving the parameters x and 8 is well known 
and they have been measured with the aid of induced ef­
fects in a large number of substances, we start from a 
phenomenological description of the nonlinearity of the 
medium. The energy of the field contains in this case 
the terms xE3 and 8E4 , and therefore the scattering 
probability is determined by the first order of pertur­
bation theory. [91 For simplicity we consider a uniaxial 
negative crystal, in which the synchronism condition is 
satisfied for the ordinary scattered waves and for the 
extraordinary pump wave. In Sec. 2 we calculate with 
the aid of the fluctuation-dissipation theorem the PL for 
the case when there is absorption at the "additional" 
frequency w2 = w3 - wl" In Sec. 3 we consider the 
changes that must be introduced into the obtained ex­
pressions in the case of scattering by a cubic medium. 

1. LIGHT SCATTERING IN A TRANSPARENT 
MEDIUM WITH QUADRATIC POLARIZABILITY 

We consider an unbounded dispersive medium, in 
which we separate a scattering volume V with a polar­
izability that is quadratic in the field. The dielectric 
constant of the medium is modulated by a monochro­
matic plane pumping wave E3 exp i(ks • r - w3t) + c. c. 
The weak scattered field is expressed in terms of the 
creation and annihilation operators: 

~ Yhkv, . 
E = dki- -a e•••·+h c 

2rrnk " " " 
(1) 

where vk is the group velocity, and a o-function nor­
malizationisused: [ak', ak:] = o(k'-k) (see [ 91 ). 

In the presence of pumping, the nonlinear polariza­
bility x leads to modulation of the field energy with 
frequency w3: 

r r lixykk'v v ' 
H(t) =- J dr J dkdk'~~2 -~E3a"+a",+ei(k,-k-k'J•-<o.,t +h. c. {2) 

v Bn nhnti' 

In (2) we have retained only the terms corresponding to 
the stokes scattering (the case when w > w3 is not con­
sidered, since the changes that should be introduced in 
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this case are obvious). By x is meant the sum Xajk 
x (w, w', w3)eiej e3 k, where e are unit polarization vec­
tors (we use Pershan's definition of x ( 12 l ). 

With the aid of (2) we obtain the rate of production of 
photon pairs in the k1 and k modes: 

Wk,,, = 2rrh-2 1 (1,1IHIO,O) l'o(~w), 

where t..w = w3 - w1 - w(k). The total rate of production 
of the k1 photons is 

Consequently the power dissipated at the frequency w1 

in the direction of k1 in unit spectral and angular inter­
vals dw1 and dn 1 is 

where 
C = 2rrhw~'w,n,x' I c'n,n,, 

f(~k) = I ~ dr exp iAkr 1'/ 8rr-1V, Ak = k3 - k1 - k. 
v 

In (3), the smoothly varying quantities are taken outside 
the integral sign. 

If we are not interested in the form of the emission 
line (i.e., in the dependence of P wn on w1 and on the 
scattering direction), then we can replace f( Ilk) in (3) 
by 6( t..k). After integration, we obtain the following ex­
pression for the differential scattering coefficient (or 
the extinction coefficient l 13 l ): 

Rwo ""'Pwo I S,V = Co(q), (4) 

where 

We introduce a spherical coordinate system (w1 , ~1 , 
qJJ with the axis parallel to ks· The synchronism con­
dition q = 0 defines a surface w1 (~1> qJ 1), in which Pwn 
is maximal. Since k1 2 are ordinary waves, it follows 
that w1 depends only 'on ~P We note that at small val­
ues of ~ the synchronism surface is a paraboloid of 
revolution: w1 - w10 = [k1ks/2k2 (v;1 - v; 1)]~~ Y The 
function w1 ( ~1) can be called the tuning characteristic 
of the PL. The derivatives of q(wl> ~ 1) at q = 0 are 
equal to 

iJq I fJtl, = ks sin fl2, 
(5) 

where sin ~2 = k1 sin ~1/~. The ratio of these deriva­
tives defines the slope of the tuning curve dw 1Np 

Integrating (4) with the aid of (5), we determine the 
power 

dissipated in a unit solid angle, and the power 

Pw = ~ Pwo dQ,, 

dissipated in a unit spectral interval. The results are 

I) If k2 is the extraordinary wave, then the axis of the synchronism 
paraboloid for the frequency w 1 is shifted through an angle c; = (k2 lk3 ) 

(b. n2 /n2 ) sin 20 3 towards the crystal axis (b.n2 = n2 e -n2° is the bi­
refringence at the frequency w 2 and IJ 3 is the angle between k 3 and 
the crystal axis); the shift of the paraboloid axis for w 2 is-a(k 1 /k2 ). 

conveniently expressed in terms of the angular and 
spectral scattering coefficients: 2 ' 

Ro""'Po.ISsV=Civl, (6a) 
R, ~ l'w I s,v = 2rrk,C I k,k,. (6b) 

As will be shown in Sec. 2, these expressions are valid 
also in the case of absorption at the frequency w2 • 

Let us estimate from (6b) the total scattering coeffi­
cient, assuming that the condition q = 0 is satisfied in 
the entire frequency interval 0- w3 • If we neglect the 
x (w1) dependence and the contribution of the thermal 
fluctuations, then 

"' 
R = .\ Rw dw, = ::t2ft,,,,"x'/15c'n,'. (7) 

In lithium niobate x ~ 4 x lo-s absolute units,C 5 l so that 
at A3 = 0.5 Jl we get R ~ 10-7 cm-1 • Observation of the 
PL effect by means of such a small additional coefficient 
of pump absorption is hardly possible (the scattered ra­
diation itself can be readily observed with the unaided 
eye using a pump of 0.1 Wl 1 • 5 l ). 

Let us consider now the shape of the line Pwn(w 1 

- wt, ~1 - ~t), where wt and ~t are connected by the 
condition q = 0. The line width in the case of a trans­
parent sample is determined by the finite size of the 
scattering volume or the coherence volume of the pump 
1/t..ks. Let us consider first the former case (t..ks ~ 0). 
Let the scattering volume have the form of a plane­
parallel layer of thickness l and cross section A. We 
direct z along l, and let k3 ll z. 3 ' Let also the scattering 
angles be small (or close to 1T ): I tan ~1 2 1 « l/ VA, and 
ilien ' 

/(Ak) = o(Akx)6(Alcy)g0 (Aic,ll2)!, 

where g0 ( YJ) = sin2 YJ/21TYJ 2 • After integration, we get 
from (3) 

Rwo = C'go(xl2), 

C'""' Cll lcostl,l, x(w,, flt) ""'ql I lcost~•l· 
(8) 

Formula (8) with allowance for (5), determines the de­
pendence of Pwn(wl> ~1 ) in the case of a plane trans­
parent sample. 

Let us express the obtained results in terms of the 
spectral brightness of the PL, Swn = P wn I A I cos ~1 1 
and in terms of the conversion coefficient K, which 
equals the ratio of the emission power at the frequency 
w1 to the incident power at the frequency w2 , multiplied 
by w2 /wl> in the experiment on the frequency subtrac­
tion:4> 

K = (2n) 3w,w,x'Ssl2go 

c:1n1n2n31 eos 'fr-t cos \~21 · (9) 

We denote by I0 the spectral brightness of the equilib­
rium emission of one polarization at the temperature 
l:'iwdk ln 2, and then (8) takes the form(s,?l 

2>x2 in (6b) should be taken to mean the quantity averaged over <P 

(the X(<P) dependence can be neglected at small~). 

3lif k~ is not parallel to the z axis, then it is necessary to replace 
cos ~ 1 2 by cos~ 2 in the formulas that follow, where~ 2 are the 
angles between k1 ; and z. ' 

4>we note that in a transparent medium K is smaller than the coeffi­
cient of parametric amplification by unity. 
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(10) 

If we equate (10) to the spectral brightness of the ther­
mal radiation with temperature T eff• then we obtain the 
following expression for the effective temperature of 
the PL: 

T,q,,0 (w, t}) = liw I kIn (1 + K-1). (11) 

Let us return to the line shape. We define the effec­
tive5> spectral line width ~w as the ratio 

PQ/P,.,Q0 = 2;rrS g0 dw1 

(P~n is the "resonant" power at q = 0). Taking (5) 
into account, we get 

Llwo = 2;rr J" cos t}2 JZ-1. (12) 

Analogously, the angle width of the tuning curve at ~1 , 2 

* 0, 1f (when dw/dS* 0) equals 

(13) 

We note that formulas (6a) and (12) become meaning­
less when lv I = oo, particularly in the degenerate "one­
dimensional" case, when w1 = w2 and ~1 = ~2 = 0. Then 
il 2q/ilw~ = -4c- 1dn 1/dw, and we have in place of (12) 
(assuming in (4) that o(q) = l go(x/2)): 

(12a) 

In the degenerate one -dimensional case it is necessary 
to add in (6a) the factor 2~wol ~w0 , so that Rn is pro­
portional in this case to the square root of the layer 
thickness ( ff). 

In linear scattering, the non-monochromaticity and 
the divergence of the pump (as well as its coherence 
properties) do not affect the integral radiation power 
Pn (or P wl, and only increase the line width. Let the 
pump field be o -correlated in k:J with an intensity dis­
tribution function g3(k:J- k:J0), and then the line shape 
will be given by formula (4) in which o(q) is replaced 
J dk:Jg3o(q). The broadening of the line due to the non­
ideal pumping can be readily estimated by varying the 
equality q = 0. For example, the pump divergence ~e 3 
in the principal section of the crystal leads at ~ = 0 to 
an additional spectral line broadening by an amount 

Llwe = Llwol I Zcoh (12b) 

where lcoh = )1.3/ ~n3 ~e3 sin 2 e3 , and ~n3 is the bire­
fringence at the pump frequency. Here P~n ~ Pn/ ~we 
~ l, so that P~n is proportional to l2 only when 
l « lcoh· 

2, SCATTERING IN ABSORPTION AT THE 
ADDITIONAL FREQUENCY 

The probability calculation employed above is appli­
cable when anl/ I cos ~n I « 1, where an is the absorp­
tion coefficient at the frequency wn, n = 1, 2, 3. Inter­
est attaches also to the case when the medium is trans-

5lFor the function g0 , the effective width is I 3% larger than the 
width at the 0.5 level. 

parent only at the frequencies w1 and w3 s> (scattering 
at a 2 Z > 1 was observed in [ 3 ' sl ). It is obvious that as 
W2 approaches the frequencies of the polar oscillations 
of the lattice, the PL goes over into scattering by polar­
itons. We consider here the intermediate case, when the 
absorption is still not too large (£" « £ ', where £ is the 
dielectric constant of the medium at the frequency w2), 

so that the longitudinal field component can be disre­
garded. 

In the analysis of scattering in a non -transparent 
medium it is convenient to use the classical theory of 
scattering[ 13 l and the fluctuation -dissipation theorem 
for the electromagnetic field. [ 13 • 14 l The field produced 
in the far zone by the nonlinear polarization is equal to 

(14) 

We represent the fluctuation field in the form E2 

= J dpEp exp (ip • r). The direction of observation k1, 

and consequently also e11 is fixed; the synchronization 
condition p ~ k2 = k:J - k 1 determines also e2 (e 1 2 are 
perpendicular to k 1 2 and to the crystal axis). From 
(14) we get the pow~r dissipated in the interval dw1 dQ 1 : 

en, n 1w1'JxJ 2 S3 (I 1 I') PQw =- R 2 (E,E,') = ----- J drdpEpe'<p-k,)r . (15) 
2n n3c4 

According to [ 13 l, the p-correlator of the transverse 
field equals 

where N2 = (exp (fiw2/kT)- 1)-1 • In (16) we doubled the 
term describing the zero-point fluctuations of the field. 
We shall henceforth assume that fiw 2 » kT, so that 
N2 = 0. 

Substituting (16) in (15), we find that the line shape 
is now Lorentzian: 

RwQ = JC'Jgi(x, y), g,(x, y) = yn-! I (x" + Y2), (17) 

where y = a 2 Z/21 cos ~2 1. The integration of (17) with 
respect to w1 or Q11 with allowance for (15), yields 
again Eq. (6)-as expected, absorption directly at the 
additional frequency does not change the integral scat­
tering coefficients. In lieu of (12) and (13) we now have 

~Wt = na,JvJ 12, 
~t}t = na2 /2k 3 sin t}2• 

(18a) 
(18b) 

We note that if v2 is taken to mean the speed of sound 
(v2 « V 1), then (18a) coincides with the well known ex­
pression for the effective width of the Mandel'shtam­
Brillouin components. 

6> Absorption at the frequencies w1 and w3 causes, besides line 
broadening (in analogy with the broadening considered below), also a 
decrease of the effective scattering volume. The drop of the intensity 
can in this case, however, be compensated by the resonance in the 
x(wd dependence. 
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Spectral brightness of scattered radiation 
P......------'!l+------+----1 vs. frequency (or scattering angle) at differ­

ent absorption coefficients at the additional 
frequency. 

0 

In the intermediate case of a semitransparent layer 
(when y~ 1), the line shape can be obtained in similar 
fashion. It is necessary here also to take into account 
the fluctuation field produced in the sample by the space 
outside the scattering layer (where r." = 0). When y ~ 1, 
the p-components of the field connected with the absorp­
tion inside the layer are no longer li -correlated, leading 
to rather cumbersome calculations; we therefore pre­
sent only the final results: 

R.,o = [C'ig(x, y), 

This expression includes (8) and (17) as particular 
cases, namely, we have g = g0 when y « 1 and g = g1 
when y » 1.7 > A plot of g(x, y) is shown in the figure. 
Since 

00 

~ gdx = 1, 

it follows that formulas (6) remain in force. The de­
pendence of the line width on 0!2 and l is determined 
by the resonant value of g: 

Llw 

Llwo = 2:rtg(O, y) 

3. SCATTERING OF LIGHT IN A MEDIUM WITH 
CUBIC POLARIZABILITY 

(20) 

In media with inversion centers, scattering is possi­
ble as a result of a real cubic polarizability e. [ s, 9 1 As­
sume now that we have two incident light beams with 
frequencies w3 and w~. The synchronism condition 
ks + ~ = k1 + ks can be satisfied also in isotropic media 
(at least when w1 ~ w3 and w2 ~ w~). If we neglect dis­
persion, then the synchronism surface is an ellipsoid of 
revolution with interfocal distance I ks + k~ 1. [ 8 • 91 So far, 
spontaneous four-photon scattering was observed at w3 
= w; and ks 1 ~. [ 61 Interest attaches also to the degen­
erate case ks =~,when the tuning characteristic, with 
allowance for dispersion, has at w1 ~ w3 the form 

7> A similar transition of the line shape from g1 to & takes place in 
the case of Mandel'shtam-Brillouin scattering when the attenuation of 
sound is decreased [15]. The line shape obtained in [15 ] is apparently 
close to the function g. 

'ft,2 = (w,- w.) 2 (ol1 I wzks)dl-k• I dw 2• 

The effect should reach a considerable magnitude in the 
case of self-focusing of the incident radiation and when 
w1 "'w3 or w1 "'w3 ± w0 (w0 -frequency of the molecu­
lar oscillations), when O(w1 = 2w3 - w2) has resonance 
maxima. 

At real values of e,s> the formulas obtained above 
remain in force, provided we make the substitutions 
W3 - w~ + w3, ks - ~ + ks, and x - OE~ (here e 
= UijkW1iesjesk'e2z, and account must be taken of the 
contribution of the different polarizations em>· Thus, 
we get in place of (6) 

(21a) 

(21b) 

If dispersion is neglected, (21a) coincides (apart from 
numerical coefficients) with the result of Robl. [ 81 Let 
us estimate (2lb) at ks = ~ and w1 "' w3• If the inci­
dent radiation has a diffraction divergence, then we get 
upon focusing of this radiation VS~ "' 2P:n/~. Let P3 

= 1 MW, ~3 = 0.7/J., and e = 10-13 cm3/erg; then after a 
time T = 10-s sec; the number of photons scattered in 
a spectral interval of 1 cm-1 is PwT~/ti = (21T}782P:T/ 
cn2 ~4 "'lOS. 

4. CONCLUSION 

The scattering model employed here agrees best with 
experiments in which a sample with "antireflection" 
surfaces is used. In this case, the conversion of the ob­
served quantities to the parameters calculated above is 
trivial: it is necessary to take into account the refrac­
tion at the "output" surface, which leads, besides a 
change in the observed scattering angles, only to a de­
crease of the PL brightness by a factor n2. We can ex­
pect that in the case of non-antireflection surfaces it is 
sufficient to take into account, in addition, only the 
losses for the single Fresnel reflection. The inter fer­
ence effects are significant in the case of specular 
boundaries and a sample of high optical grade, and even 
in this case the formulas presented above remain ap­
parently in force, provided the bandwidth and the aper­
ture of the receiver are sufficiently large: at small val­
ues of S3 the interference leads to the appearance of a 
fine structure in the space -frequency distribution of the 
radiation, with the same average intensity. 

Another limitation of the present paper is connected 
with the neglect of the induced effects, a procedure jus­
tified when K « 1 (see (9)). In practice, these effects 
become appreciable, even in a transparent crystal, only 
at pump intensities on the order of several megawatts 
per cm2 (in the absence of mirrors) and at a sufficiently 
low pump divergence. It can be assumed that in this 
case formula (10) gives the correct order of magnitude 
of the spectral brightness of the superluminescence, 
provided K in this formula is taken to mean the conver­
sion coefficient corresponding to these conditions.[7 1 At 

8>Resonant four-photon scattering is closely connected with Rayleigh 
scattering or Raman scattering and calls for a special analysis. 
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the present time, pulse lasers yielded a gain of several 
units. [41 The effeetive temperature of the PL should, 
according to (11), reach several tens of thousands of 
degrees. 

The obtained expressions for the power of the scat­
tered radiation (6) and (21) make it possible to measure 
the magnitude and dispersion of the polarizabilities )([ 51 

and 8. Such measurements are of particular interest in 
the case when w2 lies in the infrared or in the millime­
ter band, since they make it possible to determine the 
contribution of the vibrational levels. Observation of 
PL should also permit measurement of the dielectric 
constant in these ranges: n2 can be determined from 
the synchronism condition if n1 and n3 are known, [31 

and the line width, according to (20), determines r.". We 
note finally, that PL is possible, in principle, also in 
optically active liquids in which x =F 0 when w1 =F w2 • [ 161 

The author is grateful to S. A. Akhmanov and R. V. 
Khokhlov for useful discussions.9 > 
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