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We investigate the propagation of a strong circularly-polarized electromagnetic wave along the direc
tion of a static magnetic field in a semiconductor, where the electrons are scattered in a sharply in
elastic manner by optical phonons. We show that the reflection coefficient of such a wave from the 
vacuum-semiconductor interface experiences oscillations following variation of the wave amplitude, 
the magnitude of the magnetic field, and the electron concentration. The cyclotron-resonance absorp
tion line shape has an almost flat top and sharply dropping edges. 

INTRODUCTION 

IT is well known that in the case of sharply inelastic 
carrier scattering the components of the electric con
ductivity tensor aik in crossed fields E and H have 
singularities at a certain ratio E/H. c 11 The purpose of 
the present work is to investigate the influence of these 
singularities on the propagation of an electromagnetic 
wave. 

We eonsider a circularly polarized wave of ampli
tude E and frequency w, propagating in an isotropic 
medium along the direction of the static field H; w > 0 
if the direction of rotation of the vector E (t) coincides 
with the direction of the cyclotron rotation of the car
riers (of frequency we>· To calculate the current j(t) it 
is possible to change over to a system of coordinates 
rotating about H with velocity w. In this system E (t) 
and j(t) are stationary, and the problem reduces to the 
static one. However, since the charges rotate relative 
to this system with frequency We- w, the static prob
lem will involve a magnetic field H' such that the cyclo
tron frequency corresponding to it is w~ = We - w. 

The main manifestation of the aforementioned singu
larities is the vanishing of the dissipative component 
a xx· When the field E increases at a fixed value of H', 
i.e., at fixed H and w, this component vanishes abrupt
ly on going through a certain critical field E* , which 
depends on H and w. As shown in [ 21, the jumps of the 
components a ik• when considered as functions of the 
field E, lead to an oscillatory dependence of the surface 
impedance and of the reflection coefficient on the ampli
tude of the incident field. The physical reason for this 
can be readily understood. Assume that a wave is inci
dent on a half-space with amplitude E0 such that a field 
E~ > E* is produced on the interface. On penetrating 
into the medium, the field attenuates and becomes equal 
to E* at a certain distance a. At this point, owing to 
the jump of aik• the properties of the medium change 
abruptly and a plate of thickness a becomes detached, 
as it were, from the half-space. It is obvious that a in
creases monotonically with increasing E~ and E0 , and 
since the impedance of the plate is an oscillating func
tion of a, the surface impedance is consequently an 

oscillating function of E0 • 

Another high-frequency effect more directly influ
enced by the vanishing of the dissipative component axx 
is cyclotron resonance when E and w are fixed and H 
varies. We note that in this case H' is actually the de
viation from resonance liH, expressed in units of the 
magnetic field. In this case there exists a critical value 
(oH)* at which axx drops to zero. Therefore, the cyclo
tron-absorption line has an unusual form with sharply 
steepened edges. 

1. CONNECTION BETWEEN THE STATIC AND HIGH
HIGH-FREQUENCY CONDUCTIVITIES 

Confining ourselves to non-quantizing magnetic 
fields and neglecting the spatial dispersion, we can seek 
the connection between the current j(t) and the wave 
field E(t) from the kinetic equation without spatial de
rivatives 

a . { e } a -J(p,t)+ eE(t)+-[v(p)H] -j{p,t)+S{flp)= 0, 
i}t c i}p 

j{t) = e ~ v(p)j{p, t)dp, 
i} 

v(p)=-e(p). 
i}p 

(1.1)* 

Here £-distribution function, H-external static field, 
and S-ordinary Boltzmann collision term expressed in 
terms of the scattering probability W(p1, p2), and E(p) 
is the dispersion law. It is also assumed that the wave 
magnetic field is H(t) « H. 

Let the wave be circularly polarized, let it have the 
frequency w, and let it propagate along H liz. We change 
over now to a coordinate system (p~, Py, p~) which ro
tates around z with frequency w together with the field. 
In this system, the components E (t) do not depend on 
the time. If the medium is isotropic, then E(p) is in
variant against the rotation of p, and W( P1> p2 ) is in
variant relative to a simultaneous rotation of p1 and p2• 

Therefore the transition to a rotating system in the 
term S and in the term connected with the magnetic 
field does not lead to the appearance of an "explicit' 
time." Thus, the distribution f, expressed in terms of 

*[v(p)H] = v(p) x H. 
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p', does not depend explicitly on the time, and we have 

fJj f)j f)p' fJj 
at= fJp' at= w [e,p1 fJp' ' 

H 
e,=H. 

We introduce the cyclotron mass and the frequency 

Then 

p eH 
m=-, 

u 
We=-. 

me 

fJj ' fJj 
--= -mw[ve,]-. 
fJt fJp' 

(1.2) 

(1.3) 

(1.4) 

Substituting (1.4) in (1.1), we obtain in the coordinate 
system p' the static problem, in which the magnetic 
field is 

II_.. H' = H - me we, 
e 

or, what is the same, 

We--+ we'= We- (l), 

(1. 5) 

(1.6) 

Since the expression for j in (1.1) is also invariant 
against rotation of the coordinate system, Eq. (1.5) or 
(1. 6) establishes the connection between the static gal
vanomagnetic tensor aik(O, H) and the high frequency 
tensor aik(w, H) for a circularly polarized field, in ac
cordance with 

cr;• ( w, H) = cr;k (0, H'). (1. 7) 

We note that the conditions for the applicability of 
relation (1.7) are much broader. Actually, all the as
sumptions made are inessential, with the exception of 
the assumption that the medium is isotropic in the ab
sence of an external magnetic field. Even axial sym
metry with respect to the z axis is sufficient. 

2. CONDUCTIVITY TENSOR 

We shall henceforth consider an example in which 
there is inelastic scattering of the electrons of the 
semiconductor by optical phonons tiw0 at low tempera
ture kT « hw0 • The static conductivity tensor for this 
case was calculated in l 1 l, and has the natural form 

(2.1) 

Expressions for the dissipative (transverse, a 1 ), Hall 
(crossing, ax), and longitudinal (all) components are 
given in the table, where 

1 Vo H 
X= 2---;:-£• 

Po = mv0 = (2m/iw0) 'lz, 

(2.2) 

N is the carrier density. To obtain the high-frequency 
conductivity it is necessary to substitute (1.5) in (2.2). 

The expressions given in the table do not take into 
account certain details in the dependence of Uik on K; 
these details are connected with the weaker singulari
ties.c3J The interelectron scatteringl 4 J is also neglect
ed. However, these circumstances are not essential 

•< 1 •>1 

" 0 ".t Oo arc sinK 

( 1 v 1- ><' ) 
1 

"x cro ----- cro.x x arc sin x 
o II Oo 

Oo 

when it comes to explaining the meaning of the high
frequency effect. These expressions are valid, in addi
tion, in a certain electric -field interval E- « E « E+. 
The characteristic fields E± are determined by the re
lations eF±T± = p0 , where T+ and T-are the electron 
relaxation times in the regions £ > tiw0 and £ < 5.w0 • 

The average electron energy here is E"'" 5.w0 , so that 
neglect of quantization signifies We « w0• The mean 
free path l is determined by the time necessary to ac
celerate the electron from £ = 0 to £ = tiw0 , and equals 
TE = p0 /eE. Therefore l ""'VTE "'"tiw0 /eE, and the neg
lect of spatial dispersion for the wavelength >c means 
that eE>c » tiw0 • 

3. HIGH-FREQUENCY EFFECTS 

In considering the cyclotron resonance, we empha
size that this is a resonance in which the same strong 
field E "heats" the electrons and resonates with them. 
Regarding E and w as fixed, as is usually the case in 
experiments on cyclotron resonance, we put 

(6H)" = z....!!._E, 
Vo 

(3.1) 

where we have written oH in lieu of H', in order to 
emphasize that this quantity actually points to a devia
tion from the resonance of the magnetic field. Using the 
first of the forms of a0 in (2.2), we obtain immediately, 
from the expressions listed in the table, the form of the 
absorption line a1 as a function of oH (see the figure). 
The line is symmetrical but deviates greatly from Lo
rentzian, is almost rectangular, and its edges are very 
steep. The line width (oH)* is proportional to E; the 
corresponding relaxation time is TE, which indeed cor
responds to the collision frequency. Unlike the usual 
cyclotron resonance, the observation is not limited by 
the condition wcTE » 1, or, what is the same, by oH 
« H, since the resonance is manifest not in the sharp 
absorption maximum but in abrupt vanishing of the res
onance. 

Proceeding to the problem of the reflection of a 
wave from a half-space, when w and H are fixed, it is 
convenient to write 

E' = PoiL'>wl 
2e ' 

!lw=wc-ffi (3.2) 

and to bear in mind the ± sign in front of ax in accord
ance with the sign of t..w. Considering a circularly
polarized wave, it is convenient to introduce the com
plex amplitude E, defined by the relation 

Ex(z, t) + iEy(Z, t) = E(z)e-iwt, jEI =E. (3.3) 

Maxwell's equation for this amplitude is given by 

d' 
-E + ek2 [1 + it<f(E)]E = o. 
dz 2 

(3.4) 
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_Cb_ 
-('fill)* (8H)* 811 

Cyclotron-resonance absorption line shape 

Here k = w/c, £ is the dielectric constant without al
lowance for the free carriers, £ = 1 in vacuum and 
£ = £L in the semiconductor. Further, 

Wp 2 4nNe2 
a=-- wp 2=--wfi\wf ' meL 

(3.5) 

f E f 1 • 1 eNv0 
( )= '(E)+i/''(E)=-. (aj_+ia,), ao =---. 

<Ju 2 E" 

The nonlinear equation (3.4) will be solved under the 
assumption that (Y « 1. Methods for the approximate 
solution have been developed in [ 2 J, so that we confine 
ourselves only to the scheme of the solution. 

In accordance with the qualitative picture described 
in the introduction, the solution is sought separately in 
three regions: 

1) vacuum, - oo < z < 0; 
2) "detached plate," 0 < z < a, where E > E*; 
3) remaining part of the semiconductor, a < z < +co, 

where F < E*. 
When z > a, the wave attenuates as a result of the 

lattice absorption or the small quantity a1, unaccounted 
for in the table, when E < E*. These effects will be dis
regarded, and we shall therefore assume that when 
z >a the medium is nondissipative, i.e., E = E*. None
theless, we shall neglect reflection from the really ex
isting second interface. 

In vacuum we have 

E1 (z) = E0 [exp {ikz} +Pexp {-ikz}], (3.6) 

where E0 is the amplitude of the incident wave and P 
is the sought reflection coefficient. In the nondissipa
tive region 3) we have f'(E) = 0, and consequently 
E = E* = const, and therefore f" (E) = f" (E*) = const. As 
a result we can immediately write out the solution in the 
form of a wave going to z = +co 

E3 (z) = E*exp {ikS3 + ikn(1-'haf"(E*))z}, (3.7) 

where we have introduced the refractive index of the 
lattice n = J£L, and S3 is an undetermined phase. In 
the dissipative region 2), when a « 1, there are two 
waves propagating in both directions, and therefore 

E2 (z) = w+(z) exp {iknz} + w_(z) exp {-iknz}, (3,8) 

u;±(z) = u±(z) exp {ikS±(z)}. (3.9) 

Substituting (3. 8) in (3.4), we can stipulate 

d 2 d 
dz 2 W± ± 2ikndzw± + ik2an2fw± = 0. (3.10) 

It is also necessary to satisfy the conditions of the con
tinuity of the field E and of the derivative dE /dz at 
z = 0 and z = a. From these conditions we should find 
P, S2 , a, and the integration constants (3.10). 

Using the smallness of a, we expand 

u±(z) = u~ll) (z) +au~) (z) + ... , 
S±(z) = S~lll (z) +aS~> (z) + ... , 

p = Jl<O) + aP(l) + ... , 
a = a-la(-ll + . . . . (3.11) 

The expansion of a should contain reciprocal powers of 
a, since it is obvious from physical considerations that 
when a- 0 we should have a- ao; it is easy to verify 
from the equations that the expansion begins with the 
term that has been written out. In order to obtain the 
first correction to P, it is sufficient to retain terms 
which are explicitly written out in (3.11), solve (3.10) 
accurate to a 2 inclusive, and satisfy the continuity con
ditions accurate to a inclusive. As a result we get 

p(o) == i-n P<'l = Jil.'> + P<'>, Jil.'l =- ~i!'.._,_f(E ') 
1 + n' (1 + n)2 ° ' 

P(l>= ~n(;~ff(E')exp{: 'I'(EoJ}, 

I!:ol dE 
'¥(Eo)= 4 I-

;,Ef'(E)' 
Eo'=~. 

1+n (3.12) 

Here po> and :pw are the monotonic and oscillating 
corrections to the reflection coefficient, and E~ is the 
field on the interface (calculated in the zeroth approxi
mation in a).O Inasmuch as f' > 0, it follows that >l'(E0) 

is a monotonically increasing function, and pW oscil
lates with increasing E0 • Since, in accordance with 
(3.5), a depends on N, w, and H, it follows that p<1> 

also oscillates when these parameters change. 
The obtained solution is meaningful only when E~ 

> E*, and in the opposite case the "plate'' does not 
separate and all the oscillatory effects vanish. Since 
the argument of the exponential of p<ll contains the 
large factor 1/a, the periods of the oscillations ~E0 
and ~H of E0 and H contain the small factor a and 
can be readily determined: 

M :rt 
e;;=z-a!'(E0'), 

The oscillations in these parameters are not strictly 
periodic, since f' depends both on E~ and on H (via 
E* ). Since >¥ does not contain the concentration, the 
oscillations in N- 1 should be strictly periodic with a 
period 

(3.14) 

We note that the accuracy of the formula (3.13) for ~H 
is much worse than the accuracy of the formulas (3.12), 
owing to the cancellation of the terms in the square 
brackets. Therefore, at not too small a it is better to 
find ~H directly from the expression fo~ >¥. 

Let us discuss the possibility of experimentally ob
serving the aforementioned effects in p-Ge, where the 

I> we note that in the expression for p(l) the value of a was calculated 
accurate to the first-order term in the expansion in a. This is valid if 
Eo ;;;,. E * or if n is close to unity. In the general case it is necessary to 
retain also a<0) in p (I). 
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inelasticity of the scattering is appreciable/ s,sl- and 
where the conditions for the applicability of the expres
sions listed in the table are well satisfied. [1 l The pa
rameters of the material are as follows: m = 0.3 m0 

(heavy holes), w0 = 6 X 1013 sec-\ whence v0 

= 2 x 107 em/sec; T+ = 10-12 sec (spontaneous emission 
of optical phonons), whence E+ = 3000 V /em. In order 
to ensure a break between E+ and E- it is necessary 
to use hydrogen or helium temperatures. Then in pure 
samples T- = 10-10 sec[ 7 J (scattering by acoustic pho
nons) and E- = 30 V /em. We choose w = 2.4 x 1011 sec-1 

("-o = 8 mm) and H = 5.6 kOe, which yields we= 3.3 
x 1011 sec-1• We then get ~w = 0.9 x 1011 sec-\ and the 
critical field E* = 150 V /em falls in the permissible 
interval between E- and E+. Choosing E0 = 500 V /em 
(incident power W = 400 W /cm2 ) and using £L = 16, we 
get E~ = 200 V /em, which is larger than E* and also 
lies in the permissible field interval. In such fields, the 
shallow impurities are completely ionized, so that for 
pure samples we have N = 1012 cm-3 , i.e., wp 

= 1011 sec-1• This corresponds to a = 0.3. The period 
of the oscillations here is ~E0 = 150 V /em. The value 
of E0 can be increased until E~ becomes comparable 
with E+. It is obvious that this should give rise to a 
large number of oscillations (on the order of 10). In 
principle it is possible to observe also oscillations in 
H and N, the latter with the aid of additional elimina
tion. The periods are then estimated at ~H f'::l 2 kOe and 
~N f'::l 3 x 1012 em -3 • However, changes of H and N soon 
cause a to be no longer small, so that only a qualita
tive retention of the picture can be expected. 

It is useful to estimate the value of a at which the 
first oscillation is observed. Its order of magnitude is 
half the wavelength in the material, a f'::l A/2, A = A0 /n, 
i.e., a f'::l 1 mm. 

Cyclotron resonance may be observed under the 
same conditions. Assuming E 0 = 500 V/cm and E~ 
= 200 V/cm, we get (oH)* = 2 kOe. Thus, with the cen
ter of the absorption line at H = 4.1 kOe, the vanishing 
should take place in fields 2.1 and 6.1 kOe. 

We point out that there exists one necessary condi
tion for the observation of the reflection oscillations. 
Owing to the finite time T+, the vanishing of the dissi
pative current is actually smeared out near E* in a 
certain field interval ~E*. Using the concepts devel
oped in [ lJ, we obtain the order-of-magnitude estimate 

(3.15) 

This smearing brings about a smearing of the boundary 
of the "detached plate" by an amount 

dE )-t M' A. 6'1• ~a"'='(- /I.E'""='--""='-"-· 
dz E' a a 

(3.16) 

The reflection oscillations will not be smeared out if 
the condition ~a~ A is satisfied, i.e., if ~ ~ a 2 • For the 
figures given above, ~ = 0. 05 and a 2 = 0.1. 

The authors are grateful to Yu. K. Pozhela for a re
mark connected with the need for the latter criterion. 
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