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We propose a model that takes into account the irregularity of the surface of a thin (quantizing) film of 
a semimetal or a semiconductor. The influence of the surface scattering of electrons on their spectrum 
and on their conductivity in a weak constant electric field is clarified. The residual resistance of the 
film and the temperature dependence of the surface resistance are obtained at low and high tempera­
tures. 

THE question of the influence of the irregular struc­
ture of the surface on the spectrum and kinetics of the 
carriers in thin films is of considerable interest. This 
problem is the subject of a number of works;[ 1 - 3 l Zi­
man's book[ ll also contains a bibliography of the prob­
lem. In the approaeh developed in [ ll, use is made of 
the diffraction of electrons by the irregular surface, and 
the Huyghens principle is actually employed. In that 
case the purpose is to determine the diffusion coeffi­
cient, i.e., the idea of the kinetic equation employed. 
When used for thin films, such an approach is doubtful 
because of the quantization of the transverse motion of 
the electrons when the dimensions of the surface de­
fects are small compared with the electron wavelength. 

In the present paper we consider a pure thin film of 
a semimetal or conductor at a sufficiently low tempera­
ture. We assume that the mean free path with respect 
to any volume scattering mechanism is infinitely large. 
Under these conditions, the only cause of relaxation of 
a state with a definite longitudinal momentum is scat­
tering by the boundaries of the film. 

We propose the following model, which takes into ac­
count the irregularity of the surface. The wave function 
of the electron satisfies the boundary condition 

a 
.p(x,y,a)-j- u(x,y) -.p(x,y,z) I Fa= 0. az 

(1) 

The film occupies the region 0 :S z :Sa, and u(x, y) 
is a random function with specified correlation proper­
ties. For simplicity we assume that only one boundary 
of the film, z = a, i:s irregular, and therefore for z = 0 
we put 1/J(x, y, 0) = 0. The case when a condition of the 
type (1) is satisfied on both surfaces can be treated 
analogously. The considered model is a reasonable ap­
proximation to the real situation. Indeed, when the 
wavelength of the electron is much larger than the 
height of the surface irregularities, Eq. (1) is an ex­
pansion of the exact condition 1/J = 0 on a surface of 
random form z = a + u(x, y). On the other hand, (1) 
specifies the logarithmic derivative of the wave func­
tion of the surface, i..e., it takes into account in a cer­
tain sense the interaction between the electron and the 
short-range surface centers. Inside the film we as­
sume that the electron is a free particle with isotropic 
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effective mass. 
Our purpose is to find the Green's function, the state 

density, and the electron mobility. 

1. GREEN'S FUNCTION AND DENSITY OF STATES 

The problem consists of solving the equation 

(11 -j- k2)Cn(r, ro; E) = -o(r- ro), 

ll=m= 1, "' = 2£, 
(2) 

with the boundary conditions given above. We seek the 
solution in the form of a potential of a simple layer 

G (' lexp(ikjr-r,f) cxp(ik[r-r1'[)l 
R(r,ro;E)= J rt(x,yi) I -----~---------jrl.r1 rly 1 

L jr-r1 [ [r-r,'[ _ 

-j-. L (np(ik[r_--::._ru[) _ ~xl'_(ikfr"_-=ru'[) l 
h . [r-r,,[ [r-•·u'[ i · (3) 

Here fl(X, y)-density of the "sources," r = (x, y, z), 
r 0 = (Xa, y0 , z0), r~ = (Xo, y0,- z 0), r 1 =(xu Yu a), and 
r~ = (xu Yu -a). 

We choose a retarded Green's function, i.e., k2 con­
tains an infinitesimally small imaginary increment iO 
(o > 0). Taking the Fourier transform with respect to 
x, y, Xa, Yo we get 

(4) 

2;~2 

+ i ll(pi [t•xp(ill(p) fz- z.,f)- C\jl (iR(p) lz + z,[) l o(p- p'); 

p and p' are two-dimensional momenta; (R( p) = v'k2 -p2. 
The boundary condition (1) leads to the following in­

tegral equation 

tg(R_(I')_a_L"(p,p')-J-(2rr)-z ~ u(p-q)Y(q,p')rlq (5) 
li(p) 

= - 2:o:6(p- p') sin (R(p)zo) In (p)cos(ll(p)a). 

In (5) we have introduced the notation 

v(p, p') = ~t(p)[i -j- cxp (2iaR(p))] 

-j-2rri6(p-p') sin (R(p)zo) cxp (iR(fJ)"). 

We note that when v'k2 - p2 = 0 all the coefficients of (5) 
are analytic, so that the question of the choice of the 
branch of the radical does not arise. Relation (5) can be 
regarded as an equation describing the motion of a par-
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ticle in a two-dimensional random potential u( q). The 
role of the "bare" Green's function is played by the 
quantity R(p) cot (R(p)a), the poles of which coincide 
with the poles of the true Green's function (4) when u(p) 
= 0 and determine the law of dispersion of the electron 
in the film with ideal boundaries: 

km2 =p'+(m:rt/a) 2, m=1,2,3,... (6) 

We are interested in the solution of Eq. (5), averaged 
over the ensemble of random functions u(x, y). We con­
sider the case when this ensemble is Gaussian. Then 
the mean values of the products of u break up into 
paired mean values; for the average solution (5) 
(v(p p')) we get a diagram technique which is perfect­
ly an'alogous to that developed by Abrikosov and Gor'kov 
in the theory of superconducting alloys (see [41). The 
figure shows some of the simplest diagrams. The solid 
lines correspond to the factors R cot (Ra), the dashed 
lines to the quantity W(p), which is the Fourier trans­
form of the binary correlation function W(x- x', y - y') 
= (u(x, y)u(x', y')). We shall assume that there are no 
preferred directions on the surface of the film; then 
W( p) depends only on the modulus of p. The average 
value of u(x, y) is assumed equal to zero. Each diagram 
must be multiplied by the co(ilfficient of the o function in 
the right side of (5). The average quantity (v(p, p')) ob­
viously has the form v(p)o(p- p'), where v(p) is ex­
pressed in known fashion in terms of the irreducible 
self-energy part ~(p): 

v p = -~sin(~(p)zol_,Jtg(R(p)a)_~(p)J-1 • (7) 
( ) R(p)cos(R(p)a) L R(p) 

In our approximation ~(p) is equal to 

~(p)=-~ ~ W(p-q)R(q)ctg(R(q)a)dq. (8) 
(2:rt)2 

From the estimate of the diagrams follows the criterion 
for the applicability of (8), namely R~ « 1. It is easy 
to verify that the poles of the averaged Green's func­
tion (4) are due only to the vanishing of the square 
bracket in (7). From this we determine the renormal­
ized dispersion of the electrons and the damping of the 
state with specified m and p. The roots of the equation 
tan (R(p)a) = R(p)~(p) are close to the zeroes of tan (Ra) 
by virtue of the condition R~ « 1. Solving this equation 
approximately, we get 

km' = Re k,2 +if (m, p) = p2 + (\ m:rr)' (1 + 2~ (~2_) · (9) 
a , . a 

The imaginary part of ~(p), which determines the 
damping, is due to the circuiting of the poles of 
cot (R(q)a) in (8). These poles are located on the seg­
ment 0 < q < k and their number N(k) equals the integer 
part of ka/1r. As a result we obtain 

N(k) !:rrm)' ___ _ 
lm~(p)=- L; 2a3 W(p,l'k2 -(:rtm/a) 2), 

m=i 

(10) 

where W is the result of averaging over the angles: 
2n 

W(p, q) = (2n)-1 ~ W("ypz-+ q'- 2pqcos rr)drp. 

' As follows from (9) and (10), the imagina~ part of the 
energy r is a stepwise function of k. If W(p) changes 

b 

/,.-/\-...... , 
I ( I L 

d 

little over the interval p ~ ~ then r(m, p) increases 
on the average like (m7T /a)2 (W/a)[p2 + (m7T /a)2 ] 5 12 • 

Formula (10) is valid so long as 

W m:rr[p'+(mn/a) 2]'!,~ 1. 
a 

In this region, r is much smaller than m7T /a2 -the 
distance between the levels of the transverse part of 
the energy. The indicated limitation on W has a sim­
ple physical meaning. Let the longitudinal and trans­
verse energies be of the same order of magnitude; in 
this case the de Broglie wavelength of the ~lectron ~ 
is of the order of a/m7T. An estimate for W yields W 
~ H2L2 , where H and L are the characteristic height 
and the diameter of the surface inhomogeneities. Then 
the criterion presented above for the applicability of 
formula (10) assumes a particularly simple form: H2L2 

« ,\4. 

In the vicinity of the points where ka/7T is an integer, 
it is necessary to take into account the higher approxi­
mations for ~(p). It is still possible to neglect here the 
diagrams with intersections (see Fig. d) with respect 
to the parameter R~ « 1. As is well known, in this ap­
proximation ~ is determined from the equation 

, 1 1 ftg(R(q)a) J-1 
~(p)= (2n) 2 J W(p-q)L R(q) -~(q) dq. (11) 

From (11) it follows that the sharp steps in r(E) be­
come smeared out, retaining the smoothed-out relation 
r ~ (2E- p2)E5 12 • The width of the smearing is of the 
order of the quantity r itself, and is much smaller than 
the width of the steps. Outside the region R~ « 1, it is 
necessary to sum all the self-energy diagrams in order 
to find the dispersion and the damping, which of course 
is not realizable. It is interesting, however, that it is 
possible to ascertain the essential features of the oppo­
site limiting case R~ » 1. (This is apparently a dis­
tinguishing feature of the model under consideration.) 
Indeed, if R~ » 1, then the poles of the Green's func­
tion are close not to the zeroes but to the poles of 
tan (Ra). Thus, the change of the dispersion consists of 
the fact that the quantization of the transverse momen­
tum becomes half-integer (cf. (6)): 

Ro km2 = p2 + (m + ~)' Jt:.·[t + 0 (-1-)]. 
2 a· 'mR'i. 

The level width is again small compared with the dis­
tance between levels: 

It follows therefore that p and m are good quantum 
numbers for both small and large W. The reason can 
be readily seen in the boundary condition (1). With in­
creasing average amplitude u(x, y) we go over from the 
condition 1/J(x, y, a) = 0 (integer quantization), to the con­
condition alf!(x, y, a)/az = 0 (half-integer quantization). 
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To calculate the density of the states, we use the 
well known formula 

p(E)= _ _1_ ~ IrnG(r.r; E)dr. 
JT 

After simple manipulations, we get 

Sa rl ''n(2fla)l . [tg(fla) J-·1 
o(E)=-- \ L1------- n--lcos- 2(fla)Im ---2: pdp 
· (:2.-r)'·• 2lla J R -' 

,, (12) 

S is the area of the film. In a film with ideal bounda­
ries, we have L(p) = 0 and (12) yields the well known 
discontinuous dependence of the density of states on the 
energy: p(E) is proportional to the integer part of 
(a/rr)v'2E. Scattering by the surface leads to a smooth­
ing of the jumps of p(E). The width of the region oE in 
which the smoothing of the m-th step takes place is de­
termined by the quantity r(m, p) from (9) at p = 0: 

bE~~ (mn)~. 
a4 a2 

We note also that the points of the maxima dp/dE shift 
from the positions Em = 1~ (mrr /a)2 corresponding to an 
ideal film, in the direction of higher energies. At these 
points tan (ka) = k Re :0. The order of magnitude of the 
shift is ~Em/Em N W /aL3 ~ H2 /aL. 

2. ELECTRIC CONDUCTIVITY 

Let us calculate the conductivity of the film in a 
weak constant electric field parallel to the surface. It 
is well known (see, for example, [ 151), that the conduc­
tivity tensor is expressed in terms of the average value 
of the product of two Green's functions: 

CiaB = - 8J11e2 ~ < 'V aCE (r, r') \' ~GE(r', r)) /'(E) dE dr clr', ( 13) 

where GE = GR- GA is the difference between there­
tarded and advanced Green's functions, f(E) is the elec­
tron distribution function per unit volume, and f'(E) 
= df/dE. Going over to the momentum representation, 
we obtain 

Gxy = CJyx = 0, Gxx = ayy = a; 

- f. 2 (' l / 7 ~' l I I ,... I I f dp dp' dz dz' 
a--me j (GE(P,P,"•")GE(p,p,z,-o))(pp)/(E) (2n) 4 

(14) 
As will be shown later, only the vicinity of the poles of 
the G-functions is significant in the integral (14), so 
that the Green's function can be replaced by its "pole" 
part G. Using (4), (5), and the relation GA(P, p', z, z') 
= GR(p', p, z', z), we get 

-, , _ "' 4n2 sin(R(p)z)sin(R(p')z') [- ( ')-- ( ')] (,(p.p,",.)= , v,,p,p VRP,P, 
fl(p)N(p')co~(H(p)a)cos(R(p )a) 

where v A and vR satisfy the equations (15) 
tg[fl ± ib ]a- 1 1 -
R ± io \'R, ,;(p,p')+ (2;)2J u(p- q)vR,A(q, p')dq =- o(p- p'). 

- (16) 
The upper sign pertains to vR and the lower to v A" 
The following formula is obtained for a: 

Ci =- be2 ~ ([~-' (p, p')- ~R(p, p')lf;A (p', P)- ;R(p', p)])' (17) 
· (pp')rp (P)'P (p')f'(E) dE dp dp'. 

We have introduced here the notation 

<p(p) = 1/,aR--2 cos-'(Ra) [1- sin (2Ra) I 2Ra]. 

In the approximation when RL « 1, the averaging re­
duces to a summation of a "ladder" sequence of skele­
ton diagrams. [ 4 • 51 The summation leads to the integral 
equation 

I dq 
L'l(p, p') = g'(P) ll(p- p') + g'(P) ij W (P- q)L'l(q, p') (Zn)2' (18) 

where 
4n2 - -- - • 

!J. (p, p') = s<[VA (p, p')- VR(P, p')][ VA (p', P)- vR(P', P)]), 

g(p)= Im[tg(Ra)/H- ~ r. 
We further multiply (18) by (pp')<;O(p') and integrate 
with respect to p'. Putting 

~ L'l(p,p') (pp')q:(p')dp' = g'(p)M(p), 

we obtain the following equation with respect to 

1 I pq 
M(p) = F2'i'(P) + (:!n)2 J W(p- q)g'(q)qzM(q)dq. 

M(p): 

(19) 

The conductivity is expressed in terms of M(p) as fol­
lows: 

Se2 S a=----;-- <p(p)g'(p)M(p)f'(E)dEdp. (20) 

In the integral (20), the function g2 (p) has sharp maxi­
ma at the points where p = Pm = [k2 - (m7T/a)2 ] 1 12 ; in 
our approximation we can assume that 

2 ~ n ( tg(Ra) ) 
g (p) ~ I Im 2: Ill ~- · 

It is therefore important to know only Mm -the values 
of M(p) at these points. Inasmuch as the integration in 
(19) also contains g2 (q), we arrive at a system of linear 
inhomogeneous equations with respect to Mm: 

where 
- 1 (-" .--',':----:-- ~ 

1-V;m = -2 J W (YP;2 + Pm2 - 2p;pm cos 'P) ~os rpd<p. 
no 

Finally, we obtain a in terms of Mm: 

(21) 

N(k) 

a= -.rre'S~t'(E) L; Mm(k)/llml:(pm,k) IdE. (22) 
m=i 

We put 
N 

t(E)= 2Mm(k)llm2:(pm;k)l-l. 
m=t 

For the energy E between the levels m and m + 1 
(rr2 m2 /2a2 < E < 7r2 (m + 1)2 /2a2 ), the determination of 
t(E) is connected with the solution of a system of m 
equations (21). 

The simplest case corresponds to an energy within 
the limits of the first subband: 7T 2/2a2 < E < 3rr2 /2a2 • 

From (10) and (21) we get 

t(E) = (a6 I 2n2) (E- E!) (Wu- Wu)-', 

where Wjm differs from \Vjm in the presence of cos <P 

under the integral sign. In the higher subbands, the for­
mulas for t(E) are quite complicated, and we shall not 
consider these cases in detail. 
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Let us calculate first the conductivity of the film at 
absolute zero. As is well known, [sl in the case of scat­
tering by static obstacles, the conductivity of a system 
of interacting electrons can be obtained by means of the 
single-electron formula {13), by regarding f(E) as a 
Fermi distribution function. From {22) we get a(O) 
= (rre2/a)t( J.J- 0 ), where J.lo is the chemical potential at 
T = 0. Inasmuch as scattering by the boundary is as­
sumed to be weak, it is sufficient to find JJ-o for a film 
with an ideal surface. In this case, as can be easily 
verified, JJ-o is determined by the following equation: 

z2[z] - 1/a[z] ([z] + 1/2} ( [z] + 1) = na3 /no {23) 

Here n-electron density, z = ../2JJ-0 a/rr, and the square 
brackets denote the integer part of the number. To be 
able to confine oneself to the first subband, the density 
of the electrons should be smaller than 3rr/2a3 • Assum­
ing this condition to be satisfied, we get 

flo = n2 /2a2 + nna, 
n 2 6 2 6 

u(O)= ea nea 
2[Wu(f.lo)- Wu(f.lo)] 2Wtr(f.lo)' 

{24) 

where Wtr is the analog of the transport cross section: 

'" Wtr = -2
1 ~ W("y4nna(1- cos cp)) (1- cos q;)dcpo 
llio 

It can be shown that in the approximation correspond­
ing to formula (10), t(E) experiences jumps at E = Em 
= (mrr/a)2 /2, where m is an integer. As a result, a(O) 
turns out to be a discontinuous (decreasing) function of 
the electron density. The critical values of the density 
are determined by Eq. (23): ncra3 = 3rr/2, 13rr/2, 177T, 
etc. Such a behavior of the conductivity should be re­
lated with the stepwise energy dependence of the relax­
ation time of the Green's function. Allowance for the 
higher approximations leads, of course, to a smearing 
of all the sharp jumps. Thus, in a quantizing film with 
non-ideal boundary, there is always a nonvanishing re­
sidual resistance even in the absence of any volume re­
laxation mechanism. It is known[ 11 that a different re­
sult is obtained by using the classical kinetic equation 
with diffuse boundary condition. The conductivity of the 
film turns out to be infinite if there is no carrier scat­
tering in the volume. This difference is due to the fact 
that in the quantum problem the transverse momentum 
is bounded from below. 

Let us consider now finite values of the temperature. 
We start with the low-temperature limit T « 3rr2/2a2 

(the distance between the lower edges of the first and 
second subbands). If the electron density is not too 
close to the first critical value, then only the first sub­
band will be appreciably populated. Namely, the follow­
ing condition should be satisfied: 37T2 /2a2 - rrna » T. 
This criterion can be readily derived from the equation 
for the chemical potential of an ideal film: 

2 ~ I {ovn J _!_( p• -1- n•m•- 2fl)] + t}-' ~- =no (25) 
a J L2T a2 _ (2n) 2 

m=i 

We shall assume that 37T2/2a2 and 1rna are quanti­
ties of the same order of magnitude, but are not close 

to each other in the sense indicated above. From {27) 
we get for finite values of T: 

f.I(T) = 2:.+nna+T1n{ 1...--exp( _n;a )] 0 (26) 

Substituting {26) in (22), we obtain the conductivity as a 
function of the temperature. Without dwelling on the cal­
culations, we present the results for a(T) in the vicin­
ity of absolute zero: 

(27) 

It is natural to assume that Wtr(E) is positive and de­
creases with increasing E, and therefore the function 
(E- E 1)WC is convex downward, i.e., y > 0. Conse­
quently, crfr) increases with temperature in the region 
T « 1rna < 37T2/2a2 • In the opposite limiting case, 
T » 1r2 /a2 , it is necessary to take many subbands into 
account. It is practically impossible to obtain an exact 
solution, for this would require solution of the system 
{21) at large values of E. In order to determine rough­
ly the temperature dependence of the conductivity, we 
can proceed in the following manner. Obviously, the re­
laxation time of the Green's function T = r-1(m, p) and 
the transport relaxation time, which determines the 
electron mobility, are of the same order of magnitude. 
It is therefore possible to average r-1 with the Boltz­
mann distribution function (we assume the electron gas 
to be degenerate when T » r/a2). It is clear that the 
averaging operation must be performed on precisely 
r-t, since it is the currents of electrons in different 
quantum states that are additive: 

(r(T))-{~ ~r-•(m,p)exp{- 2~(P'+n:7')Jap} (28) 
m=1 

where 
( rr.m \ 2 W(p,p) [ ( rr.m )']''' f(m,p)~\-}-- p2 + - o 

a a a 

At large T we obtain from {28), in order of magnitude, 
(T(T)) ~ aaw-1 (ff)T-2• It is interesting to note the 
rather strong dependence of the conductivity on the film 
thickness (a6 at T = 0 and a3 in the high-temperature 
limit). 
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