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Nonlinear equations describing the interaction of high-frequency turbulent pulsations of a plasma of 
the Langmuir type are used to determine the equilibrium spectrum of plasma turbulence in the region 
in which energy is transferred along the spectrum. It is assumed that a stationary source generates 
turbulent energy in the region of very large values of k; this energy is transferred to a region with 
k = k0 , which is the basic turbulence dimension, and decays in this region. An approximate power 
spectrum Wh ~ k-"' is obtained in the transfer region k >> k0 • For strong turbulence, when absorp
tion and scattering processes are insignificant, v, 2.84 and in the general case it can rise to 
11 = 4. Application of the results to astrophysical problems, and in particular to the problem of 
acceleration of subcosmic rays, is discussed. 

1. INTRODUCTION 

As is well known, besides the low-frequency turbu
lence of the hydrodynamic type, high frequency ( hf) 
turbulence can also exist in a plasma. This turbulence 
was intensely investigated recently by many experi
menters (see, for exampleP'21 ). The study of the hf 
turbulence of a plasma is both of great practical in
terest (for example, in the problem of turbulent heat
ing[2l) and of general interest (for example, in prob
lems involving the acceleration of fast particles and 
the origin of cosmic and subcosmic rays(a] ). The 
latest investigations of the mechanism of heating and 
ionization of interstellar gas [ 4J and isotropization of 
cosmic rays[s,s] make it possible to use even now 
astrophysical data for the determination of the spec
trum and intensity of plasma turbulence. The spectrum 
of plasma turbulence can be obtained also with the aid 
of correlation measurements of fluctuation fields in a 
laboratory experiment[7 J. The purpose of this paper is 
to calculate theoretically the spectrum of plasma tur
bulence and to consider the ensuing consequences for 
the mechanisms of isotropization and acceleration of 
cosmic and cosmic rays in the interstellar medium. 

The general problem should include the self-con
sistent problem of the distribution of energy of plasma 
turbulence, of the ions and electrons accelerated by it, 
and the electromagnetic radiation produced by them. 
The electrons acquire in this case energy from the 
plasma turbulence much more effectively than the 
ions, and it can be assumed that the turbulence will be 
suppressed as a result of the energy consumed in elec
tron acceleration (when E >> mic2, the acceleration of 
the electrons and of ions is the same). However, there 
exists processes, for example the inverse Compton 
effect on the plasma turbulence, in which the relativis
tic electron loses energy, producing low-frequency 
electromagnetic radiation, which can be effectively re
converted into plasma turbulence. A detailed discus
sion of these problems as applied to astrophysical 
conditions will be discussed in a separate article (in 
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Astronomicheski'l Zhurnal [ Sov. Astr. AJ] ). In the 
present article, attention will be focused on the physi
cal problems of establishment of the stationary turbu
lent spectrum and its response to electrons and ions 
of different energies. It will be assumed that the 
spectra of cosmic electrons and ions, determined by 
the balance of many processes, are specified, and the 
number of electrons is much smaller than that of pro
tons of the same velocity. It should be stated that under 
astrophysical conditions the regions of intense plasma 
turbulence apparently are concentrated in individual 
small volumes behind the fronts of shock waves. It is 
possible in this case to carry out the averaging for the 
cosmic ions, but the electrons may be completely 
decelerated in the space between two such regions. A 
discussion of these questions is beyond the scope of the 
present article. 

The formulation of the problem of hf plasma turbu
lence has much in common with the formulation of the 
problem of the turbulence of liquids. Stationary turbu
lence is the result of the balance of generation of tur
bulence in one spectral interval and its transfer to 
another interval, where the energy is absorbed. Thus, 
it is possible to single out three spectral regions in 
which the predominant processes are generation, 
transfer, and absorption of the turbulence. Unlike 
liquids, the theory of energy transfer over the spec
trum of the plasma turbulence can be constructed on 
the basis of nonlinear equations for the interaction of 
turbulent pulsations [s l. Another essential difference 
from liquids lies in the effect of the interaction between 
the pulsations and fast charged particles (Landau ab
sorption [9 J on fast particles), since the high-frequency 
plasma pulsations carry sufficiently strong electric 
fields and therefore interact intensely with the charged 
particles. 

In cosmic and laboratory conditions, fast particles 
are always present, and their influence on the turbu
lence spectrum can be appreciable. Since the spectra 
of particles accelerated in a turbulent plasma usually 
fall off towards larger energies, it follows that at 
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FIG. I. Schematic form of the 
stationary spectrum of plasma tur
bulence. 

large phase velocities Vph of the turbulent pulsations, 
and all the more when Vph > c, the main mechanism 
of their damping may be paired collisions of particles. 
We emphasize here also the difference between hf 
turbulence and tht~ turbulence of liquids, due to the 
character of the absorption of the turbulent pulsations. 
In liquids, the absorption coefficient increases with 
increasing k, whereas for Langmuir pulsations it is 
independent of k. 

The stationary spectrum of plasma turbulence is 
shown schematically in Fig. 1. The spectral turbulence 
function Wk equals the turbulence energy per cm3 in 
the interval dk. The total turbulence energy will be 

00 

W= .\ w.dk. 
0 

The quantity Wk is connected with the number of 
plasmons N~ by the relation 

hk2 

lV" = 2:t, o/N•'· 

(1.1) 

(1.2) 

where wl is the plasmon frequency. The region of 
direct generation of the plasma waves usually corre
sponds to small phase velocities, i.e., to large k. For 
example, under astrophysical conditions the main 
sources of hf turbulence are shock waves and various 
types of instability, which excite Langmuir oscillations 
with Vph on the order of several times VTe ( VTe
thermal velocity of the electrons). This corresponds 
to Vph""' ( 0.01-0.03) c, although in strong fields Vph 
may reach 0.1c. On the other hand, for interaction 
with fast particles, particular importance attaches to 
the region with large phase velocities, Vph 
""' (0.1-1) c. It can be frequently assumed that there 
is no direct generation in this region, which can be 
called the energy-transfer region. The maximum en
ergy in the right side of the spectrum corresponds to 
the main turbulence scale and the wave number ko. 
Just as in liquids, the energy-containing region corre
sponds to small k, but the direction of the energy 
transfer is opposite here, i.e., from large k to small 
ones. 

Inasmuch as the absorption does not depend on k, 
it is maximal where the energy is maximal, i.e., at 
small k. However, the rate of energy transfer also 
depends on the energy density, so that the absorption 
and transfer regions cannot be distinctly separated. 
Nevertheless, the intensity of transfer for Langmuir 
pulsations decreases as a rule with decreasing k, so 
that there should be such a kmin 'S ko for which the 
transfer and the absorption become comparable. The 
spectrum should subsequently fall off. The position of 
the maximum ( ko) is an essential parameter of the 
spectrum. Unfortunately, it is difficult to determine it 
by directly solving the equations, since we do not have 
the small parameter here. 

A qualitative analysis of the question of determining 
k0 and a number of other estimates for cosmic and 
subcosmic rays will be presented in another article, 
which will be published in Astronomicheskii Zhurnal. 
Here we shall solve the problem of the stationary 
spectrum of an isotropic plasma turbulence in the 
region k » k0 • The assumption that the turbulence is 
isotropic is natural, since isotropization of the turbu
lence pulsations is the most rapid nonlinear process[sJ 

The general equation for the interaction of turbulent 
pulsations, which is valid in the region of the spectral 
transfer and absorption, can be written in the form 

dW [.. " J --" =- v.w"- ykWk + w" ~ Q(k, k!) wk,dk1- ~ Q(kt, k) Wk,dk1 
dt k 0 

+) dk• dk,dk,R(k, kt, k,, k,) (k'Wk, wk,w., + k.'Wh,w.w., 

(1.3) 

In the right side, the first term describes absorption 
due to pair collisions, the second Landau absorption 
on fast particles, the third induced scattering of pulsa
tions by the plasma particles, and the last the scatter
ing of pulsations by one another. For a stationary 
spectrum, the left side vanishes. Then (1.3) is an inte
gral equation for Wk. 

The scattering of pulsations by pulsations, with only 
plasma electrons taken into account, was considered 
in [w,uJ, while scattering with allowance of ion inter
actions was considered in[ 12 ' 13 l. 

2. THEORY OF THE ASYMPTOTIC TURBULENCE 
SPECTRUM FOR SMALL WAVE NUMBERS 

In the region Vph > v~h = 3vTe /vTi' which in 
interstellar gas corresponds to the most important 
interval Vph > 0.1c, the expressions for the operators 
Q and R, which describe the energy transfer, sim
plify greatly[sJ 

3(k•'- k') (" dQt (kk1) 2 1 . T./Ti (2 1) Q(k,k,)=o .) _ , , 
16V2rcn0mevTi k2k,2 lk, -kl (1 + T.jT,)" 

w0e3 6(k2 + k,2 - kz2 - ka2) (" 

R (k, k., k2, k3 ) = - 6 'T·2 -- 2 ' ''(i + T /T·) 2 .) dQ, dQz dQ,. 
:rtno t Vre "1 e t 

X 6 (k,> + k2- kz'- k,')( (kka) (k,kt) + (kzk) (kak•L )2. (2.2) 
kk3 k2k 1 k2k k3k1 i 

Here drl1, dr2 2, dr2 3-elements of solid angles of the 
vectors k1, k2 , and k3; Te and Ti--temperatures of 
the electrons and ions in ergs; w~e = 4rrnoe2/me; no
plasma concentration. The integration over the angles 
in (2.1) is elementary, but in (2.2) it is quite cumber
some. At first it is convenient to integrate, with the 
aid of a 6 -function, over the angles of k2 and k 3 , 

choosing as the z axis the direction k1 + k2, after 
which one integrates over the angles of k1. Omitting 
the intermediate steps, we present the final result: 

Q (k, k,) = l'2n T. (k•'- k') k' 2/-k') 
8 T (1 + Te/T'·)'k!B ( I + a · no meVTi i 

(2.3) 

Here k 1 > k2; when k1 < k2 it is necessary to make the 
substitution k 1 ~ k2. Further, 
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3 (k·'-k 2 )2k3 
X(k'--k,2)+ .• 3 1 (--5k'+24k2k,2 -43kt') 

7 15(k2 -k,2 ) 

+ !!'__ (622k,6 + 825k,'k2 + 672k,2k' + 105k6)}. 
315 

(2.4) 

Here kk1 < kzk3; k > k1. If k < k1 but kk1 < kzk3, then 
it is necessary to make the substitution k +=!: k1. If 
kkz > kzk3 and kz > k3, then k ~ k2 and k ~ k1, and 
if kk 1 > k2k3 and k2 < k3, then k ~ k3 and k2 ~ k1. 

The relative efficiency of the processes of induced 
scattering and scattering by plasmons (2. 3) and (2.4) 
depends on the plasma parameters, on the magnitude 
of the energy flux, on the wave-number interval, and 
on the position of the maximum of the spectrum. As 
will be shown subsequently, the solution of the general 
equation reduces to a simple modification of an equa
tion corresponding to the collision of plasmons with 
one another. We shall therefore take into account only 
plasmon collisions (2.4), i.e., we retain in the right 
side of (1.3) only the last term. We introduce the 
dimensionless variables ~ = (k/k)2, 17 = (kz/k)2 for 
kk1 < k2k3 and ~ = ( k3/k )2, 17 = ( kz/k )2 for kk1 > k2k3. 
Taking into account the energy conservation law k2 

+ k~ - k~ - k~ = 0 and the conditions that follow (2.4), 
we obtain the sought integral equation, which deter
mines the turbulence spectrum Wk, in the form 

I 
__ 1 ___ dW" _ .:::._~ woi { I d I d"L( ) V( ) 

Wh dt - 6 (8no) 2 (T; + T,) 2vTi £~ 11 ,; " s. '1 s. '11 

00 ();) 00 t 

+ ~ a11 ~ asM(s,'I])V(£,'11l+ z ~ a11 ~ asN(s,'I])U(s-11) }. (2.5) 
1 , 1 t~ 

Here ~ o = ( ko/k )2, and the quantities V ( ~ , 17 ) and 
U ( ~ , 17 ) are expressed in terms of the spectral func
tions of the turbulence in the form 

, .. [ w,w~w1H-~ • 
l (s, 11) = + £W,1WHs-"- 11W£WH£-" wh 

-w,w~(1+s-'ll) J 'll's'(1)s-11l', 

[ w;w"w'+"·-t 
U(£.11)= · w" +(s+'ll-1)w;wo-sw6+"-'w" 

- 11 w'+~_,w, J 11's'(s; 11 -1)' ' 

w, = vv" .. ,~ 
Finally 

L(' )=(2~- ~;-t)\,J 1 _2_t ')+ s1 (2r1 - s -1)' 
"· 11 5(1-sl" \ 7 • t5(1-sJ 

X(- 5 + 24.£- 43£2) + 3£1
1
; (622!;3 + 825!;2 + 672£ + 105), 

i]Jt = (211-s-1)'( -~\ (211-s-1)_2__ 
. ("' 11 ) . 5(s-1) 3 s 7;+ 15(£-1) 

X ( "''' + ")'" ''0 ) + 1 (622 + sr· ' GP"' + 105t3 ) -u<;~ -:,t£-'+t_l ;)15 1 .Ji;T .... £- <o' 

"t _ (2-s-'lll's'h( -~') .(2-~_'s'r •. 
• (,.'1])- 5('11-s)l 11 7 ~ + t5('1-sl 

<;-.'12 

x (- 5,1' + 211;11- 43s'l + 3~5 (622s' + sz5s"ll + m2s11' + 1o511'l. (2.6) 

Equating the left side of (2. 5) to zero, we seek the 
solution of the equation in the form of a power function 
Wk ~ k-v in a certain interval of wave numbers. By 
virtue of the fact that the energy transfer over the 
spectrum increases the phase velocities of the turbu-

lence pulsations, the main energy of the turbulence 
will be concentrated at values of k that are small but 
larger than ko. Then 

Equation (2.5) takes the form 

w 1 
We -_tv/2_ 

' - ko oO Sv/2 , 

( ko \' 
so= Ti· (2.7) 

1 dWk n [ W J'woe'(v -1) 2 

O= wh-a~·=n<iloe Bno(T;+Te) ko'vTi (G,+Gz+Ga)so', 
(2.8) 

1 ~ = 00 

c, = ~ a11 ~ dsL(s, 11 )v(s, 11 ), c, =) a 11 ) dsM(s, 11 )v(£, 11 ), (2.9) 
~ ~ 1 ~ 

I ~ 

Gs = 2 ) a; ~ d11N(£. 11) u (s, 11l, 

'" where 

(2.10) 

Let us consider the spectrum far from the energy
containing region (k» k 0 ), i.e., let us assume that 
the following inequality is satisfied: 

so<{ 1. (2.11) 

From (2.9) and (2.10) it follows that the main contribu
tion to G1 is made by the region of small ~ and small 
17, when ~ ::>J 17 ::>J ~ o, and the region of small ~ and 17, 
close to unity, when ~ ::>J ~ o and 1 - 17 "" ~ o. A contri
bution to G3 is made only by the second region. The 
quantity G2 does not contain large factors of the type 
~~a, and is negligibly small. In the region ~ , 17 « 1 
we get from (2.6) 

L(t ) •; •; 11; ~ (v/2 +i)('ll-s) (2 12) 
,,'1],:::; 3S'('ll+ 5S), v(£,'1])~ !;V/2+"rjV/2+2 • • 

Consequently, the contribution from this region of ~ 
and 17 to the integral G1 amounts to, in the case when 
v> %, 

16 4v- 3 
bGt= 15 v(v/2-i)(v- 3/z)sv;'h" (2.13) 

It is possible to verify in the same manner that the 
contribution of the region ~ « 1, 1 - 1) << 1 to G1 
coincides with (2.13)1), i.e., G1 ::>J 20G1. For G3, it is 
convenient to go over to integration with respect to 17' 
= ~ + 17 - 1. It is easy to see that for the region 17 - 1 
::>J ~o, 17 << 1, we have 

u(s,'ll')::::; -v(s,'ll'), N(s,'ll')::::; L(s,'ll'), 

where v ( ~ , 17 ) and L ( ~ , 17 ) are specified by Eqs. 
(2.13). Calculating G3, we find that in this approxima
tion G3 and G1 cancel each other exactly: G3 = - G1. 

From this we can obtain a number of consequences. 
We can take into account the following terms of the 
expansion in ~ and 17 in (2.12). It is obvious that they 
should give a result that differs from (2.13) by a factor 
~~\ i.e., G1 ~ ~o-(v-s/2 ). This does not take place when 

I) This is easiest to verify by reversing the order of integration and 
making the substitution I + ~ -1) = 1)'. 
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v > %. For G3 we also have G3 ~ ~ii(v- 5 /2), and, as 
will be seen subsequently, in this approximation G1 no 
longer cancels out G3 • Besides the region of small 11, 
it is necessary to consider also the region of finite and 
arbitrary 11, but small ~. Since L and N are prOJ?Or
tional to e/2 , and II and U are proportional to ~- (ll/2+ 2 ) 

the result will be G1 + G2 ~ ~a ( 11 / 2- 1 / 2 ) • Comparing this 
with ~ o (v- 512) and equating them to each other, we 
verify that the terms with ~ 0 (v- 512) prevail, when 
11 > 4 and ~ ii (v/ 2- 1/ 2 ) prevail when v < 4. 

We consider first v > 4. Using a more accurate 
expansion for L, M and v, u than (2.12), we get 

G1 + G3 = ~~ (v/2 + 2) (16v- 34) 
15 (v- 5/2)' (\·/2- 1) (v/2- 2)1;~-"2 

(2.14) 

This expression vanishes only when v = 34/ 16 , which 
contradicts the condition v > 4. Thus, Eq. (2.18) has 
no solutions in the region v > 4. 

We now consider v < 4. We transform G1 , revers
ing the order of integration with respect to ~ and 11, 
and introducing a new variable 11' = 211/ ( 1 + ~ ) - 1. 
The integration with respect to the variable 11' is car
ried out within symmetrical limits, and the integrand 
is even. Writing the integral in the form of double the 
value of the integral from zero to 11 ~ax and returning 
to the old variables, we get 

1 (Hi)/2 

G1 == 2 ~ di; ~ d1]L(i;,'l'])v(1;,1']). (2.15) 
io 6 

This integral has a singularity only at small ~ . The 
singularity at small 11 is compensated in (2.15) by a 
similar singularity in G3 , i.e., the total integral G1 

+ G3 has no diverging singularity at small 11. This 
makes it possible to use the expansion of L and N at 
small ~ but arbitrary TJ : 

L(i;,l']) ~•/31'](1- 11 );312, 

Hence 

X (1-l']V/2+1- (1- 'l)V/2+1). 

Similarly 

X (1 + 'lV/2+1- (1 + 'l)V/2+1)' 

Using the value of the integral 

= d1] 

It= ~ l']V/2+1(1!± 11)"'''.' 

= ~v/~ F ( ~ + 1, - ; , - ; + 1, =t=i;) 

where F is the hypergeometric function, and its 
asymptotic expansion at small ~ 

I+~ _2_ =t= ~-1 __ 
- £"·'v (v/2-1)1;"2-1 

we get 

(2.16) 

FIG. 2. Left (I) and right (2) parts of 
(2. 17). 

+10 

-IJ 

I 
-zcl 

\ 
\_j 

4v 

Thus, the sought equation, with allowance for collisions 
of the plasmons, is of the form 

(2.17) 

where 

fa= 2(1- 2-V/2). 

Figure 2 shows the right (curve 1) and left (curve 2) 
parts of Eq. (2.17) as functions of ~. The intersection 
of these curves yields v = 2.84. 

We now take into account the induced scattering 
from ions, and also the influence exerted on the spec
trum by absorption by fast particles and pair collisions 
entering in Eq. (1.3). This influence can be expressed 
as the difference between the right side of (2 .16) and 
zero, i.e., as the change of the quantity ro in (2.17). 
Since this change depends on k, the quantity v will 
also depend on k, i.e., the spectrum will be of the 
power-law type only approximately. On the other hand, 
curve 1 is very steep, and has a singularity at v = 4. 
Therefore, even an appreciable change in r o does not 
change 11 very strongly. 

The total r can be written in the form 

r = r, ·- orq- or,- or,, (2.18) 

where orQ describes the effect of scattering by ions, 
or 11 the absorption due to the collisions, and 0 r y the 
effect of fast particles (subcosmic rays). From (2.3) 
and (2.7) we get 

or _ noTi 9v ( koUre )' Vre 1 
Q- W-yn2Cv+1l12 (v- 1) \ ~ -;;;-~~;2+1 · (2.19) 

It is only easy to obtain 

orv = 18 Ve no2 (1'e + 1';} 2 V . ( koVre )' ___ 1 __ 
n Woe W' (v -1)2"12-i\ Woe 

and a similar expression for or y, which differs in that 
lie is replaced by Yk· 

In the general case, the Cerenkov absorption by 
fast particles is described by the formula 

n .._, Z'Woe'me f ( e )' a f«(e) 
Vn=-z·LJ k' J ma:+1-, a ( +/ ,,de.(2.20) 

a no ecra c e Ye ma e c2)',.~ 

Here fa ( E ) is the distribution function a of the fast 
particles, normalized to their kinetic energy E: 
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For nonrelativistic protons, if the number of fast elec
trons is sufficiently small2 >, we have 

l't Z2 (J)o? m,m'/, f( flcr) 
v•=----· ----=-· 

2 nok3 l'ecr 

If we specify a power-law spectrum of the fast 
particles at E > Eo, with an exponent y, 

v-i[ eo)' f(e) = -- - n1, 
eo \ e 

(2.21) 

where n1 is the number of fast particles with energy 
larger than Eo (y > 1 ), then we get 

- n, ( 2e0k2 )>-1 m, 
V• = l'2 rr(v -1)- WOe -- -Z2• 

no mwoe2 m 
(2.22) 

Hence 
- v (V- 1)_ ( 2eoko2 )v-I 

6fv=18y2 \-- · 
( v - 1) 2v12-1 mw0e2 

X ( koVre)'~ no'(Te + Ti) 2 ___ 1 __ m, Z' 
\ Woe no W 2 ~~+(v- 1 )12 m . 

All the obtained quantities or depend on a number 
of parameters: Eo, ko, W, y, ve, n1, etc. Actually 
these parameters are interrelated. In principle they 
should be expressed in terms of the plasma parameters, 
in terms of the flux of the turbulent energy along the 
spectrum, in terms of the number of fast particles that 
depend on the injection conditions and on the turbulence 
itself. The main difficulty lies here in the existence of 
the influence of the position of the maximum, i.e., ko, 
which so far can be estimated only from qualitative 
considerations. We note that with decreasing k the 
value of or decrease and they can become asymp
totically negligible. Finally, from (2.18) we see that 
the contributions of all the or decrease r and conse
quently increase v. 

The obtained solutions (in particular Eq. (2.17) re
tain their form even if the turbulence spectrum is 
greatly modified in the energy-containing region 
k ~ k0 • In the derivation of (2.17), the only important 
factor is the appreciable increase of the turbulence 
energy when k approaches ko. This gives grounds for 
assuming that, in any case for the indicated class of 
spectra, the obtained solution is stable. It should also 
be noted that the pair collisions of the particles stop 
the spectral transfer connected with scattering by ions 
when k is approximately equal to ko. This can serve 
as a rough estimate for ko. The larger ve, the larger 
k0 , i.e., the flatter the spectrum in the energy-contain
ing region. The form of the spectrum ko has little in
fluence on the asymptotic form of the spectrum, on 
which the collisions influence in the opposite direction, 
making it steeper. The increase of the spectrum index 
can be intuitively explained as follows. Scattering by 
the ions is integral in the region under consideration, 
i.e., the energy is transferred to the main turbulence 

2)Jt is seen from (2.20) that if the number of relativistic particles, is 
specified then vk - n 1 E-2 • Therefore, if the fast electrons are con centra 
centra ted in the region of large energies, their contribution to the absorp
tion is small. 

scale, from which it is "spread" by plasmon-plasmon 
scattering over the entire spectrum, and the amount of 
energy decreases strongly with increasing k. 

3. SPECTRUM OF ACCELERATED FAST PARTICLES 

Inasmuch as the present theory is limited by the 
assumption Vph > vph = 3vTe/vTi• we can choose for 
Eo 

(3.1) 

Then 
- v(v-1) ( 3vre \ 2(>-11 

6f v = 18"f2 1 -- J 
( V - 1) 2v/Z-1 \ Vri 

x'( koVre)'' n, no'(Ti + T,)2 Z 2m,/m 
WOe no TV• ~vt(v--1);2 

The value of y for protons can in principle be taken 
from observations, but for low-energy cosmic rays 
they are quite inaccurate. Cosmic rays are hardly 
accelerated directly in the interstellar medium, but 
even if they arrive there from some sources, the inter
stellar turbulence does influence them. Although we 
are not considering here the self-consistent problem 
of the distribution of cosmic electrons and ions and of 
plasma turbulence, we shall estimate, by way of an 
example, the character of the spectrum of the protons 
accelerated by the plasma turbulence, without allow
ance for their ionization laws. The acceleration of 
nonrelativistic particles by turbulent pulsations is de
scribed by the expressionr8 l: 

'~ = ~~ ( D :e :~), (3.2) 

where the diffusion coefficient D for Langmuir pulsa
tions is given by 

D =_IT_ Z2wo,' ~ej~ 1 W,, dk 1 

212 no k, 3 
(;)o 6 \''m/2B 

Substituting here the turbulence spectrum in the form 
(2.7), we obtain 

(3.3) 
As seen from (3. 3), when 3 :s v < 4 the diffusion co
efficient is a rapidly increasing function of E. This is 
due to the fact that the phase velocity of the waves that 
are at resonance with the particle increases with in
creasing E, and the spectral density of the energy of 
the turbulence increases rapidly towards small, k, i.e., 
large Vph· 

Equating the right side of (3.2) to zero, we obtain 
for the stationary spectrum of the particles the condi
tion for diffusion along the energy axis with a constant 
flux 

a /(e) 
D---- = const. (3.4) 

oe 1~ 

Substituting in lieu of D its value from (3.3), integrat
ing, and comparing f with (2.21), we get 

v = ( v - 1 ) I 2 ~ 1 --,- 1.5, 

i.e., the spectrum is softer than for ordinary cosmic 
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rays. This is natural when the maximum is approached. 
In the calculation of the stationary spectrum of sub
cosmic rays it is necessary to take into account the 
ionization losses. Allowance for these losses modifies 
the spectrum, whi.ch is no longer purely powerlaw. 

4. DISCUSSION OF RESULTS 

The asymptotie solution obtained above for k » ko 
has an approximate powerlaw character with v"" 3-4. 
The latter value is more probable, and for soft cosmic 
rays it yields y "" 1.5. The steep character of the 
turbulent spectrum is of significance for the problem 
of acceleration of fast particles. When the particle 
becomes accelerated, it interacts with faster and 
faster waves, whose energy consequently increases. 
Therefore the efficiency of the acceleration increases 
with increasing particle energy. For example, the 
nonrelativistic-particle acceleration, which can be ob
tained from (3.3), is equal to 

de I dt = aelv-J);z, (4.1) 
where 

Jt ( k \v-3 I !· ,. )' ( m )' W a=_.__(\' -1)2/V·l!/2 _'_o_ zz ~ ___: -
'! \ ,(-) \ . WOe· (4.2) 
..... 'Woe rm Woe mi noT 

When v > 3, the rate of acceleration increases with 
increasing E more rapidly than in the acceleration of 
nonrelativistic particles by the Fermi mechanism for 
which ' 

de I dt = aF1B. 

The previously made estimate(3l, which leads to the 
conclusion that the acceleration decreases with increas
ing E, corresponded to the assumption that the energy 
Wk in the speetral interval, which corresponds to the 
particle energy, is constant, i.e., no account was taken 
of the concrete spectrum of the turbulence. 

The conclusion that the acceleration increases with 
energy corresponds, naturally, to nonrelativistic parti
cles. When E >-> mc 2 and v"" c, the acceleration ef
fect is determined by the value of Wk in the entire 
spectral interval Vph < c. The region effective in 
practice is Vph "" c, which does not change with fur
ther increase of particle energy. Consequently, in the 
region of relativistic energy this mechanism results in 
a decrease of the acceleration efficiency with increas
ing particle energy, although at high plasma-turbulence 
intensity, for example in supernova shells, the accelera
tion can occur up to relatively high energies[3J. 

The number of accelerated fast particles is regu
lated by the turbulence level, and vice versa. The 
main part of the energy flux along the turbulent spec
trum dissipates in the region of the minimum energy, 
i.e., near k"" ko. The absorption is the result of colli
sions also by fast particles. Let Q be the energy 
generated in 1 cm3 per second at low phase velocities. 
Then, from the stationarity condition we get 

Q = \'eW + ~ Yk wk dk = (ve + Vk) w. (4.3) 

This makes it possible to express W in the energy
containing region k "" ko in terms of the dissipation 
power Q: 

where Yk can be obtained from (2.22), taking into con
sideration the fact that the absorption of the turbulence 
by fast particles vanishes when ck <Woe, i.e., when 
Vph > c. This yields ( v > 3 for nonrelativistic parti
cles) 

- '1;1 )"2:n:(v-1) (v -3) . me n1a c2 (3VTe)v-3 ( koVTe)v-l 
Yk = LJ WOe-Za2--- -- • --

a 4 ma. no VTe2 VTi '. Wae • 

The number of fast nonrelativistic electrons is ap
parently small. It should be noted that is ck0 << woe, 
then the main dissipation, which occurs in the region 
k"" ko, can be due only to collisions. When the number 
n1 of the cosmic rays increases, yk increases and W 
decreases in the region of the minimum. As a result, 
the diffusion coefficient D (3.3) decreases, i.e., the 
acceleration rate decreases. 

The steep character of the turbulent spectrum can 
be qualitatively confirmed by astrophysical data. The 
isotropy of the cosmic rays was explained as being due 
to the action of plasma waves(s;sJ. In order for the 
isotropization to be effective, it should act within a 
time t :S 105 years. To this end, the isotropization 
increment for the main mass of the cosmic rays 
should be of the order of 3 x 10-13 sec-1. The isotro
pization of the cosmic rays is described by the diffu
sion coefficient nt (3l: 

When v"" c and wk ~ k-v, we have 

Dt :n: ( me )' ( VTe )' v - 1 ( k 0c )v-I W 
y;:::: m'c2=2\-;;:;- ~ zz v(v+2) WOe n0Two •. (4 .4) 

This quantity determines the energy of pulsations with 
Vph < c. The increment of acceleration of the sub
cosmic rays with energy E << mc2 is determined by 
waves with Vph < c, and the steeper the spectrum the 
smaller the fraction of the turbulent energy which is 
responsible for the acceleration of the low-velocity 
particles. From (3.2) we find the increment, i.e., the 
reciproeal of the acceleration time 

D ( me )' ( VTe )' V -1 . ( k0c )v-1 W ( eo )(v-3)/2 
'Ya::::::-;-::::::n- t- --z<v-IJi'Z',- -wOe- . 

e h m \ c v + 2 , Woe n 0T mc2 

Comparing with (4.4), we determine Ya and obtain the 
increment of the energy of the subcosmic rays per 
cm3 per second: 

5- v eo 
n1eoYa = (n,e) v -----21v+1)/2yi. 

v -3 mc2 
(4.5) 

Such an increment should be obtained if the number of 
fast electrons is sufficiently small and the isotropiza
tion of the cosmic rays is carried out by plasma waves. 

This energy can be consumed by the ionization loss 
and by the acceleration, i.e., by the transformation of 
the subcosmic particles into ordinary cosmic particles. 
From an analysis of the properties of the interstellar 
gas we find that the ionization losses are on the aver
age equal to 2 X 10-26 erg/cm3 sec(4 l. The transition 
into the region of cosmic rays should be smaller. Con
sequently, the quantity (4.5) has the indicated upper 
limit. From the condition of stability in the magnetic 
field of the galaxy we have (n1E) ::S 1 eV/cm3. For Eo 
we assume 5 MeV, i.e., v"" 0.1c. It is easy to see that 
when v = 4 and Yi"" 3 x 10-13 sec-1 the energy incre-
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ment is on the order of 5 x 10-26 erg/cm3 sec. This 
agrees qualitatively with the ionization loss, particu
larly if account is taken of the fact that the real incre
ment of the energy should be decreased somewhat, for 
when Vph < 0.1c, where the character of the interac
tion changes, the turbulent spectrum drops more 
steeply than when v = 4, and this is of particular im
portance for subcosmic rays. The particle spectrum 
should also decrease steeply in the region v < 0.1c. 
This agrees with the results of measurements of the 
upper limit of the La radiation that can be produced 
upon charge exchange of particles having such ener
gies [l4 ] 
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