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Resonance variation of the mobility of hot electrons, induced by a high-frequency magnetic field whose 
frequency is close to the spin resonance frequency, is investigated. The dependence of the amplitude 
and line shape of the resonance-mobility variation on the spin-lattice relaxation mechanism and con
duction-electron energy and momentum relaxation mechanism is determined. Estimates show that for 
semiconductors of the InSb type the relative variation of the mobility can reach 5-10%. Some manifes
tations of the effect in two pronouncedly nonequilibrium cases are discussed. 

1. INTRODUCTION 

SoLOMON and Gueron/ 1 ] in a study of the resonance 
of conduction electrons in InSb, observed the phenom
enon of resonant increase of the mobility of hot elec
trons situated in a high frequency magnetic field whose 
frequency was close to the electron spin resonance 
(ESR) frequency. The gist of the phenomenon consists 
in the following. It is known that when the frequency of 
the external magnetic field coincides with the natural 
frequency of the electron spins, a sharp increase takes 
place in the absorption of the high-frequency field en
ergy. The average energy of the spin system (or the 
spin temperature T s> increases and becomes larger 
than the average kinetic energy of the electrons. The 
electron spins relax and transfer part of the absorbed 
energy to the kinetic degrees of freedom. This leads to 
an increase (decrease) of the conduction-electron mo
bility increases (decreases) with increasing average ki
netic energy of the electrons. The effect of the change of 
the mobility is more strongly manifest if the conduction 
electrons are "heated" by a constant electric field.[lJ 

Unlike the mobility change connected with the heating 
of the conduction electrons in a high-frequency electric 
field, the phenomenon considered in the article is reso
nant, i.e., it becomes manifest only in a narrow fre
quency interval near the ESR frequency of the conduc
tion electrons. Naturally, this phenomenon can be used 
to detect the ESR of conduction electrons. Solomon and 
Gueron noted that such a method of ESR detection may 
turn out to be more sensitive than the standard methods, 
in the case of low conduction-electron concentration or 
in the case of samples with small dimensions. 

In the present paper we propose a theory that ex
plains this phenomenon, and reveals the influence of the 
spin-lattice relaxation mechanisms and the hot-electron 
energy and momentum relaxation mechanism on the res
onance variation of the mobility. 

2. FORMULATION OF PROBLEM. METHOD OF 
SOLVING THE KINETIC EQUATION 

The kinetic equation for the density matrix describ
ing the behavior of the conduction electrons in a con
stant electric field and a high-frequency magnetic field 
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is given by[ 2 J 

ofaa'(P) + eE ofaa'(p) + ~[(H ) f ( )] = _ ( 8/aa'(P)) (1) 
dt op li a,aa'P ~t ' 

" u coll 

~ /aa(P) = N. (2} 

Here H-magnetic field, which is the sum of the de 
components Hz and of the hf components Hx and Hy ; 
!3-Bohr magneton; (ilfaa'( p)/ilt)coll-collision integral, 
which includes transitions without and with spin flip; 
N -total number of conduction electrons. Equation (1) 
is valid if the following condition is satisfied for the 
constant magnetic field: 

H,<!lg,min --, _!_ ( m•cv ) 
' e g~ 

where m* -effective electron mass, 11-frequency of 
collisions between the electrons and the scatterers, 

(3) 

c -average kinetic energy of the conduction electrons, 
and g-their g-factor. For simplicity we consider the 
quadratic and isotropic spectra of the conduction elec
trons, i.e., 

Epa= p2 I 2m"+ ag~H,, a= :x1 12• (4) 

We represent the density matrix in the form 

faa'(P)= <l>o(p)/ + <l>(p)a= rilo(P)I + <l>,(p)a, + <l>+(p)a_ + <1>-(P)a+, 

where 
11± = 1l2(ax ± iay), <l>±(P) = <l>x(P) ± i<l>y(p), (5) 

and ax, ay, Uz, and I are the Pauli matrices and the 
unit matrix. 

We consider a stationary process, in which .P0 and 
.Pz do not depend on the time, and the time dependence 
of the functions .P+ and .P_ is determined by the exter
nal high frequency field H± = Hx ± iHy = H1 exp (± iwt), 
i.e., .P±(t) = .P±(t) exp (±iwt). We can then rewrite (1) 
in the form 

eE{}(I)o I op = lo(<l>o, <I>,), (6a) 
eEo<l>, I op + 1/2iw(<l>+- <I>_) = J,(«llo, <1>,), (6b) 

eEii<P± I iJp ± iu;<P, ± i(w- Q)<l>± = h(<Do, <I>±), (6c) 

where w = gi3H1/fi, ~ = gi3Hz/fi, and J 0, J 2 , J+, and J _ 
are the collision integrals, including transitions without 
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and with spin flip, 

lo(<Do, <D,) = - 2; {WPP' [<Do (P) ( 1- <Do(P'))- <D, (p) <D, (p')] 
p' 

+ (W_f!'+ w!r)[lllo(P) (1- <Do(P') H <D,(p)<D,(p')l 

_!- (W_f!'- W !:')[<D,(p)- <D,(p)<Do(P') + <Do(P)!l>,(p')]- (P +± p') }, 

(7a) 

J,(<Do, <D,) =- ~ {WPP'[<D,(p)- <D,(p)<Do(p')- <Do(p)<D,(p')] 
p' 

- (p +± p')} + { (W!_f- w-t!')[<Do(P) (1- <Do(P') H Q), (P) <D,(p')] 

+ (W-t!' + W !:')[<D,(p) -lD,(p) <Do(P')- <Do(P)<D,(p')] + (p +" P') }, 

(7b) 

Here and throughout, the symbol (p !:+ p') denotes an 
expression that differs from that written out explicitly 
only in that p under the, summatiqn sign is replaced by 
p' and vice versa; wPP and w!'f<+-> are the probabil
ities of the transitions without and with spin flip, re
spectively. We shall henceforth need only certain gen
eral properties of the collision integrals J+ and J _, so 
that we do not give their explicit form here. 1 > 

To solve the system (6), we use a small parameter 
y, which equals the ratio of the probabilities of the tran
sitions with and without spin flip. This ratio is small 
because the transverse and longitudinal spin-relaxation 
times T 2 and T 11 which characterize the time of estab
lishment of the internal equilibrium of the spin system 
and the equilibrium with the lattice, greatly exceed the 
characteristic time of establishment of equilibrium of 
the "kinetic" degrees of freedom. Therefore, that part 
of the collision integrals which corresponds to transi
tions with spin flip is of first order in y. 

The terms of Eqs. (6b) and (6c) containing the factors 
w and w - n are also of first order of smallness in y, 
for the following reasons. The ESR line width is equal 
to 1/T2 , and therefore (w-n)""' 1/T2 ""' y. The investi
gated change of the mobility occurs upon "saturation" 
of the ESR line. For "saturation" it is necessary that 
the amplitude of the high-frequency field satisfy the con
dition W2T1 T2 ""' 1,[ 4 l i.e., W ""'1/,jT1 T2 ""'/'• 

For simplicity we consider the solution of the system 
(6) in the case of a low electron concentration, when it 
is possible to disregard the Pauli principle in the colli
sion integral J 0 , Jz, J+, and J_. Then they are linear 
integral operators acting on the functions <I>j, and the 

system of equations is also linear.2 > The system (6) 
can be represented in abstract form: 

L;;lD, == 0, 2; <Do(P) = N, 
p 

where i, j = (0, z., +, -). We expand Lij and <I>j in a 
series in the parameter y:3 > 

(8) 

1lJn [3] they obtained the collision integrals J Z' J+, 1_ for the case 
of electron-phonon interaction, 

2lWhile allowance for the Pauli principle makes the system ( 6) non
linear, it does not introduce any fundamental changes in the solution, 
This case is considered in the Appendix, 

3lThe methods developed subsequently for solving the system of 
equations (7) is close in its idea to the Chapman-Enskog method [5 ] 

for deriving the hydrodynamics equations from the Boltzmann kinetic 
equations, 

(9) 

Then the terms of zeroth and first order yield the fol
lowing expressions: 

£,<",><Dj"l = 0, 

i~jl <DJ') =- f/:l<D\">' 

(10) 

(11) 

All the J~o> (i.e., the collision integrals without spin 
flip) are equal to each other if g{3Hz/ £ « 1.4 > Physical
ly this means that the energy and momentum relaxations 
of all four components of the density matrix occur in the 
same manner. Therefore, using the expression (8), we 
write 

- (0) -
L;; = Lo, (12a) 

Lo<Dj(p)=eE a<D;(P) + ~{WPP'<D;(P)-WP'PtlJ;(P')}. (12b) 
ap •. 

We note that the operator L0 is not hermitian. 
The solution of the system (10) is the problem of hot 

electrons. Let us assume that it is solved and that the 
solution is given by 

(13a) 

(13b) 

where m0 = 1, mx, m+, and m_ are undetermined pa
rameters. 

Our main task is to solve the system of inhomogene
ous linear integral equations (11). The homogeneous 
equations L0 <I>r> = 0 have a nontrivial solution, and 

therefore, generally speaking, Eqs. (11) are contradic
tory. It is known that the condition for the existence of 
a solution of the system of Eqs. (11) is orthogonality of 
the right sides of these equations and of the solution of 
the homogeneous equation c aJ 

L~rp = 0. (14) 

Here L0 is the transpose of L0 • Thus, if cp0 ( p) is the 
solution of (14), then the conditions for the existence of 
the solution of the system (11) takes the form 

"" -(1) (0) 
L.J Cfo(P)L,, <D; (p) = 0, (15) 

It is easy to see that the operator L0 is given by 

'Cc iJrp "'i:' 
Lo'f! =- eE ap +-; WPP'(cp(p)- rp(p') ), (16) 

and the nontrivial solution of Eq. (14) is <Po = const. 
i Substituting;> <Po = g{3 in Eq. (15) and using the concrete 

form of the collision integrals, we obtain an identity for 
1 i = 1 and three Bloch equations for the magnetization of 

the hot electrons (i = 2, 3, and 4): 

M,-M0 

Tt 
(17) 

(18) 

4lThis is valid if the Pauli principle is not taken into account in the 
collision integral. When the Pauli principle is taken into account, the 
situation becomes somewhat more complicated (see the Appendix). 

5lThe constant is chosen here in such a way as to make the solva
bility conditions coincide with the Bloch equations, 
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Here Mz,+,- = g{3mz, +, _N-components of the density 
of magnetization of the hot electrons, T 1 and T 2 -longi
tudinal and transverse relaxation times, defined by the 
relations 

(19) 

Mo-value of the density of the magnetization of the hot 
electrons at H+ = H_ = 0. It equals 

Jllo = g~mz01V, 

~ (W~'- w_P{)l\l~01 (p) 
pp' 

~ (W~· + w!_'/")1Dd0\p) 
pp' 

From (17) and (18) we determine mz: 

-r,2 (w- Q) 2 + 1 
m, = m,0 ] 

-r12 (w2 +(w-Q) 2 +1 

(20) 

(21) 

The change of the mobility is determined by the func
tion <l>b1 >. To determine this function we must solve the 
first of the inhomogeneous equations (11), using rela
tions (13a) and (21) for this purpose. 

We have disregarded above the collisions between 
electrons. It can be shown that when they are taken into 
account the described method of solving the kinetic 
equation does not change in principle, and the expres
sion obtained for mz does not differ from that obtained 
above. 

3. CALCULATION OF THE DISTRIBUTION 
FUNCTION 

In general, the solution of the first of the equations 
(10) and (11) or of the more general equations (A.1) and 
(A.2) entails considerable difficulties. We shall solve 
them in the so-called diffusion approximati.on/ 7l i.e., 
we shall assume that the collisions of the electrons 
with the scatterers are almost elastic. The first equa
tion of (A.1) can be written in the forms> 

(0) 

eE o!Do + ~ {WPP'Ql~o) (p )[1 - <D60) (p')]- (p ~ p')} = 0. (22) 
&p p' 

We represent the function <l>b0 >(p) in the form of a sum 
of parts that are symmetrical and anti-symmetrical in 
p: 

!Do(O) (p) = pco> (e)+ tJlC"> (p). (23) 

where £ = p2 /2m* is the electron energy. Up to suffi
ciently high values of the electric field it can be as
sumed that ¢<0 >(p) is much smaller than F<o>(£), and we 
shall therefore disregard terms quadratic in 1f! lo>( p) 
(which appear when the Pauli principle is taken into ac
count). 

In the concrete calculations we assume that conduc
tion-electron energy relaxes on acoustic or piezoacous
tic phonons. In this case 

2:n: "" WPP'=t; -'1{1Vqi 2 [(Nq+1)6p'+q,p/i(ep-e.,-flulq) (24) 

+ Nq/ip•, P+qli(ep- Bp• + fiwq )]. 

6lwe have left out here terms equadratic in <l>z, inasmuch as mz 
mz -g~Hz/€ ~ I and, by virtue of (A.S ), <I> z ~ <1>0 • 

where Vq-matrix elements of the electron-phonon in

teraction and Nq-number of phonons with momentum 
q.7) 

The method of transforming the integra-differential 
equation (22) into a system of differential equations, 
namely expansion of the collision integral in the small 
ratio tiwq/£, is quite well known,[ 7 - 9 J so that we pre
sent immediately the final results. The system of dif
ferential equations for F 10 >(£) and ¢<o>(p) is of the 
form 

0 
{J-;i· = 0, 

oFCOI ljl(O) 

eEv--=---oe 'tmom. (25) 

Here 
. A(e) [ oF<0> 1 l Je=eEvtJJCO>--- -- +-FCO)(f-FC"l) , 

2 oe To J (26) 

where v-electron velocity, T 0 -lattice temperature, 

2n ~ 
A (e)= h LJ I Vq I2 (21Vq + 1)op•+•I.P o (ep -ep•) (liw,,)2, 

p'q 

j£ has the meaning of the "particle flux density in en
ergy space," and T mom -electron momentum relaxa
tion time. Using the second equation of (25), we elimi
nate ¢10> from the first, integrate it, and obtain, keep
ing the stationarity condition in mind, the following 
equation for the determination of F 10 >: 

6FCOJ foe+ l.(e)FC0>(1- FC0l) = 0, (27) 

where 

_1_ = T [ 1 2(eEv)"lmom.(e)J. 
/.(e) 0 + 3A(e) (28) 

As a result of the solution of (27) we get F<o> :8 > 

" 1 1 F<0>(e, N) ={ exp[ ~0 A(e')de'- \;(N) _ + 1 r ; (29) 

t(N) is a constant determined from the normalization 
condition. The concrete form of the dependence of A on 

i £ is determined by the mechanisms for the dissipation 
of the energy and momentum of the conduction electrons. 
In those cases when A does not depend on £, the quan-

! tity 1/A is the temperature of the conduction electrons, 
and t has the meaning of the reduced chemical poten
tial. 

We now proceed to calculate <I>61l. From (A.2), (A.4), 
and (A.6) we obtain the following equation for the deter
mination of this function: 

o<D(1) 
eE-0- + ~ {WPP' (<1>~1) (p)- <D6'l (p)<!J~O) (p') 

op p' 

- <DJ0> (p) <D&'> (p') ]- (p ~ p')} = - ~ { (W !_t + w!:') IDi"> (p) 
p' 

(1-<!J(O)( '))+(W_PP'-wP:')m[o<DJO)(p)- ()(fi~Cf)(p) <!J(O)( ') 
X 0 p + + ' oN oN ° P 

+<Dd0)(p)8<D~:~p')] -(p+"p') }. (30) 

7lThe electron momentum can relax also on other scatterers, for 
example impurities. 

8lsuch a distribution function was obtained first in [9]. 
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The function cJ>~ll(p) will also be represented in the 
form of a sum of symmetrical and antisymmetrical 
terms: 

o:D~1>(p) = F<11(e)+ ¢<1>(p). 

In semiconductors at low temperatures, the most 
probable mechanisms for the relaxation of the conduc
tion electron spins are interactions with acoustic or 
piezoacoustic phonons[ 10l and with paramagnetic im
purities. For phonons the probabilities W!'~;+ -> are 
given by 

w:.:;::..) = 2~ ~I Vq•OIZ[(:lNq + 1)1\P'H,P o(ep- E~· + nQ -liwq) 
q 

where the upper sign on the right is taken for W -+ , and 
the lower one for W + - . 

To transform Eq. (30) into a system of two differen
tial equations of the type (25), we employ the same pro
cedure as used in the derivation of the system (25). The 
right side of (30) is expanded in powers of tiwq/E and 
tin/E, which we assume to be quantities of the same or
der of smallness. We take into account only those terms 
of first order in 1', which are connected with the action 
of the high frequency magnetic field on the hot electrons 
and which have a resonant character (as functions of the 
frequency of the external magnetic field). The emitted 
first-order terms yield a constant addition to the dis
tribution function. This addition is due to allowance for 
collisions with spin flip, and is of no interest to us. 

In transforming (30), we use the inequality that fol
lows from (29) and (A.5) 

oF<D> 0~ 
aN= oN F<">(1- F<">). 

We obtain a system of differential equations analogous 
to (25): 

oj.' I De = 0, eEvofi(l) I oe = -¢<•> I 'I" mom (32) 

where jf. -first-order correction to the "electron flux 
density in energy space," and takes into account the 
transitions with spin flip. 

Using the stationarity condition in exactly the same 
manner as in the determination of the function F<o>, we 
arrive at the following inhomogeneous differential equa
tion: 

oF<1>1oe+t.(e)F\1l(1-2Ji"(D>) -t'\t.(e)F<0i(1-F<0>) =0. (33) 

Here 
lif.(e) = ~(mo- m,)To(liQ) v,o(e) t.(e) 

oN A(e) · (34) 

The quantity 

has the meaning of the spin-lattice relaxation frequency. 
We solve Eq. (33), as usual, by the method of varying 
the constant. We see that the solution of the homogene
ous equation is caF<o>;;n-. Varying the constant, we ob
tain ultimately 

F<1>(e,N)= ( ~ lit.(e')de') 0~0) • (36) 

If the spin-lattice relaxation of the conduction elec
tron is determined by the paramagnetic impurities, then 
the function F< 1 > has the same form, but 

where 

(38) 

is the frequency of electron-spin relaxation on the para
magnetic impurities, and nimp is the resonant frequen
cy of the impurity spins. 

4. CALCULATION OF MOBILITY 

The expression for the mobility is of the form 

""2 .. 
f.t =- e ~ ~~mom (e)p(e)dF(e) / ~ p(e)F(e)de, 

0 0 

(39) 

where p(E) = ..f2 m3 12g 1 / 2 !rf ti3 is the density of states. 
We seek the change of mobility of interest to us in the 
case when the conduction electrons are nondegenerate, 
i.e., 

F<0>(s, N) = exp [- ~ t.(e')de' + ~(N)]. (40) 
0 

• 
F<1>(e,N) = () 1\/.(e')de' J F<0>(e,N). 

0 • 

(41) 

We represent the mobility in the form 

f.t=fi(O)+f.t(l), 

and obtain the relative change of the mobility f.J. <1 >/ f.J. <o>: 

(42) 

where K is a constant whose magnitude depends on the 
relaxation mechanisms. Its explicit form is given by 

1 { < [ r ( e' )'-r J 1 e )q+'r, ) 
K = (e'l•) ((e/To)q+'l•) J f.(e') To de' \To (e'h) 

0 

<( e )q+''• ) ·< [ s• 1 e'. )~-'-r J \ } - - t.(e') \- de' e'" J , 
~ 0 ~ ., 

(<p(e)) = S <p(e)F<0>(e)de. 
0 

In obtaining (42), all the energy-dependent quantities 
were represented in the form 

A (e) = Ao(7 o) (e I To)r, '~"•mom•(e) = '1"o(1 o) (e I To)q, 

(43) 

v,o(e) = v,o(To) (eiTo) 1• (44) 

In the derivation of (42) we disregarded electron-elec
tron collisions. If the frequency of the electron-elec
tron collisions is much larger than the energy-relaxa
tion frequency, then the distribution function has a 
Boltzmann (or Fermi) form with effective temperature 
Te. But the electron-electron collisions do not influ
ence the energy transfer from the spin system to the 
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kinetic subsystem.9 ' Therefore formula (42) remains 
valid also for cases when the frequency of the electron
electron collisions is high, i.e., for a large electron 
concentration. 

5. DISCUSSION OF RESULTS 

In the case when i\ does not depend on E (i.e., when 
r- q = 1 or in the case when the frequency of the elec
tron-electron collisions is much larger than the energy
relaxation frequency) and the conduction electrons can 
be described with the aid of the temperature Te = 1/i\, 
expression (43) can be readily integrated. Bearing in 
mind that m0 Rj tiil/Te, [n, 12 l we get 

14(1) = (liQ) 2 V 8o(Te) (WTt) 2 K,, 
f!(O) Te" \'e(Te) 1 +-r12[w2 + (w- Q)2] (45) 

where vE(Te) = Ao(Te)/T0Te is a quantity that deter
mines the rate of relaxation of the kinetic energy at an 
electron temperature T e• and K1 is a constant coeffi
cient on the order of unity, expressed in explicit form 
as follows: 

K, =·_1_ [ r(t + •;.) 
t-q r(q+"M 

r(t-r+ 5/s) J 
r(•/.) , 

where r(x) is the gamma function. 

(46) 

In InSb, for example, 'Yso ~ lie ~ 107 -108 sec -1, and 
when Hz = 500 Oe (n 1011 sec-1) the relative change of 
the mobility for not too strongly heated electrons (Te 
~ l0°K) is of the order of 1-10%. 

This estimate may turn out to be insufficient if the 
distribution function of the hot electrons differs from a 
Boltzmann distribution. One can expect particularly 
strong deviations from the foregoing results in the case 
when the electron "runaway" effect appears. [ 13 • 14l 

Electron "runaway" may come into play in various 
situations.[ 14 • 15 l We present only one example of the 
possible influence of electron runaway on the change of 
the mobility, due to the action of a high frequency mag
netic field. Electron runaway is manifest in the fact 
that at electric field intensities much higher than the 
critical value Ecr the moments of the distribution func
tion (all of them, or starting with a certain moment) di
verge. There is a possible situation when the moment 
( Eq+ 1 / 2), which determines the mobility, still converges, 
while the higher-order moments diverge. It is seen 
from (43) that in the case when the frequency of the spin 
spin-lattice relaxation lls0(E) increases more rapidly 
as a function of the energy than A(E) (i.e., t >r), the ad
dition to the mobility becomes formally infinite. Phys
ically this means that in the case we can expect a larger 
mobility resonance amplitude than would follow from 
the foregoing estimate. Such a situation can be realized, 
for example, when the momentum relaxes on charged 
impurities, and the energy and spin relaxation occurs 
on acoustic phonons, or when all the aforementioned 
forms of relaxation are due to the interaction between 
the conduction electrons and piezoacoustic phonons. [ 15 l 

It is indicated in [ 1l that in the case of a small num-

9lMore accurately, they influence only indirectly, via the distribution 
function, and this influence leads only to a small change of the constant 
K in formula ( 42). 

ber of electron spins, the method of detecting carrier 
ESR by measuring the change of the mobility may turn 
out to be more sensitive than the standard electromag
netic methods. It can therefore be used to study effects 
that occur only at low concentration of the conduction 
electrons, when the standard methods are not applica
ble. For example, it is possible to investigate the InSb 
instability that leads to the current pinching observed 
at low carrier density (n ~ 1013 cm-3).[ 16 l Such a pos
sibility is connected with the fact that the g-factor of 
the conduction electrons depends on their kinetic ener
gy (temperature), i.e., it is different for electrons lo
cated in the pinch and outside the pinch. For this rea
son, when the electric field becomes sufficient for the 
pinch to occur, the resonance mobility line splits into 
two if the boundaries of the pinch are sharp, or broad
ens if these boundaries are smooth. Estimates show 
that the magnitude of this splitting is comparable with 
the ESR line width when the difference between the tem
peratures of the hot and cold regions is of the order of 
5-l0°K, In practice, in [ 17 l, the ESR method was used 
to measure the temperature of the hot electrons in InSb 
with even higher accuracy (6.Te Rj 1°K). A study of this 
phenomenon can yield information on the dimensions of 
the pinch and on the difference between the tempera
tures of the hot and cold regions. 

The authors are grateful to V. M. Eleonskii, A. P. 
Levanyuk, and K. K. Svidzinskii for a discussion of the 
work. 

APPENDIX 

When account is taken of the Pauli principle in the 
collision integrals, the system (6) becomes nonlinear. 
Expanding the collision integrals and the functions <T?j 
in terms of the parameter y, we obtain in the zeroth 
approximation 

L\0> ($~0>) =· o, (A.l) 
L~;($o, «!>;) = 0, i,j = (z, +. -) (A.2) 

and in the first approximation 

li"' «1>~1) =· - tfl) ( (1>~0)' «1>~0)), (A. 3) 

ifOJ ($~1>, $J''> = - i,m ($~OJ. $~0>). (A.4) 

We have neglected here the terms <T?j<T?j'• which are of 

the order of (g,BHz /c)2. 
Let <T?~0 '(p, N) be the solution of Eq. (A.l), where N 

is the electron density; then the solutions of (A.2) can 
be represented in the form 

«1>~0> = m;B!l>o<OJ (p, N) / iJN, (A.5) 

where mj are arbitrary constants. Indeed, substituting 

<T?~0 '(p, N) and (A.5) in L~0 '( <T?~0 ', <T?j0 '), we get 

fii1J («<IJ">, ClljOJ) = m; :N [LjD> $~0> (p, N) ]. (A. 6) 

Inasmuch as :qo>( <T?~0'(p, N)) = 0 for arbitrary N, the 
function (A.5) satisfies Eq. (A.2). 

In first order in y, we obtain inhomogeneous equa
tions. It is obvious that they are linear in <T?~l) and <T?t. 
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These equations have solutions if the right sides o1 
(A.3) and_(A.4) and the solutions of the equations qo> cp 
= 0 and qo> cp = 0 are orthogonal. It is easy to verify 
that when tl!.e Pauli p..rinciple is taken into account the 
operators qo> and qo> have a form similar to (16), 
and these equations are satisfied by the function cp0 

= const. Putting cp0 = g{3, we obtain as the conditions for 
the solvability of Eqs. (A.3) and (A.4) the Bloch equa
tions (17) and (18) for Mj = gf3mjN. Unlike (19) and (20), 
we have here 

~ = ~ = ~ (W!~' + W~!')~[Cll~0> (p) (1- Cll~0l(p') )], (A. 7) 
't't Tz pp' oN 

mo = ( ~ (W!!'- W!-:"')Cll;o> (p) (1- Cll~0) (p) )] 
pp' 

X { ~ (W!~' + W~,)~[Cllo<0\p) (1- cDJ0> (p) )]lf-t (A.8) 
••. oN 
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