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We consider the statistical theory of the turbulent motion of a viscous incompressible fluid, using an 
analysis of the probability for a velocity distribution in the fluid at several points at the same time. 
We give the extra conditions which these functions satisfy. Assuming the independence of large and 
small scale motions for large Reynolds numbers we study the structure of the expansion of the distri­
bution function in terms of the small parameter R- 114 

1. EQUATIONS FOR THE MANY-POINT VELOCITY 
DISTRIBUTION FUNCTIONS 

THE complete statistical description of turbulence can 
be accomplished by giving the set of functions 
F n(Vl, X1, ... , vn, xn; t) such that the probability that at 
time t the velocities of the fluid in the points 
x1, xa, ... , xn lie in the ranges dv1, ... , dvn is equal to 
Fndv1 ... dvn· 

One sees easily that in the case of laminar motion 

Fn = TI 6(v;-v(x;,t)), 
i=i 

where v(x, t) is a solution of the Navier-Stokes equation. 
In the case of fully developed turbulence F n will be the 
superposition 

Fn =' ~ C[v(x, t)] TI 6(vi- v(xi, t) ), 
i=i 

where the sum is taken over all velocity fields which 
are realized with a probability C[ v(x, t)] . This super­
position will give a complicated picture for the distribu­
tion of n velocities which is far from laminar. A study 
of strong turbulence using directly the Navier -Stokes 
equation and its moments is therefore practically hope­
less. Indeed, when R/Rcr ~ 103 it is necessary to give 
107 parameters (for instance, velocity Fourier compon­
ents) in order to approximate the velocity field satisfac­
torily. It is, for instance, clear that it is difficult to 
achieve success when solving the problem of statistics 
for normal mechanical systems with a large number of 
degrees of freedom without introducing distribution 
functions and operating directly upon the equations of 
motion for many particles and the moments of these 
equations. 

By virtue of the evident statistical nature of the prob­
lem it is apparent that only a description using distribu­
tion functions will enable us to introduce hypotheses 
directly using the fact that the Reynolds number, which 
is a measure of the number of degrees of freedom, is 
large. 

Let us derive the equations for the functions Fn· 
The Navier-Stokes equations to describe the motion 

of a viscous incompressible fluid have the form 

494 

We can eliminate the pressure from these equations in 
the usual way 

the function !J!(Xl, t) is a harmonic function: 

lltjJ(xt, t) = 0. 

(1.2) 

(1.3) 

Although we shall assume in what follows that the veloc­
ity field is random we can show that the function lJ! is not 
a random quantity. We shall indicate by a bar over a 
quantity ensemble averaging and we introduce a new 
random function 

tjJ1 (x1,t) =1j:(x1.l) -1j·(x,t) 

and its two-point second moment 

f(x1, r, t) = ¢ 1 (x1, t) ¢ 1 (x, + r, t). (1.4) 

When x1 is fixed the function f is a harmonic one. More­
over, it satisfies the following physically obvious re­
quirement: it has no singularities and must tend to zero 
for large r. A harmonic function with those properties 
vanishes. Taking the limit r - 0 in Eq. (1.4) we get 

1jJ12 (x1, t) = 0, 

which means that the random function lj.l is exactly the 
same as its average value: 

tjJ(xt,t) ==tjl(x,t). 

We can thus assume in our equations that lJ! is not a 
random quantity. 

After integrating by parts in Eq. (1.2) the equations 
take the following form: 

where 

otjl (x, t) +---- vliVt" = 0, 
OX{' 

i}3 1 
T"B7 (xt-x2)= ---. 

OX!" ox,B ox,v I x, - X21 

(1. 5) 

We introduce a chain of equations which the functions 
F n satisfy. To do this we consider an arbitrary function 
cp (v(xl, t), ... , v(xn, t)) of the velocities in the points 
X1, Xz, ... , Xn at time t. It is clear that 
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and, using Eq. (1.5) we can write 

(1.6) 

We average Eq. (1.6). We have 

The other terms in Eq. (1.6) transform analogously. 
Using the fact that cp is an arbitrary function, we get the 
following set of equations for the functions Fn: 

iJFn ~ [ iJFn &Fn i},p; 
-+£.! v·"-+~--

iJt 1 iJx·" iJv-" iJx·" i=i l l z 

For the case of homogeneous turbulence without addi­
tional conditions Eqs. (1.7) were derived in[1J. 

We give the conditions which the functions F n must 
satisfy. 

1. Normalization condition: 

~Fn+ldVn+t=Fn, ~Fndv, ... dv,=1. 

2. Continuity condition: 

lim F n+1 = F nil (v;- vk). 
xi-xk 

3. Symmetry condition: 

4. Incompressibility condition: 

~ &Fn 
-- v;" dv; = 0. 
8x/" 

5. Consistency condition: 

Only when all conditions are satisfied can we assume 
that the functions F n are functions with independent 
variables. 

2. INTRODUCTION OF RELATIVE COORDINATES AND 
VELOCITIES 

To formulate the basic assumptions we change to 
another set of coordinates: 

and of random velocities 

If we assume that X1, X2, ... , Xn lie in some volume, 

V characterizes the motion of that volume of the fluid 
as a whole while the Wi describe in some approximation 
the relative motion. Changing to the new variables 
means that we consider instead of the functions 
Fn(vl, X1, ... , Vn, xn; t) the new functions 

fi'n(V, X; W2, S2, ... , Wn 0 Sn; t) = ~ Fn(Vt,Xi, ... , v,., Xn; t) • 

n 

Xll(V -vt)ll(X.- x,) IT ll(ro; -v; +vt)ll(s; -x; +xt)dvtdx1 ••• dvndXn. 
i_,2 

In the new variables the equations for the functions 
Fn look as follows: 

{)fi'n V" iJ/i'n O/i'n &¢(X) ~ [w·" iJPn 
iJt + iJX" + ava iJX" + £.! I a'·" 

i=2 'Ol 

+ iJPn (o¢(X+s;) _ iJ¢(X)) 
&w;"\ iJX" iJX" .· 

1 iJ 1 {)2/i' n+i P 1 + ~Ow;") iJt;P iJEY ( 1'<' (Sn+t-Si)- T"' (Sn+t)) (•)n+l Wn+l dwn+t d'Sn+l 
n+t ~ n+i 

+ V iJ~;"' ~ dSn+l dron-H(IJ(Sn+i- Si)-IJ(sn+!)) L'in+i fi' n+t W~+t] 
1 {) I fJI/i' n+i P 1 

-I- 4:; ava J iJt;P ~ T" (sn+t) Wn+f(On+l dwn-H dsn+i 
n+1 -n+i 

+v {)~" ~ dSn+l dron+tll(sn+l) L'in+lfi'n-H Wn+l = 0. (2.1) 

It is necessary also to rewrite in the new coordinates 
all additional conditions which the velocity distribution 
functions satisfy. 

1. Continuity condition: 

2. Normalization condition: 

~ P n dV dw2 ... dwn = 1, 

~Pn+ldwn+I=Pn, ~ Pndw ... dw 11 =FJ(V,X,t). 

3. The consistency condition, which reflects the fact 
that in the Euler variables the variables xi are not ran­
dom variables but are the discrete indices of the ran­
dom variables vi> has now the form 

iJPn iJ 1 iJPn+l p 
-- = -- J --/l (Sn+t - Si) Wn+t dwn+l dsn+lo 
iJ£':,+1 iJw;P iJs~+l 

&F.. iJ f iJP,+t ~ - = -- --II (Sn+i) Wn+l dron+l dsn+J 
iJX" iJVP • iJl;"' n+l 

(2.2) 

4. The symmetry condition is written in the form of 
two relations as was the consistency condition: 

a) symmetry with respect to permutation of any 
velocities and coordinates except V1 and X1 means that 
the function is not changed when the pairs wi, ~i and 
Wk, ~k are interchanged: 

b) symmetry when V1X1 and vk, Xk are interchanged 
is now expressed by the equation 

p,bp,. = fi',(V + Wk, X+ Sko ID2- Wk, S2- Sk, .. ·, -wk, -!;k, · · · 
... ,w,- Wk,Sn -sk; t) = F,(V,X,roz, 62, ... , ron,sn). 

5) The incompressibility condition is written in the 
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form 

We shall in the following denote the relative velocity 
distribution functions F n by F n. 

3. BASIC ASSUMPTIONS. ESTIMATE OF THE ORDER 
OF MAGNITUDE OF THE DIFFERENT TERMS IN 
THE EQUATIONS FOR THE DISTRIBUTION FUNC­
TIONS. ZEROTH APPROXIMATION 

We have already mentioned that we shall try to use 
in solving the chain of equations the fact that the 
Reynolds number is large. We assume without proof 
that in that case our hydrodynamic motion has a statis­
tical character and possesses necessarily (due to R >> 1) 
a large number of degrees of freedom. Moreover, it is 
very clear that such a motion will be characterized by 
local velocity gradients which are much larger than the 
average gradients. If v;\ is a characteristic difference 
in velocities over a distance .\, this means that vx./X. 
~ U/L, where U is a characteristic change in velocity 
over the dimensions L given by the problem. In terms 
of the distribution functions this means, for instance, 
that 

if l~il « L. 
We see thus that the largest terms in the equations 

in the chain will be of order (w/ ~)F n· The other terms 
will be small with extra factors U~/Lw. The term con­
taining the harmonic function lJ! and the derivative with 
respect to wi will, for instance, be of second order: 

_iJFn (-~¢i"'< + s;) _ iJ¢(X)) ""'F n !':_ ( U€, ) 2 

iJw1u , t!Xa iJXa. 6 , Leo - ' 

since iJ! ~ U2 • Dropping all small terms, we get the 
following equations 

iJF,. ~ 
fit+ Lon F n+t = 0, 

where 

~ " { aF,. 
LonFn+1 = ~ (J)ia __ _ 

i=2 O~/x; 

(3.1) 

1 a r iJ2Fn+t p v + -4 --;;--:-,.I "t -~ d-•-v [Ta.(sn+t- Si)- Ta.(sn+l)] Wn+t Wr.+t do>n+t d~n+t 
Jt v(I)L u~d -oz 

+ v !- ~ dsn+t dron+t [6(sn+t- s;)- 6{sn+t)] ~n+t Fn+t ro:+, }. 
U(Uta 

(3.2) 
We have purposefully not given very exact estimates 

for the remaining and the dropped terms in the chain of 
equations for the distribution functions, which are more 
complicated than we have just written down. At the mo­
ment it is only important for us that the terms dropped 
are much smaller than those retained. It is thus clear 
that the evolution of the distribution function F n is des­
cribed by equations which contain only operators of the 
relative velocities and coordinates. The velocity V in a 
given spot and the coordinate X "of the spot" enter in 
this equation merely as parameters and the equations 
themselves are the same as the equations for the dis­
tribution functions cpn = JF n dV in the uniform case. We 
note that this is true only if we neglect the terms 

dropped and is a consequence from the fact that the 
Reynolds number is large which makes the dropped 
terms small. 

If we now assume (as a consequence, not proved by 
us, of the fact that the number of degrees of freedom 
is large) that the equation written down by us for the 
relative velocities distribution functions contains at 
small distances a relaxation to some stationary distri­
bution which is independent of the initial distribution, 
this stationary state will be independent of the origin 
of the turbulence, i.e., the geometry, the method of ex­
citation, and other "macroscopic" properties of the 
problem considered. These stationary functions must 
thus be universal, uniform and isotropic ones. This as­
sumption about the relaxation was just the one we had in 
mind when we said that our hydrodynamic motion was 
statistical in character. 

It is useful to repeat our discussion from a somewhat 
different point of view based directly upon experimental 
data. Experiments show that for large Reynolds num­
hers turbulent motion occurs in incompressible fluids 
which 1) has large velocity gradients at small distances; 
2) depends only on the "macroscopic" conditions of the 
problem, i.e., the conditions which are imposed in the 
usual laminar case and which are independent of the 
character and form of the initial fluctuations. 

Starting from these very general experimental facts 
and dealing with the chain of equations for the distribu­
tion functions we can conclude that apart from small 
quantities we have for the distribution functions 
Fn = F1(V, X, t)cp~0 l(wa, ~2, ••• )where the functions 

cp~l are independent of the problem and are universal, 
uniform, and stationary functions. Kolmogorovl2 J formu­
lated in 1941 this character of the functions cp~l as a 
self-consistent hypothesis. 

We shall consider stationary problems, and in non­
stationary problems we shall assume that 

fJF,. ~ !!_F 
at L n· 

We get thus for the zeroth approximation F~0 l = F1cp~l 
the zeroth approximation stationary equations (3.1). 
These equations do not contain the time t and the coor­
dinate X explicitly, as we have already noted. 

The zeroth approximation functions depend on the 
time t and the coordinate X only through the variables 
F1(V, X, t) and E(X, t). To track the slow dependence of 
the distribution functions on X and t we shall look for 
the general solution in the form of a series of approxi­
mations 

where 

depend on X and t only through the functional dependence 
on F1 and E. As scales for the velocities and the coor­
dinates we can introduce the Kolmogorov scales 
v0 = (vE) 114 and .\o = (v3/E) 114 after which the equations 
become dimensionless with v = 1. The required solution 
will be a symmetric, isotropic, now already neces­
sarily, and universal solution. This solution, i.e., the 
function cp~l must satisfy all additional conditions, apart 
from first order corrections. 
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To estimate the order of magnitude we shall use the 
Kolmogorov relations w ~ vo~/ll.o when ~ « 11. 0 and 
w ~ (E~) 113 when ~ » ll.o. The basis for the first rela­
tion is the continuity condition. As to the second rela­
tion (in the so-called inertial range) it follows from the 
zeroth approximation solution for I ~il » ll.o and will be 
justified in a following paper. At the moment we shall 
use them without proof. 

Before we turn to a study of the first approximation 
equations, we verify that the zeroth approximation func­
tions satisfy in the necessary accuracy the additional 
conditions 1-5 and make clear to what conditions on the 
functions cp~> these lead. 

From the continuity condition it follows that 

The normalization condition changes to the following 
conditions: 

I <o> <O> J CJ!nH dron+l = <pn , 
I <o> J <Jln dro2 ... dron = 1. 

The consistency conditions take the form 

We have dropped small terms in the second consis­
tency condition. We note that for n = 1 the consistency 
condition in zeroth approximation will look as follows: 

0 (0) 

~ ;!!___ m2~ .s (s•) dro2 dS• = o. 
VS2" 

This condition is trivial for an isotropic function. 
The symmetry conditions a) will be simple: 

P;•" cp~> = <p~> • 

We obtain the symmetry condition b) for the cp~> in 
zeroth approximation by integrating the complete sym­
metry condition over V: 

Using this equation the complete symmetry condition 
for the zeroth approximation function is reduced to the 
equation 

F1(V, X, t) =1\(V+ro•, X+s•, t). 

One sees easily that in the approximation required by us 
(apart from first order terms) this equation is valid, as 

Fi(V + ro., X+ Sk, t) = Fi(Y, X, t) + 0 (R-'1•). 

The incompressibility condition is in zeroth approxima­
tion obtained at once from the total conditions: 

0 (0) 

\ <fn ·"d -0 \ ..,---ffi, 01;- . • , uq_,a. 

Considering the additional conditions in zeroth approxi­
mation, we note a very important fact: they all contain 
solely the functions Cf!n, are independent of F1, and are 
universal ones. 

4. FIRBT APPROXIMATION 

Before we turn to a consideration of the first approxi­
mation we note that the general solution of the zeroth 
approximation equations can be looked for in the form 

FI(V, X, t)q>n(V, lll2, s., ... , llln, sniF~, e). 

Our approximations are valid when I ~il « L but then the 
Cf!n are completely independent of V in zeroth approxi­
mation. It is thus natural to assume that at small dis­
tances this function depends weakly on V and that we can 
expand it in a series and look for the solution of the 
zeroth approximation equations ~n in the form 

[ (OJ u" (fJ J Wn = Ft (V, X, t) 'l'n + ii" Vo(jlna +... , 
since the dependence of Cf!n on V is slow compared with 
the dependence of F1(V, X, t) on this variable. Here 
uO! = va- va. 

We now consider the first approximation. First of all 
we write down the set of equations for the first approxi­
mation functions: 

We shall look for the solution of the inhomogeneous Eq. 
(4.1) in the form 

p<t> _oFt (1J 
n -~Xan· 

We get the following equations for the functions xU>: an 

We shall not write out all additional conditions in view 
of their unwieldiness. One can verify that as in the 
zeroth approximation all additional conditions reduce, 
after second order terms have been dropped, to rela­
tions which contain only the functions x <l> and cp 11> and na na 
which are independent of the variables V, X, t. The 
functions x~1~ and cp~1~ are thus universal, uniform, and 

isotropic vector functions depending on W2, ~2, ... , Wn, 
~n· However, the symmetry conditions b) enable us, as 
we shall see below, by using the tensor properties of 
the first approximation corrections, to determine it in 
explicit form for n = 2. The symmetry conditions reduce 
in the necessary accuracy for the first approximation to 
the relations 

(4.2) 

Solving these equations one finds easily that 

(1) 1 (0) ~ . ~ b (t) 1 
X<>n = (n- 2)!'Pn k..J ffii"+ k..J Pk X<>n"""(_n __ --:-:1)-:-!, 

1=2 k 

(1) ~ b (1) 1 
'Pn<> = LJ Pk 'Pnot (n _ 1)! · 

• 
Bearing in mind that the functions cp~~ and x~1~ are iso­
tropic vectors it follows from these relations for n = 2 
that x<~ = Yawf?'cp~o> and cp <l> = 0. We find thus that 

2~ 20! 
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(4.3) 

One can check that this function satisfies identically all 
additional conditions (it is impossible to check the con­
sistency condition directly since the functions with n = 3 
enter into it). 

From the fact that the operators Pf commute with 
the chain operators Lon it follows that wfZ<P~J aFdava 
must be a solution of the inhomogeneous problem with 
an inhomogeneous term which is antisymmetrized with 
respect to the interchange P~. It turns out that this is 
indeed the case if we take into account that <P~J satisfies 
the zeroth approximation equations. Indeed, 

A iJFi (0) iJFi - (0) 

Lon Wk" iJV" q:n+i = Wk" iJV"LOn<iJn+! 

The first term in this equation is obtained if we do not 
differentiate wfZ, and vanishes. The second term is the 
same, as can easily be seen by a change in the integra­
tion variable, as the inhomogeneous part of the first 
approximation equations antisymmetrized with respect 
to the interchange P~. 

5. DERIVATION OF THE EQUATION FOR THE FIRST 
DISTRIBUTION FUNCTION 

In this section we shall derive an approximate equa­
tion for the first distribution function F 1 (V, X, t). This 
is an important problem since by using this function one 
can construct the average velocity field, evaluate all 
single-point velocity moments and solve such problems 
as the calculation of the resistive force in turbulent 
flow and other non-uniform problems. 

We shall see in what follows that the set of equations 
for the two functions F 1 (V, X, t) and dX, t) is a closed 
one. In particular, a well-defined damping law for 
strong uniform turbulence will follow from this set of 
equations. When deriving the equation we need not know 
in detail the relative velocities distribution functions; 
in our equations only a finite number of averages of 
these enter. We need therefore only some properties 
and the general nature, for instance, of the functions 
m<OJ .,.n . 

The form of the zeroth approximation distribution 
functions at once suggests that such an equation exists 
at all. Indeed, the first equation of the chain has the 
form 

(5.1) 

If we substitute into this equation F2 = F1<P\l'J(w2, ~2) we 
get apparently an equation containing only F1 and some 
averages. One sees, however, easily that these averages 
vanish: 

r (0) r a•<p~o) 
J 6 (s•) ds• dro, 1hc.r• w•" = J T"w,aw,v dw2 ds2 = o, 

a~,a as•' 

since the function <PWJ is isotropic. We shall see in what 
follows that the contribution to the "kinetic" equation 
comes only from the first approximation corrections to 
the distribution function. 

Let us consider the contribution made by the first 
approximation corrections. First of all we consider the 
"viscous" term. In first approximation we have 

iJF~•J 
v ) dw, ds• 6 (6•) ~. iJV" t•l•" 

a2F• 1 r (0) 1 
= V iJV" oVa 2 J dro, ds21\ (S,) ~o<jl2 w2«w2a = 3 E(OJ ~vF1 , 

E <oJ is the zeroth order dissipated energy. For the sec­
ond term which contains the pair function we get the 
following expression: 

1 a2F. r o2q:.<OJ 
-~~- J ----T"(s,)w•aw,vw,odw2 dl;2 (5.2) 
4n aV" avo iJs,a iJ!;2v • ' 

which turns out to be equal to zero by virtue of the 
incompressibility condition. 

In the preceding considerations we have always im­
plicitly used the assumption that the non-local terms in 
the chain which contain an integration over all distances 
converge fast and that the integration in fact takes place 
over a region with linear dimensions of the order 
A« L. We can verify this directly for (5.2). A detailed 
proof of the correctness of the construction of a series 
of approximations for the correlation functions goes 
beyond the framework of the present paper. However, 
the non-local term in the first equation of the chain 
gives, as we check now, a contribution of order (U/L)F1; 
to calculate it we must briefly dwell upon the analysis 
of the structure of non-local terms. 

One sees easily that the integral term can be written 
in the form 

where F2(V, X, b2, x2) is the joint probability for the 
quantities b2 and V. The quantity b2 is essentially deter­
mined by the slow scale. While the reduction of the 
correlation of two velocities in different points occurs 
at distances of the order of the main scale L, the reduc­
tion of the correlation between the velocity and its 
derivative in another point will happen fast. 

The function F2(V, X, b2, x2) will split into the prod­
uct F 1 (V, X, t) · F(b2, X2) at distances ~ Ao . If we write 
(5.3) in the form 

the first of the integrals written down will thus be fast 
converging and will as far as order of magnitude is con­
cerned be the same as the complete integral (of order 
(U/L)R114). The second integral can completely be ex­
pressed in terms of the function F 1 (V, X, t) and will be 
of order U/L. We can similarly consider non-local 
terms for n > 2. In fact, in the first integral we can 
substitute the zeroth and first approximation functions 
which we have found. As a result of the substitution it 
was elucidated that the contribution from the first 
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integral vanishes in the zeroth and first approximations. 
Up to terms of order (U/L)R-114 , we need therefore re­
tain in the equation for F 1 only the second integral. 

Finally, in first approximation the function F 1 satis­
fies the following equation 

(5.4) 

where 

' i) i) iJp i) 

D = at+ va oXa. +oX" iJVa. ' 

az I 
f'o.p= iJXaiJX~ .l Va.VPF1(V,X,t)dV. (5.5) 

Equation (5.4) contains the unknown function t: 10>(x, t). 
The derivation of the equation for E10>(x, t) requires 
higher approximations as does the derivation of the 
consistency condition for F1. 

6. SECOND APPROXIMATION 

The set of equations for the second approximation 
functions takes the following form: 

' {2) ' (0) i) I 'I) (a.) 
Lon F n+l + DFI'f'n + v iJV" J dsn+l dron+!C'l (sn+t) l'ln+l F n+t Wn+l 

(6.1) 

In accordance with the general procedure the second ap­
proximation correction F ri2 > has the form 

(6.2) 

where x~2) and )(~2~{3 depend only on the relative veloci­
ties and coordinates and satisfy each their own set of 
equations obtained from (6.1), while uO! = ya - ya, 

Of the additional conditions we note the symmetry 
condition 

whence, in the appropriate degree of accuracy 

One sees easily that the second approximation does not 
contribute to the "kinetic" equation since the first part 
of the correction x~2 > is an isotropic scalar function 
while x~~{3 is an isotropic tensor function. 

The second approximation gives, however, the first 
non-vanishing contribution to the right-hand side of the 
consistency condition (2 .2) for n = 1: 

oF, o ~ iJF2 
- =-- -&(62)w2~dro2ds2 
iJXa iJV~ iJ~z" ' 

into which we must substitute (6.2) which gives 

where the universal constants k1, k2, ks are determined 
by integrals of x~~{3 and (/}~2~{3· respectively, and are 
connected through the relation 3k2 + k3 = 0. 

7. EQUATION FOR THE ENERGY DISSIPATION 

When constructing the approximations we assumed 
that the zeroth approximation function (/}rio> is a com­
pletely well-defined function satisfying the zeroth ap­
proximation stationary equation in which we have chosen 
as the scales for the velocities wi and the distances ~i 
the quantities vo = (t:v) 114 and Ao = (v3/t:) 114 . Although the 
zeroth approximation equations become dimensionless 
for v = 1 when we introduce these scales, the solution of 
these equations will still be ambiguous. Indeed, if 
qJ~>(w2, ~2, ... , Wn, ~n) is a solution, one checks easily 
that a1 -nqJ~>(aw2, a- 1~2, ... , awn, a-1~n) will also be a 
solution satisfying all additional conditions for any 
a > 0. We choose a in such a way that the dissipation 
t:10> evaluated using the zeroth approximation is exactly 
equal to the true dissipation 

-i- ) & (sz) f'o.zF2(V, X, t, ro2, 62) w22 dro2 dS. dV. 

Denoting by E(k) the contribution to the dissipation 
evaluated using the functions of the corresponding ap­
proximation we get for this choice of a that EU> + t: 12> 
+ ... = 0. This is also an insufficient equation for E. 

Restricting ourselves to the second approximation (the 
first one does not contribute: E11> = 0) we have 

Substituting from (6.2) the expression F~2 > we get the 
equation 

( 
i) i) ) t'l, 

k, --1-V"- e'"+ks=-,---=0. 
dt oX"· u> 

(7 .1) 

The equations (5.4), (6.3), and (7.1) form now a closed 
set of equations for F 1 (V, X, t) and t:(X, t). The con­
stants k4 and ks are determined by the appropriate 
integrals of x~2 > and qJ~ci{3 and can be found experimen­
tally. 

As an example we consider the problem of the damp­
ing of uniform isotropic turbulence. In that case the set 
of equations takes the following form: 

aF, 8 at+ 3 f'o.VF, = 0, 

iJ k.1[8 iJ l 
-/'o.VF, +-=-' -.F,V2 -3--F,V<>V~ = 0, 
iJV" k1 V2 iJV" iJV~ 

&e e• 2ks 
-=---

(7.2) 

(7.3) 

(7 .4) 

One can easily solve Eq. (7 .3) in the isotropic case; the 
only solution which has no singularities corresponds to 
a Gaussian distribution for F 1: 

, [ k2 1 ]''• [ ( k, )'" V2 J Ji,IV t\= ---= exn - -1 -=- . 
2k, 2n v• , 2k, v2 

(7. 5) 

Using this function to evaluate V2 one can find that k2/k1 
= 9/2. Equations (7 .2) and (7 .4) lead to the fact that 

V2(t) I Vl(O) = (1 + t I t0 )<1-k,!•.:-•, 

which is the law for the damping of uniform isotropic 
turbulence. Experiment shows that with good accuracy 
ks/k4 = 2. 
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CONCLUSION 

The advantage of the formulation given here of the 
problem of turbulence using several-point distribution 
functions consists in that it enables us to separate in 
the problem a small parameter R-114 directly connected 
with the fact that the Reynolds number is large. The 
immediate problem is the construction of approximate 
expressions for the evolution in time of the distribution 
function F 1 and the average dissipation velocity t:(X, t) 
starting from the exact set of coupled equations. The 
derivation is similar to the derivation of the equations 
of hydrodynamics and finding the form of the kinetic 
coefficients from a chain of correlation functions for 

. . t. [3 J • statistical systems w1th strong mterac wn assummg 
small deviations from equilibrium. In our case the dis­
tributions of velocity differences at small distances 
(viscous, inertial range) are equilibrium ones and the 
role of the slowly changing hydrodynamic quantities is 
played by F 1(V, X, t) and t:(X, t). 

We succeeded in constructing the above-mentioned 
system without explicitly solving the equations in zeroth 
and subsequent approximations but studying the func­
tional dependence upon F 1 and E of the corrections in the 
expansion in K 114 . Then, as in the derivation of the 
hydrodynamic equations, we choose at once a solution 
in which the dependence on the variables X, t is com­
pletely coupled to the dependence of the functions F 1 and 
E on these variables. The proof of the correctness of the 
construction of such a solution is, apparently, just as 
complicated as the analogous proof for statistical 
systems with a strong interaction. 

The set of equations obtained contains some universal 
constants and their evaluation can be realized by solving 
the equations in zeroth and subsequent approximations. 
Notwithstanding the similarity with the hydrodynamic 
approximation in statistical mechanics it is necessary 
to note the peculiar nature of the relaxation which is 
connected only with functions at small distances. The 
first attempt to use directly the existence of such a re­
laxation, in particular, the assumption about the station-

[2] h . arity at small distances is due to Kolmogorov w o m 
the equations for the third moment dropped the corre­
sponding small terms. 

It is also necessary to emphasize the very important 
statement that the distribution function F 1 must satisfy 
two equations: a "kinetic" equation and the so-called 
consistency equation. The latter reflects the fact that 
in the Euler picture of turbulence the coordinate X is 
not a random one and the above -mentioned dependence 
vanishes, for instance, when the distribution function is 
integrated over the velocities. 

When we state the boundary problem the system must 
satisfy boundary conditions at solid surfaces or surfaces 
where one goes over into a non-turbulent fluid. It seems 
to us that in zeroth approximation the boundary condi­
tion consists in the vanishing of the velocity component 
along the outward normal and that it reflects a wel.l­
defined picture about the division boundary accordmg to 
which fluid can only flow into but not out of the turbulent 
region. However, a regular derivation of such a boun­
dary condition is the topic of a separate problem. 

We note that for the construction of the theory we 
needed only very qualitative assumptions about the 
properties of the distribution functions at small d~stan­
ces which, apparently, are corroborated by expenment. 

The authors are grateful to Academician M. A. 
Leontovich for his interest in the paper, for discussions, 
and for useful advice. 

1 A. s. Monin, Priklad. Mat. Mekh. 31, No. 6 (1967) 
[English translation in Appl. Math. Mech.]. 

2 A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 
(1941) [reprinted in Usp. Fiz. Nauk 93, 476 (1967); Sov. 
Phys. -Uspekhi 10, 734 (1968) ]. 

3 K. p. Gurov, Osnovaniya kineticheskol. teorii. Metod 
N. N. Bogolyubova (Foundations of kinetic theory. N. N. 
Bogolyubov' s method) Nauka, 1966. 

Translated by D. ter Haar 
108 


