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The spectrum and damping of surface electron states in a parallel magnetic field are found. In con­
trast to the Landau levels, the surface energy levels depend on the coordinate of the rotation center. 
Damping is due to scattering by random irregularities on the interface. It is shown that in the case 
of irregularities of atomic dimensions most of the electrons experience diffuse scattering and sur­
face quantization is absent. For "glancing" electrons in weak magnetic fields the reflection is close 
to specular reflection since the effective "wavelength" of the electrons along the normal to the sur­
face is much greater than the mean height of the irregularities. 

1. INTRODUCTION 

IT is well known that the Landau energy levels 

n.= 01 1,2 ... (1.1) 

do not depend on the coordinate of the center of rotation 
X= -CPy/eH, i.e., they are degenerate in Py· Here c­
energy, p-momentum, m-mass, U-cyclotron fre­
quency, -e-electron charge (e > 0), and 21Tli -Planck's 
constant. The z axis is parallel to the magnetic field 
H. 

If the metal is bounded, then the electron trajecto­
ries near the surface of the metal can cross the inter­
face. A reflection of the electrons then takes place. Let 
the magnetic field be parallel to the surface of the metal 
(Fig. 1). Then the electron is reflected many times and 
drifts along the surface in the y direction (Ox-normal 
to the surface). The character of the reflection is de­
termined by the properties of the interface. If we as­
sume it to be an ideal plane and the electron scattering 
is assumed to be elastic, then the motion in the Ox di­
rection will be finite and periodic, just as in an un­
bounded metal. However, the period of this motion will 
now depend on X-the coordinate of the center of rota­
tion (on Py). Consequently, the energy levels will also 
depend on X. In other words, the collisions of the elec­
trons with the surface lift the degeneracy in X. These 
electron states will be called surface states. The first 
to study surface levels of electrons in a magnetic field 
were I. Lifshitz and Kosevich [ 11 in connection with the 
de Haas-van Alphen effect in thin films. 

In the quasi-classical approximation, the energy lev­
els can be determined from the Born-Sommerfeld 
quantization condition, if account is taken of the fact 
that in the magnetic field the quantities Px and X are 
canonically-conjugate variables. The quantization con­
dition is of the form 

1 fteH 
S ( E, Pz, X) ""' J Px dpy = 2rcn- . 

c 
(1.2) 

The integral is taken over the period of the classical 
motion of the particle. S(c, Pz• X) is an area bounded 
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by the curve c(p) = t:; pz = const; X= const in mo­
mentum space between two neighboring turning points. 
In an unbounded metal, S does not depend on X and 
equals the area bounded by the entire curve c = const; 
pz = const. For colliding electrons, S depends on X. 
In the case of an isotropic quadratic electron disper­
sion law (c = p2 /2m), the quantization condition (1.2) 
can be represented in the form 

{ 2 [ a ( a2 )''• a ]1 p 1+-sionX- 1--- +arcsin- f=2n, 
n o 2p''• . 4p 2p''• 

(1.3) 

where we introduce the following notation: 

lXI a=-z-· -(~)''• z_ . 
2eH 

(1.4) 

The quantity p +% is the energy of the transverse mo­
tion of the electron in tin units, a is the absolute value 
of the X coordinate of the center of rotation in units of 
the magnetic length l, and the parameter a2 /4 is the 
energy of the drift motion along the y axis in units of 
tm. 

If the X coordinate is negative (the center of the or­
bit is outside the metal) and I X I >:::: R1 = CPl/eH (pl 
= v2mc- p~), then the electron "glances" along the 
surface. In this case a>:::: 2p1 / 2 and the energy levels 
are determined by the formula 

(1.5) 

A similar expression was obtained for the case of a 
cylindrical equal-energy surface (when c does not de­
pend on Pz) by Nee and Prange. [ 21 They made use of 
the surface levels to explain the oscillations of the im­
pedance in weak fields ( ""'1-10 Oe), discovered by 
Khaikin. [SJ These impedance oscillations can be treated 
as a cyclotron resonance due to the transitions between 
different surface levels. When an electromagnetic-field 
quantum tiw is absorbed, the projections of the momen­
tum Py and pz are conserved, and the resonance takes 
place at the frequencies 

(1.6) 
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FIG. I. Trajectory of "glancing" 
electrons near a smooth metal surface. 

FIG. 2. 

Consequently, the resonant values of the magnetic field 
Hres are proportional to w312 • This is precisely the 
connection between Hres and w which was established 
experimentally.c 3 , 4 l The distance between the neigh­
boring surface levels is approximately (50£F;1in)113 

times larger than the cyclotron frequency n. There­
fore the characteristic resonant frequencies Wres turn 
out to be appreciably larger than n even in a field H 
~1-10 Oe ( Wres ~- 1010 sec- 1). 

In c 1 ' 2 l they considered a smooth interface, i.e., it 
was actually assumed that the electron reflection is 
specular. Random, even microscopic irregularities on 
the surface of the metal lead to diffuse scattering and 
to the attenuation of the surface states. The purpose of 
the present paper is to determine the damping and the 
change of the spectrum of such states as a result of the 
scattering of electrons by random roughnesses on the 
metal surface. 

2. FORMULATION OF PROBLEM 

Let us consider a metal bounded by an uneven sur­
face x = ~(y, z) (Fig. 2). We assume the roughnesses 
to be random. A magnetic field H parallel to the aver­
aged surface x = 0 (zy plane, H 1/z). The electron re­
flection is assumed to be locally elastic (specular). In 
other words, the metal boundary is modeled by a poten­
tial U which vanishes inside the metal and is infinite 
on the boundary and in the vacuum. The presence of 
such a potential corresponds to specular reflection of 
the electrons from the plane boundary and to a partially 
diffuse scattering in the case of an uneven surface. The 
function ~(y, z) is a random function of the coordinates, 
with zero mean value, i.e., 

1;(y, z) = 0. (2.1) 

We assume that the roughnesses are statistically homo­
geneous and introduce the correlation function 

(';(y, z)l;(y + rJ,Z + ~) = o2W('l, ~), (2.2) 

where o2 = "? is the mean square height of the rough­
nesses, and W( T}, !;) is the correlation coefficient. It 
is seen from (2.2) that W(O, 0) = 1 and W( TJ, !;) is an 
even function of its variables. The characteristic cor­
relation radius L (horizontal dimension of the inhomo­
geneities) is defined as the distance over which the 
function W( TJ, !;) decreases appreciably. 

To find the electron spectrum it is necessary to 
solve the Schroding;er equation with a potential U. The 
stationary wave function of the electron 1/J(r) should 
vanish on the surface x = ~(y, z). The function 1/J(r) will 

be a functional of the random function HY, z) and can 
therefore be represented in the form 

1jJ(r) = ljl(r) + ¢'(r), ljl'(r) = 0. (2.3) 

It is obvious that both functions 1jj and 1/J ' are solutions 
of the Schrodinger equation. The exact energy levels 
should be determined from the boundary conditions 

(2.4) 

on the surface and at x = oo. However, we are inter­
ested not in the exact states of the electrons but in the 
average ones. The averaging leads not only to a change 
of the spectrum of the surface states, but also to atten­
uation of these states. This corresponds to the obvious 
fact that a rough boundary reflects "in the mean" the 
electrons not strictly specularly, but partly in a diffuse 
manner. 

We confine ourselves henceforth to the quasi-classi­
cal approximation. In this approximation, the wave 
function 1jj near the surface of the metal can be repre­
sented in the form of a sum of two plane waves-inci­
dent and reflected. The reflection of the plane wave 
from a random rough surface was considered by Isa­
kovich and Bass in connection with the scattering of ra­
dio waves from the surface of the sea.cs, 6 J They calcu­
lated the effective reflection coefficient V of a plane 
wave in different cases (for a plane V = -1). Knowing 
the reflection coefficient V, we can write the function 
1jj, following collisions between the electron and the sur­
face, in the form 

ljl(r) = A(y, z) [exp(-ikxx) + V(kx)exp(ikxx)], (2.5) 

where V is the reflection coefficient and kx is the 
projection of the wave vector of the electron on the x 
axis (kx = Px/n ). The difference between IV I and unity 
leads to the attenuation of the surface state. 

If we assume the random roughnesses to be suffi­
ciently smooth or relatively small, then we can calcu­
late V by using the methods of geometrical optics or 
perturbation theory. This is precisely how this prob­
lem was solved in the previously cited papers. c 5 ' 6 l 

Consequently, the spectrum and damping of the surface 
states can be represented in the form 

e = e<0> + be - iy, (2.6) 

where c(o> are the unperturbed levels (for a plane 
boundary), oc is the energy shift, and y is the attenu­
ation of the state. The quantities oc and y are func­
tions of the reflection coefficient V. 

We shall first consider the problem of finding the 
unperturbed energy levels. We shall then determine 
with the aid of (2.5) the level shift oc and the damping 
y as a result of diffuse scattering of the el~ctrons from 
the uneven surface. 

3, UNPERTURBED ENERGY LEVELS 

The Schrodinger equation inside the metal has the 
usual form 

h2 d21jl [ p,2 mQ2 J --+ e----(x-X) 2 ljl=O. 
2m dx2 2m 2 (3.1) 

(We are considering a metal with isotropic quadratic 
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electron dispersion law). We have used the Landau 
gauge for the vector potential A: 

Ax= A,= 0, Ay = Hx. 

In the notation of (1.4), this equation takes the form 

til"(<)+ [p + 1/ 2 - 1/;(;- a sign X) 2]tjl(<) = 0, (3.2) 

where T = x/l is the dimensionless distance from the 
surface of the metal. 

Equation (3.2) has a solution, which is finite as T 

- oo, in the form of a parabolic cylinder Dp ( T-a sign 
X). The energy levels should be obtained from the 
boundary condition (2.4), i.e., 

Dp,( -a sign X) = 0. (3.3) 

Let us find the solution of this equation, using different 
asymptotic representations of the function Dp(z). 

1. We consider trajectories whose centers are lo­
cated at large distances inside the metal (Fig. 3), when 
the X coordinate of the center of revolution is much 
larger than l and R1. In our notation, these inequali­
ties take the form 

a~ 1, a ~2p'h. (3.4) 

We use the following asymptotic form of the function 
Dp( -a): 

Dp(aexpni)~aPexp.(inp- :')+i~:!;;a-P-1 exp(:'), (3.5) 

where r(x) is the Euler gamma function. From (3.3) 
we obtain the energy levels 

a2n+1 ( a') 
po= n+ (2n)'l•n! exp -2 · 

In the standard notation, the electron energy is 

(O) Pz2 ( 1) . a2n+l ( a') e, =-+nQ n+- +nQ---exp -- (3.6) 
2m 2 (2:rt)';,n! 2 · 

We have obtained a natural result: an exponentially 
small term due to the finite distance from the center of 
the electron orbit to the metal surface is added to the 
Landau formula (1.1). The exponential correction is 
connected with the interaction of the exponentially at­
tenuating "tail" of the wave function with the surface 
of the metal. 

2. As the X coordinate of the revolution center de­
creases, the orbit approaches the boundary of the metal 
and is tangent to the surface at a= 2jp (see Fig. 3). 
Let us find the unperturbed energy levels in the follow­
ing limiting case 

p-'t.-%, 1 - a2 I ;.p -%, 1. (3.7) 

The left-hand inequality is the condition for quasi­
classical motion. It signifies that the segment R1- X 

0 
0 [[ 

I 

0 
JJ[ 

= IY 

FIG. 3. Electron trajectories. I­
trajectories inside the metal (sign X = 
+I, I X I~ R 1· /); II- trajectories tan­
gent to the surface (sign X=+ I, 
IX I~R1~/); III-trajectories with 
center of the orbit close to the metal 
surface; IV- "glancing" electrons 
(sign X=-1). 

spans a large number of "wavelengths" 1 /kx, i.e., 
kx(Rl -X)» 1. The right-hand inequality in (3. 7) is 
the condition that the metal surface "cut off" a small 
segment of the electron orbit. The asymptotic form of 
the parabolic-cylinder function, from which we should 
find the energy levels, was obtained by Gyunninen and 
Makarovl 71 and in this case has a rather cumbersome 
form. We shall therefore not present here, and write 
down immediately the spectrum of the surface states: 

(()) p,2 [ 2 ( a2 )'h] en = --+ nnQ 1 + - 1 -- , 
2m 3:rt \ ;.n 

n~i. (3.8) 

The correction to the Landau condition is due to the ob­
vious decrease of the area of the classical orbit S as 
a result of collisions between the electrons and the sur­
face. Unlike the exponential correction to formula (3.6), 
the increment to (3.8) can be obtained also directly 
from the Born-Sommerfeld quantization condition (1.2). 

3. There exists an asymptotic representation of the 
parabolic-cylinder functions at large values of the in­
dex 

p ~a' I 4. (3.9) 

These inequalities correspond to orbits of electrons 
with R1 » l, IX I, when the center of revolution is near 
the surface of the metal (see Fig. 3). According to l 71 , 

the asymptotic form of Dp(z) is in this case 

- ( 1 )p/2 ( p 1 )' [ f 1 )'lz :rtp] 
Dp(z)=12,P+-z exp --2--4 co~ Z\P+2 -2 · 

From (3.3) we get the spectrum 
(3.10) 

p,2 ( 2 a sign X \ 
en<01=-· +2n 1-----),hQ. 

2m n (2n)'f, 
(3.11) 

The condition for the applicability of the quasi-classical 
approximation is in this case simply n » 1. Formula 
(3.11) can be readily obtained from the quantization con­
dition (1.2), if it is recognized that in this case one 
quantizes half the area of the circular orbit (p0 ~ 2n). 
The correction to the levels (the second term in the 
brackets in (3.11) is due to the finite value of X coor­
dinate of the center of revolution. This correction is 
positive if the center of the orbit is outside the metal 
(sign X= -1) and negative if the center of the orbit is 
ins ide the metal. 

4. Finally, let us consider the most interesting CqSe 
of "glancing" orbits, whose centers are outside the 
metal (sign X = -1). The inequalities corresponding to 
this limiting case are given by formula (3. 7). Their 
physical meaning has already been discussed above in 
case 2. The asymptotic expression for the parabolic­
cylinder function has in this case the form l 71 

DF(a) ~ vz( P++ r''( 1- :;r·exp .(-:-!) (3.12) 

>< cos [ ~ p ( f- :; t'- : J . 

From (3.3) we get the energy spectrum of the "glanc­
ing" electrons 

p ' p z r 3na ( 1 )]';, e 101 = __-'!_,+-'-+I -, n -- nQ. 
n 2m 2m L 4 · 4 (3.13) 

Consequently, only the energy of motion along the x 
axis is quantized here, since the electrons under con-
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sideration drift not only in the direction of the magnetic 
field but also along the surface of the metal in the di­
rection of the y axis. Apart from the notation, formula 
(3.13) coincides with (1. 5). 

4. WIDTH AND SIDFT OF LEVELS FOR AN 
UNEVEN BOUNDARY 

In order to determine the energy level shift and the 
attenuation of the surface states of the electrons scat­
tered by an uneven surface, let us consider the time­
dependent factor <I>(t) in the reflected wave. According 
to (2.5), after single scattering we have 

!lJ (t) = V exp ( -ie<0!t I ft) 0 
(4.1) 

In the case of a smooth boundary, the refleCtion coeffi­
cient is V = -1, i.e., the phase of the reflected wave 
is changed by rr. Since this phase shift does not lead to 
a shift of the energy levels £ <o>, it is convenient to in­
troduce in lieu of <I>(t) the function 

$ 1 (t) = - V oxp ( -ie<0lt /li), (4.2) 

which describes the real change of the spectrum and the 
damping of the surface states. After m collisions, the 
phase factor takes the form 

(4.3) 

where 
m=E(t/T), (4.4) 

E(x) is the integer part of the ratio x, and T is the 
time between two successive collisions with the surface 
x = 0. The shift and attenuation of the levels can be ob­
tained with the aid of the spectral density of the func­
tion <I>m(t), which we define as follows: 

p(e) = [fJl(E) [2/ r d(e) [fJl(e) [2, (4. 5) 

where 
1 00 

'/'(e'i = -./i \ dt exp (iet/li)ll>m(t) ' 2:it • 
c 

(4.6) 

is the Fourier component of the function <I>m(t). After 
simple calculations we obtain the following expression 
for p(c): 

2/i sin2 ( e - e<'l) T /2ft ( ) 
p(e) = ::rT (e- s<")' . 4. 7 

1-[Vf2 
X ---- -·-··- -- --~'-,--' _____ _ 

(1-[ Vf )2 + 4[ Vf sin2[(e- e<0J)T/21i- a/2] 

where 

-a= arg(-V) (4.8) 

is the change of the phase upon reflection of a plane 
wave from an uneven boundary. 

Formula (4. 7) allows us to find the level shift 6£ and 
the attenuation y in the general case of an arbitrary 
reflection coefficient. It is of interest to consider two 
limiting cases: small reflection coefficients IV I, and 
those close to unity. In the case 

I VI~ 1 (4.9) 

the modulus of the wave function <I>m(t) is a rectangu­
lar "step" of width T, and the spectral function 

2/i sin2 ((e- e<0J)T/21i) 
P (e)= r~T (e- e<"l)' 

(4.10) 

has a maximum at £ = c<o>, the width of which at the 
0. 5 level equals 

2,8ft rrli 
"""'-r-""'ro (4.11) 

In this case there is no level shift. 
If the reflection is close to specular 

1-[V[~1. (4.12) 

then the wave function <I>m(t) is described by a slowly 
damped plane wave. Therefore the spectral density 
p(c) has a Lorentz shape: 

p(s) =}!__ _______ __1-[Vf (4 13) 
:rrT (e- e<0J -lia/T) 2 -j- [1!(1-f Vf )/T]' . 

This expression is valid if 1£ -c<o>IT/2n« 1. The at­
tenuation and the level shift are equal to 

fta 
~e=-

1' 
(4.1-!) 

All formulas of this section contain the time T be­
tween two successive collisions with the surface. From 
simple calculations it follows that 

, :rr -j-20 sign X 
T=---Q--' (4.15) 

where e is the angle of incidence of the electron on the 
surface (the angle between the electron velocity and t!J.e 
normal to the surface). 

The coefficient V of reflection of the average field 
from a statistically uneven surface was calculated in 
l 5 • 6 l, the results of which we shall use. 

1. In the geometrical-optics approximation (the 
Kirchhoff approximation), the reflection coefficient, 
without allowance for shadowing, was obtained by Isako­
vich,lsJ namely V = -exp (-2a2 k~). In our notation 
this formula becomes 

-V = exp[-2s2 (p -- 1(4o2 )], (4.16) 

where s is the average height of the roughnesses in 
units of the magnetic length z. Formula (4.16) is valid 
when the characteristic radius of curvature of the un­
even surface is much larger than the de Broglie wave­
length, i.e., 

£2 
~p'h~1. cr~Lo (4.17) 

2. The reflection coefficient V under the condition 

I1+Vf~1 (4.18) 

was calculated by Bass. l 6 J It is necessary here to dis­
tinguish three cases. 

When the correlation radius L is much larger than 
the de Broglie wavelength (p1 / 2 L/Z » 1) and the glanc­
ing angles qJ = rr/2 - e are sufficiently large, 
qJ » (2Z/p112L)112, the expression for V is obtained by 
expanding the exponential in (4.16) in powers of s 2 : 

1 + V = 2s2 (p -- a2 / 4) 0 

(4.19) 

If the glancing angles qJ are small(({) « (2l /p1 / 2 L) 112 ), 
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and the correlation length L is as before large com­
pared with the de Broglie wavelength, then 

1 + v = exp( :i)s2 (~ r p'f, ( 1- ::r c,, (4.20) 

where the constant C1 is given by 

C , f diV(x) 
1 = -2/•:n;-'!.) dxx-'f, ___ ~ 1. 

0 dx 

Finally, in the case of small values of L compared 
with the wavelength 

Cz = - 2 S dx dW ~ 1. 
0 x dx 

(4.21) 

We shall not write out the formulas obtained as a 
result of substitution of (4.16), (4.19)-(4.21) in formu­
las (4.14) for the level shift and for the damping. We 
note only that in those cases when the reflection coeffi­
cient V is real, there is no level shift oc, and when the 
quantity 1 + V is imaginary, the damping y vanishes in 
the approximation linear in 11 + V 1. 

5. DISCUSSION OF RESULTS 

Let us discuss the damping of the surface state in 
the most important case, when the electron scatter­
ing can be regarded in the Kirchhoff approximation. 
For electrons colliding with the surface at an angle 
close to rr /2, the damping depends on the magnitude of 
the parameter 2s2p ~ (4a2m/li 2)2ntm. This parameter 
is the ratio of the transverse energy C.L ~ 2ntm to the 
characteristic "energy" Ca = ti2/4a2m, which is con­
nected with the random roughnesses. (The mean square 
of the momentum component ti2 ~ ti2/~ a2). In the re­
gion of relatively weak magnetic fields, when 

BJ.. = 2nhQ ~ Bcr, (5.1) 

the attenuation is given by 

/iQ Bj_ 8 
Yn=--=-n(aQ) 2 m. 

:1t Bcr :It 
(5.2) 

It increases quadratically with the magnetic field, 
When C.L » Ca, it follows from (4.11) and (4.15) that 

'Vn ~ /iQ. (5.3) 

In this case the attenuation is comparable with the dis­
tance between the neighboring levels and the discrete­
ness of the surface levels becomes meaningless. 

From physical considerations it is quite obvious that 
analogous conclusions are valid not only for normally 
incident electrons, but also at incidence angles e on 
the order of unity. 

Thus, the diffuse character of the scattering of the 
electrons by an uneven surface does not lead to an ap­
preciable smearing of the surface levels, provided the 
transverse electron energy is small compared with c0 • 

For rouglmesses of atomic scale (a~ 10-8 em), the en­
ergy C0 is of the order of the Fermi energy cF. In 
this case it is meaningful to speak of discrete surface 
levels only for electrons with values of IPz I ~ PF, i.e., 
near the limiting points of the Fermi surface. For lar-

ger inhomogeneities, discrete surface states exist in a 
still narrower vicinity of the limiting points, where C.L 
« Ca « CF· In other words, the majority of the elec­
trons on the Fermi surface experience diffuse scatter­
ing and the spectrum of their surface states is practi­
cally continuous. 

The conclusion formulated in similar form concern­
ing the influence of the random rouglmesses on the 
spectrum of the surface states is actually valid in the 
general case, and not only for angles of incidence on the 
order of unity. However, for "glancing" orbits, the 
condition for the "resolution" of the discrete structure 
of the surface states with respect to the magnetic field 
is much more favorable. This is connected with the 
fact that the distance between the different levels (1.6) 
is much larger for the "glancing" electrons, and there­
fore the surface quantization can appear in the region of 
weak fields (H ~ 1-10 Oe). In fact, when 

[ 3na ( 1 )]''• 2s2 ·- n-- -«{1 
4 \. 4 ' 

(5.4) 

the attenuation, in accordance with (4.14)-(4.16) is de­
termined by the expression 

/iQ [ 3na ( 1 \]''• \'n ~ - s2 - n-- I . 
<fn 4 • 4 • 

(5.5) 

Recognizing that 

,. ~ ~[3na ( n-_!_\]''' 
"'n a 4 \ 4! ' 

we get 

(5.6) 

In stronger fields, when the inequality (5.4) is re­
versed, we get in accordance with (4.11) 

[ 3na ( 1 )]-'" \'n ~ 0,7/iQa T .n- 4 . (5.7) 

In this case the ratio of the attenuation to the distance 
between the neighboring levels is 

'Yn 2,8 
!\en 3n(n- '/4) •;, (n + 3/4)'/,- (n- '/•)'h · (5.8) 

At all values of n, this ratio is approximately 0.5. Con­
sequently, discrete surface states exist only in the case 
when the inequality (5.4) is satisfied. This inequality 
can be represented in the form analogous to (5.1) 

[ 3rc ( 1 \]';, ( p"2 )'" -hQ n--1 - ~ea. 
2 , 4 J 2m 

(5.9) 

Assuming the energy of the drift motion along the sur­
face p;/2m to be on the order of cF, we can rewrite 
(5.9) in the form 

3n 6 ( ecr \ 1/o 
2"Qn~ecr- . 

Bp (5.10) 

For H .S 10 Oe and n ~ 1-3, this condition is satisfied 
for average roughness heights a .S 10-6 em. Thus, for 
"glancing" electrons at low values of nH, the uneven 
surface of the metal is a practically specularly reflect­
ing plane. This conclusion is perfectly obvious physi­
cally: the more effective the "wavelength" ki\ the 
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closer to specular is the reflection of electrons (IV I 
= exp ( -2k2xJ!)) from the rough surface. 

Besides the attenuation of the surface state as a re­
sult of the diffuse scattering, there is also the usual 
volume damping y 11 = nv, connected with the volume col­
lisions ( v-average frequency of collisions with the 
scatterers). It follows from simple estimates that at 
nH < 30 Oe and v ~ 109 sec-\ the ratio Yn1Y 11 
~ (a/10-6) 2 • Consequently, when a< 10-6 em the atten­
uation of the surface states for "glancing" electrons 
will be determined essentially by the volume collisions, 
and not by the scattering from the uneven surface. 

We have considered above the case of a magnetic 
field that is strictly parallel to the surface of the metal. 
Obviously, when the vector H is inclined relative to the 
surface x = 0, electron drift to the inside of the metal 
takes place; this drift leads to a change in the period of 
the motion in the direction of the Ox axis, i.e., to an 
effective damping of the surface state. Let us estimate 
the value of this attenuation at small inclination angles 
a for "glancing" orbits. A change of the X coordinate 
of the center of revolution by an amount 

T 

L\X = S v,,. dl ::;,; nt·}' (5.11) 

leads to an attenuation on the order of (5.12) 

)'a;::::: _p,,elf!>.X;::::: apyQv,T;::::: l,aliQ (£ )'''[Jna (n-~ )]''•. 
me 2mhQ 4 .4 

The ratio of Ya to the quantized energy of motion along 
the x axis will be small if 

( 2 )''• ln,l N'l• 4a- ---«;;1 
:~n I nlll•ta n•!J . 

(5.13) 

Here ny and nz are the projections of the electron mo­
mentum on the coordinate axis, N = EF;ti.n » 1. It fol­
lows therefore that the attenuation of the surface states 
of the electrons as a result of the inclination of the mag­
netic field will be small for small I nz I, i.e., near the 
central (extremal) sections of the Fermi surface. 
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