
SOVIET PHYSICS JETP VOLUME 28, NUMBER 3 MARCH, 1969 

SELF-FOCUSING OF THE ION ACOUSTIC WAVE IN A PLASMA 

V. I. PETVIASHVILI 

Submitted March 5, 1969 

Zh. Eksp. Teor. Fiz. 55, 917-923 (September, 1968) 

An asymptotic method is used to analyze the propagation of longwave perturbations in a plasma in 
the presence of a periodic ion-acoustic wave (PW). It is found that a plasma in which a PW is ex
cited is unstable against perturbations that propagate at a large angle with respect to the PW. The 
growth time for the PW instability is much smaller than the breaking time of the acoustic wave. 

1 .. The propagation of a finite-amplitude ion-acoustic 
wave in a plasma can have a strong effect on the collec
tive properties of the plasma as a whole. It is there
fore of interest to analyze the small oscillations of an 
infinite uniform plasma in which there is excited a 
plane periodic ion-acoustic wave with arbitrary ampli
tude. The solution of the plasma equations in the form 
of a periodic wave whose profile remains fixed in time 
has been obtained by Sagdeev in[1J. The propagation of 
weak longwave perturbations in a plasma with a peri
odic ion-acoustic wave (PW) has been investigated in [2 l. 
It is found that these perturbations propagate along the 
PW with the group velocity of the PW, which diminishes 
as the amplitude of the PW increases. Perturbations 
that propagate in the opposite direction are carried by 
a PW of finite amplitude in such a way that their veloc
ity is also found to be directed along the velocity of the 
PW, and this velocity is an increasing uniform function 
of the amplitude of the PW. 

A PW of modest amplitude is stable against long
wave perturbations that propagate along the vector 
corresponding to the velocity of the PW but, as will be 
shown below, the PW is unstable against longwave per
turbations that propagate at large angles with respect 
to the PW. In other words, because of the nonlinearity 
of the medium there arises a feedback effect on the PW 
which leads to thE! modification of the uniformity of the 
front associated with the PW. A similar phenomenon 
occurs in nonlinear optics. It is well known that a 
monochromatic plane wave that propagates in a non
linear medium is broken up into a beam of filaments 
because of the feedback effect; at some distance from 
the source the filaments themselves will be modified. [3 J 
The characteristic length for the decay of the PW due 
to the instability is given by A..; c/vo where c is the 
ion-acoustic velocity, A is the wavelength of the PW 
and va is the velocity of the PW. This decay length can 
be smaller than .\ c/vo, the "breaking" length for an 
acoustic wave with the same wavelength and ampli
tude.[4J 

The growth rate found for the instability is larger 
than the growth rate found by Zakharov[s] for the 
resonance decay of a weak ion-acoustic wave into two 
ion-acoustic waves. In contrast with the present work, 
it is assumed in [sJ that the wave spectrum is continuous 
but that the width of the wave packet is small. (The 
spectrum of the PW is obviously discrete.) 

The investigation of the stability of the ion-acoustic 
PW reduces to an investigation of the stability of the 
nontrivial stationary solution of a system of nonlinear 
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partial differential equations. In the present work, as 
in[2 ' 6 l, the analysis is carried out as follows. We first 
find an expression for the profile of the PW in terms of 
the integrals of the motion of the PW, that is to say, the 
amplitude and phase of the PW, the energy of the ions, 
and the mean ion velocity in the rest system of the PW. 
We then carry out a transformation of the variables in 
the equations in such a way that the hydrodynamic 
equations for the velocity, density and electric field 
become equations for the integrals of the motion of the 
PW. It is evident from the equations that are obtained 
that the propagation of a weak longwave perturbation in 
a plasma with a PW corresponds to small oscillations 
of the integrals of the motion of the PW. We then use 
the van der Pol method of averaging to average the 
plasma equations in the new variables and linearize 
with respect to these small oscillations of the integrals 
of the PW. By this means we obtain the dispersion 
equation for the weak longwave perturbations in a 
plasma in which a PW is excited. The existence of 
complex roots in the dispersion equation then indicates 
an instability of the PW. 

2. We start with the hydrodynamic equation for 
plasma with cold ions in which the time t and the co
ordinate x are replaced by the following variables Y l 

Dx1 = x + n1t, Dx2 = x + n2t. 

Here, D is the electron De bye radius; u1 and u2 are 
fixed velocities. The quantity Vx, the hydrodynamic 
ion velocity along x, the electron density ne and the 
ion density ni are replaced by the new variables f, q 
and N which are defined by the relations 

(1) 

(2) 

Here, T is the electron temperature, mi is the ion 
mass, and no is the mean particle density in the 
plasma. The meaning of the new variables can be un
derstood as follows (cf. Sec. 3). If a plasma supports 
a periodic wave that propagates along x with a velocity 
u1, then in the rest system of the PW c ..ff is the hy
drodynamic ion velocity, cq is the mean ion velocity, 
which is equal to the reciprocal of the average of 
1/ c fl, and T ln N is the total ion energy. If there is 
no PW then q and N are constant and f is a periodic 
function of x1. 

In the new variables the ion equation of continu;ty 
ani/at + VniV = 0 is written in the following form: [2 J 
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Here, v 1 is the ion velocity perpendicular to the x 
axis divided by c, and satisfies the Euler equation 

(3) 

-iJv.1. - 8v.1. e (4) Yf-8 +{ff-u)-a + (vJ..VJ..)vJ..=--VJ..Ql 
X1 X2. T ' 

where cp is the electric potential. Using Eq. (2), we 
can write the Euler equation 

8vx e 8cp 
-·+(vV)vx = ---

8t m; 8x 

in the following form: 

8/ 8 - - 2e( 8 8 ) (5) -+-{ff-u)2 +2(vJ..VJ..)Y/=-- -+- Ql. 
8x1 8x2 T 8x1 8x2 

Making use of the fact that the electron thermal 
velocity is much greater than the ion-acoustic velocity 
and using Eq. (2) we have 

ecp / 
lnN=-+T 2· 

(6) 

3. If a periodic ion-acoustic wave (PW) propagates 
in the plasma along the x axis with a velocity u1, the 
quantity v 1, and all of the derivatives except for de
rivatives with respect to x1 are found to vanish in (3)
(5). Then, following[2J and using the Poisson equation 
o2 cp/ox2 = 47Te(ne- ni) and (3)-(6) we obtain the equa
tion for a nonlinear oscillator in which the role of the 
time is played by the variable x1: 

fl = 2(qo/ft-Noe-fl2). (7) 

Here, the primes denote derivatives with respect to 
x1 while qo and No are constants indicating the values 
of q and N from (2) in the periodic wave, where q0 

= udc. 
Integrating (7) we have 

( 2 = B(W + qo"Yf+Noe-112), (8) 

where W is a constant of integration which specifies 
the amplitude of the periodic wave. With the values of 
qo, No and W for some bounded region. Equations (7) 
and (8) determine f as a periodic function of x1 that 
we will denote by ~ ( W, x!). Using Eqs. (7) and (8) we 
find 

8$1 {)(J) 
$1--$"- = 4 

8W 8W . (9) 

Making use of the condition that the electron and ion 
density in the unperturbed PW must be n0 , we obtain 

(10) 

where the angle brackets denote averages over x1. 
4. When weak longwave (adiabatic) perturbations 

are superimposed on the periodic wave the plasma is 
described by the general equations (3)- (6) and 
Poisson's equation, in which the derivatives v 1 and 
a jax2 play the role of small parameters in the pertur
bationY•7l The quantity f is replaced by two variables 
a and a which are defined by 

/(p) = $(W, x,) + a(p)o$/8W + a(p)$'""' (J) +!I, (11) 

where p denotes the ensemble of variables x1, ~, y 
and z. The term aa~;aw contains as a small parame
ter the ratio of the perturbation amplitude a to the 
amplitude of the periodic wave; the quantity a is the 
small perturbation of the phase of the PW. 

In order to make the transformation unique and in 
order to obtain the first-order equation in a/& X1 in
volving the parameters a and a, we impose the follow
ing condition on the new functions :f7l 

!!_ + 8(l'f~~ = (J)I +a 8$1 +a$". (12) 
8±, 8x2 8W 

We now write the quantities q and N in the form 
q = qo + q1 and N =No + N1 and linearize all equations 
with respect to q1, N1, a, a and v1. In other words, 
we are considering infinitesimal perturbations on a 
stationary background (PW) very much in the way one 
considers infinitesimal perturbations on the back
ground of a uniform stationary plasma. 

Substituting the electric field from the linearized 
equation (5) in Poisson's equation and taking account of 
Eq. (12) we have 

1(a 8)( a<DI 11 \ { 1 } - -.-+- $ 1 +a--+a<D )-L\.1. lnN--(<D+ft) 
2 ax1 8x2 8W 2 

~+~ { 1 } = (<D+!t)'/,- (No+N,)exp - 2 (<D+ftl . (13) 

Here, the symbol 6.1 = D2 ( &2 /&y + o2/oz2) represents 
the expression for the electric potential that follows 
from Eq. (6). From Eq. (7) which determines ~ we 
see that the principle parts are reduced in Eq. (13). 
Linearizing Eq. (13) we have 

• 8<1>1 • 1\J..N, ( q, ) 
(a' +a) -+(a' +a)<D"-2--+i\J..!1 =2\ -=--N,e--<~>12 

8W N0 l'<D ' 
(14) 

where the dots de1.otes derivatives with respect to x2. 
Linearizing Eq. (12) we have 

o<D . ( 8<1> . ) u 
(a1 +a)-+(a'+a)$'= a-+a<D1 --=· 

aw aw , y<D 
(15) 

Substituting the expression for the electric field (6) 
in (5) and linearizing we have 

(16) 

We now write (3) and (4) in the form 
(17) 

1 ( u ) uqo , .{ a<D · 1 ) qo 
q, + ,h 1 - l'<i> = - 2 <I>-\ a aw + a<D -l'ID v .1. v .1.. 

I • I u ) v J..NI v J..ft 
VJ.. +vJ..\ 1 - f<D =- Nol'<ii + 2yiil · 

Solving (14) and (15) with respect to a' and a' and 
taking account of (9) we have 

(18) 

(19) 

(20) 
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Thus, we have obtained a system of equations (16)
(20) for oscillations of the parameters a, a, Nh q1 and 
v 1· It is evident from these equations that the deriva
tive of each of these parameters with respect to x1 is 
of the same order as the derivative with respect to x2, 
y and z. The derivative operator with respect to x1 is 
of the order of the "amplitude" of the dependence on 
X1 divided by the length of the periodic wave while the 
derivative with respect to x2 (or y, z) is the amplitude 
of the dependence on x2 divided by the wavelength of 
the perturbation. [7 ] By hypothesis the length of the 
periodic wave is much smaller than the wavelength of 
the perturbation so that the "amplitude" of the depend
enee on x2, y and z is much greater than the ampli
tude of the dependence on x1. Hence, in all places in 
which there is no derivative of a parameter with re
spt~ct to x1 the dependence on this variable can be 
neglectedY• 71 (The last term in (19) does not contain 
the smallness parameter of the asymptotic expansion, 
which is equal to the derivatives with respect to x2 or 
y, so that we must take account of the dependence of 
q1 and N1 on X1 in this term. We note further that the 
periodic wave propagates along x with a velocity u1 
while in the linear approximation the perturbation 
propagates with a velocity u 2 • Because of this differ
ence in phase velocities there will be a rapidly oscil
lating dependence of the perturbation on x1 and a 
''slowly varying'' (in the sense of the definition in [71 ) 
dependence on x2 and y and z.) 

In the light of these remarks we now can carry out 
an averaging of Eqs. (16)--(20) with respect to x1. Tak
ing account of the fact that the average of the deriva
tives of the parameters with respect to the variable x1 
must vanish, we have 

N, '= uNop.~. P• ""a; (f<i)); (21) 

qo- u. . f) ( 1 ) (22) --q, =.uqop2a- V .Lv.L, p2 ==- -= · 
qo aw \ )'<ll ' 

~ .L = P• V .La; (23) 

. ((qo No \fJ<Il>. 4a = - 2u ---= e-'~>/2 j- a 
<P )'<P aw 

- (<ll'2) ,<\.La+ 4 ()'<ll' q1)- 2 (N1<1l' e-'~>/2); (24) 

4~ =- N~· < :: > !i.LN1 + < (::))!!.La 

-4p1q1 -4~~(e-'~>/2)N1 +~( ~!..,<IJ'Z) ~. (25) 
iiW 2 )'<I> aw 

Following the averaging process we integrate the last 
two term in Eq. (24) by parts and substitute the ex
pressions for q~ and N'1 from Eq. (16) and (17); in this 
way we find 

~ = (()'<ll)- u)q, + (e-'~>/2) N,- : (<ll'2) !!.La+ q0V .LV.L. (26) 

We have now obtained a system of linear equations with 
constant coefficients (21)-(26). Certain of these coef
ficients have been computed for the general case using 
an electronic computer.r2l For a low-amplitude PW, 
in which W is less than - ( 1 + q~) these coefficients 
can be computed by expansion of Eqs. (7) and (8): 

- A 
()'<ll) ~ qo--' 

2qo 

We now write the dependence of the averaged 
parameters on the coordinate in the form exp ( iDk11 x2 
+ ik1r1). For a low-amplitude PW, taking account of 
Eq. (27}, from Eqs. (21) and (26) we then obtain the 
following dispersion equation for u: 

(28) 

This equation is a cubic equation in u2 = c ( qo - u ) , 
the phase velocity of the perturbation along x; it then 
follows that small oscillations with negative energy are 
possible in a plasma that supports an ion-acoustic 
PW.[aJ 

We now investigate the dispersion equation (28) for 
an infinitesimal amplitude of the PW; in this case we 
multiply by ( u - q0 )( u - 2qo ) and write A = 0. Then 
the two roots of (28) assume the form 

u2 = 1/2c{qo3 - qo ± [ (qo3 + qo) 2 + 2qo4D2k.L'ku-2]''•}. 

It is evident that in the propagation of a perturbation 
along the PW, i.e., k1 = 0, the phase velocity of the 
perturbation is u2 = cq~ = ui c-2 , which coincides with 
the group velocity of a weak ion-acoustic wave charac
terized by a phase velocity u1. 

The phase velocity of perturbations that propagate 
against the PW is -u1. For propagation at a right 
angle with respect to the PW, i.e., ku- 0 the phase 
velocity of the perturbation along x approaches ± oo 

and the phase velocity itself k11U2 ( kll + kl rl/2 ap
proaches ck1D/I"2 and is much smaller than the phase 
velocity of the PW since we take k1D « 1 by hypoth
esis. The third root u = qo yields u2 = 0. In the linear 
case this root corresponds to the phase velocity of the 
standing wave. In the nonlinear case there are no 
solutions of the plasma equations in the form of a 
standing wave, but the PW can interact with weak long
wave oscillations and can convert them into standing 
waves. 

Thus, the phase velocity of longwave perturbations 
in a plasma containing a PW does not coincide with the 
ion-acoustic velocity even if the PW exhibits a small 
amplitude provided, obviously, that the amplitude of 
perturbation is much smaller than the amplitude of the 
PW. 

The small quantity A makes a finite contribution in 
(28) when the propagation is essentially transverse to 
the PW; in this case ( k1/k11 )2 » 1. Under these con
ditions, neglecting small terms we can write Eq. (28) 
in the form 

2(u- q0 + qo3) (u- qo) (u- 2qo) (29) 
= DZq04k.L•k 11-2(u- q0) + qo(k.L I ku)•A. 

When ( k1/ku ) 4A > e-;4) qg ( 2 + q~) the first term on the 
right side can be neglected and Eq. (29) exhibits com
plex roots: 

~~~qo3 ±i f(k.L \'-~-~]'{, 
c 2 L ku ! 2 + qo2 4 ' (30} 
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which indicates the instability of the PW with respect 
to excitation of these perturbations. 

The quantity kj11 is limited from above by the length 
of the interval over which the PW exists, the effective 
length of the PW. When k11 - 0 the imaginary part of 
the Eq. (30) approaches infinity. This means that the 
effective length of the PW must be bounded. 

Let us now assume that an infinite plane radiates a 
periodic ion-acoustic wave into a semi-infinite plasma 
and that because of the nonlinear effects the neighbor
hood of the region in the front of the PW experiences 
an interaction that modifies the PW. Taking q0 = 1 we 
can use Eq. (30) to estimate the distance L from the 
radiating plane to the point at which an appreciable 
distortion of the PW occurs. The maximum growth rate 
obtains for the largest value of k1/k11. We take k11 
~ 1/L and k1 ~ %X, where X is the wavelength of 
the PW. Then, using Eq. (30) we find that the growth 
time for the perturbation is 9X 2 /cL..fA. 

Multiplying this quantity by c/2, the velocity of 
propagation of the perturbation, we find that the dis
tance in which the perturbation grows significantly is 
of order L ~ 9X 2/2L..fA, whence L ~ XA- 114 , which 
can be verified experimentally. 

The results obtained here apply only for a low
amplitude PW, in which case the expansion in (27) is 
valid. It is evident from Eq. (30) that the larger the 
amplitude of the PW the smaller the value of the mini
mum angle at which the propagation of unstable per
turbations is possible. However, at reasonably high 
amplitudes for the PW we find that Eq. (27) is no 
longer satisfied and in this case one must resort to 
numerical calculations in order to obtain the coeffi-

cients in the dispersion equation. These calculations 
have been carried out in[2 J for the case in which the 
longwave perturbation propagates along the PW 
(k1 = 0 ). It is found that under these conditions an in
stability appears for an amplitude of the ion variation 
in the PW which is approximately equal to half the 
mean ion density in the plasma. 

The author is indebted to B. B. Kadomtsev for dis
cussions. 
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