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The traditional viewpoint that there exists a sharp distinction between the behavior of identical and 
non-identical particles is criticized. The problem of the identity and distinguishability of particles is 
analyzed with the help of the interference principle. Interference phenomena observed in the registra
tion of nonidentical particles A and B in correlation experiments are considered. The conditions for 
interference in correlation experiments with wave packets are investigated. It is shown that for 
rnA - mB - 0 the probability for recording nonidentical particles in the two counters can in some 
cases be described by the same formulas as in the case of identical particles. In the extreme rela
tivistic limit the correlations between nonidentical particles have the same character as in the case 
of identical particles even when the difference between rnA and fiB is large. A general discussion of 
the concept of the complete wave function of the two particles A and B is presented. A new proof of 
the symmetry or antisymmetry of the total wave function is given which is based on the superposition 
principle. 

1. INTRODUCTION 

IN traditional quantum mechanics it is asserted that 
there is a fundamental difference between the behavior 
of systems of identical and nonidentical particles, and 
that the transition from one system to the other is not at 
all continuous. We believe that this assertion is not, in 
general, correct. The strong evidence for the special 
behavior of a system of identical particles does not yet 
provide a basis for the categorical conclusion that there 
is no continuous transition from nonidentical particles 
to identical particles. The traditional argument, that 
connects the existence of an unsurmountable barrier 
between the properties of identical and nonidentical par
ticles with certain specific features of quantum mech
anics, can in our opinion be regarded as substantial 
neither in itself nor from a logical point of view. It 
seems to us that a more detailed analysis is needed of 
the concepts of indistinguishability, identity, and non
identity, as well as of the concrete phenomena in which 
the characteristic properties of identical particles show 
up. The present paper is devoted to such an analysis; 
we hope to develop the basic assertions of it further in 
subsequent publications (cf. also llJ). 

Our investigation is based on the general quantum
mechanical principle of the interference of the ampli
tudes of indistinguishable processes. Guided by this 
principle, R. P. Feynman gave a deep and original treat
ment of the problem of identity in his lectures on quan
tum mechanics (cf. c21 , Ch. 2). The present paper is an 
attempt to develop and generalize the Feynman approach. 

2. INTERFERENCE AND THE PROBLEM OF IDENTITY 

We recapitulate briefly the principle of the interfer
ence of the amplitudes of indistinguishable particles. 
Let us assume that the final state of interest to us (the 
triggering of a system of counters, the production of 
some particles, etc.) can be reached in several ways, 
each with the corresponding amplitude Ri. If the condi-
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tions are such that it is impossible to determine, even 
in principle, which way was chosen in any actual proc
ess, then interference occurs, i.e., the total amplitude is 

R=~R;, (1) 

and the probability for reaching the final state is 

P='"RI2 I L.J , . (2) 

If the conditions of recording are such that after each 
measuring act we can in principle distinguish the 
"chosen path" and therefore, each recording act can be 
connected with the corresponding concrete path, then 
there is no interference, and the total counting probabil
ity is 

(3) 

In resolving the question under what conditions the 
"chosen paths" are distinguishable or not, the uncer
tainty principle plays an important role. Indeed, if we 
fix the coordinate of the particle with an accuracy .6-x in 
the measuring process, then, according to the uncer
tainty principle, the amplitude for the transition to a 
state with momenta in the interval .6-p :S fl./ .6-x must 
interfere. At the same time, states whose momenta 
differ by .6-p » fi./.6-x are distinguishable under these 
conditions, and the corresponding transition amplitudes 
practically do not interfere. Let us now assume that the 
time for each measuring act is of the order .6-t. Then, 
according to the uncertainty principle for energy and 
time, transition amplitudes correspond to states with 
energies differing by .6-E :S fi./.6-t interfere; for .6-E 
>> n/.6-t the interference terms are extremely small. 
An analogous relation holds also in other cases, for ex
ample, between the accuracy of the determination of the 
scattering angle of a particle and the interference of 
transition amplitudes to states with different angular 
momenta. 

Let us now turn directly to the problem of identity. 
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We consider the known experiment of the scattering of 
two ';.truly" 1> identical particles. In this case the proc
ess as a result of which a given counter counts one of 
the particles cannot be distinguished from the process 
as a result of which the same counter counts the other 
particle. [21 Let the amplitude for the first process be 
f(e), where e is the scattering angle of one of the parti
cles in the center-of -mass system. Then the amplitude 
for the second process (exchange amplitude) is 
f( 1r - e )eili. Owing to the indistinguishability, the total 
scattering amplitude has the form 

A(8) ~ /(8) -j- f(rt- 8)eio. (4) 

Experiment shows that the phase 15 must be set equal to 
zero for particles with integer spin and equal to 1r for 
particles with half -integer spin. In the framework of 
quantum mechanics this fact may be taken as a postulate 
which finds its consistent justification in quantum field 
theory. 

Thus the differential cross section for the scattering 
o:f identical particles (cf., e.g., [2' 31 ) is 

dcr(O) I dQ ~ /!(8) ± f(rt- 8) J2. 

We note that (5), with a different normalization, also 
describes the probability for recording two identical 
particles with two counters in coincidence. 

(5) 

In an analogous fashion we can consider the decay of 
any system into identical particles. In the most general 
case, where two or more identical particles are formed 
as result of one and the same collision or decay process, 
there is interference for any type of recording these 
particles. The amplitude for such a process is either 
symmetric or antisymmetric under the interchange of 
any pair of identical particles. 

Let us now turn to nonidentical particles. If two par
ticles have different internal quantum numbers (charge, 
spin, baryon number, etc.) and if these quantum numbers 
are conserved in the measuring process, then the direct 
and exchange processes are distinguishable and the 
corresponding amplitudes cannot interfere. In the con
crete case of elastic scattering the probability for re
cording such particles with one counter as well as with 
two counters in coincidence is proportional to 

cr(8) = J/(8) J2 + J/(rt-8) J2, (6) 

where f(e) is the scattering amplitude. However, numer
ous examples can be given where the differing quantum 
numbers of the first and second particles are not con
SE!rved in the measuring process. The question arises 
what one should expect in this case. 

As a methodological example we consider the scat
tering of two electrons with opposite spin projection 
with respect to the direction of a magnetic field H, as
suming that the scattering does not involve spin flip. 
Clearly, if the electrons after scattering are recorded 
with two selector counters in coincidence, one of which 
fixes the spin projection mH = + 1/2 and the other the 
spin projection mH = -1/2, then there is no interference 

nwe call particles "truly" identical if they agree with respect to all 
internal quantum numbers. Electrons with opposite spin projections are 
not "truly" identical particles from this point of view. 

and the electrons behave like nonidentical particles. 
Assume now that each of the selector counters records 
a state with spin projection + 1/2 on the x axis perpen
dicular to the direction of the magnetic field H. The 
state J+x) is a superposition of the states J+ H) and J-H) 
(cf., e.g.,[21 , ch. 5, sec. 5): 

1, 1 1(1) 
J+x>==-/+H>+-=1-H>='"= · 

12 12 121 
(7) 

Therefore the state J+x) can be registered only if the 
electron hitting the counter has been, before the act of 
recording, in the state J+ H) as well as in the state /-H). 
In other words, the direct and exchange processes are 
indistinguishable and their amplitudes must interfere. 
The number of delayed coincidences when the first 
counter acts at the instant t1 and the second at ta, is 
proportional to 

P(t, 12) = /f(8)e-i~Ht.!'ei~Ht,J'(+x/ -j-H)(+.c/--ll) (8) 

- /(rt- 8) e-•~Ht,'liei~Htd'(+x /-H)(+"/ -j-H) /2 
= '/.{//(8) /2 -j- /f(rt- 8) /2- 2Re [f(8)t(:t- 8)e2i~Htfn]}, 

where 11 is the magnetic moment of the electron, 
t = t2 - t1 is the retardation time, and 2JlH is equal to the 
difference in the energy of the interaction of the states 
J+H) and J-H) with the magnetic field (the details of the 
calculation will be clear from the following). 

The minus sign in (8) corresponds to the half-integer 
value of the electron spin; in a similar experiment with 
bosons interference with a plus sign would be observed. 
We note that if the resolution time of the coincidences is 
T » h/JlH, then the interference term in (8) vanishes 
because of time averaging. The absence of a second 
detector is evidently equivalent to an averaging of (8) 
over an infinite time t2. Hence, it is in principle im
possible to observe interference when electrons with 
opposite spins are recorded by a single detector. This 
result is understandable from the interference principle 
formulated above. Indeed, by observing the second elec
tron for an arbitrarily long time, we can determine what 
stationary state it is in, and can thus find out unambigu
ously which value of the spin projection corresponds to 
the electron captured in the apparatus. 

Thus particles which under certain conditions behave 
as distinguishable, can interfere with each other under 
other conditions. It is true that electrons with opposite 
spins are usually regarded as identical although they 
are not "truly" identical. In the following sections we 
consider the conditions for the interference of particles 
which are manifestly nonidentical from the commonly 
accepted point of view. 

3. CONDITIONS FOR THE INTERFERENCE IN THE 
RECORDING OF NONIDENTICAL PARTICLES IN 
CORRELATION EXPERIMENTS 

We consider two generators, one of which emits a 
beam of particles of type A and the other, particles of 
type B. At the place where the beams meet, scattering 
occurs, and the scattered particles are recorded by two 
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counters. 2' It is clear from the preceding section that 
in this situation a necessary (though not sufficient) con
dition for observing interference of the nonidentical 
particles A and B is the nonconservation of the differing 
intrinsic quantum numbers of these particles in the 
measuring process. This means that each of the coun
ters must be some sort of filter which separates a cer
tain superposition of the particles A and B according to 
interaction or decay products. These superpositions 
may in general be different for the first and second 
counters. If the masses of the particles A and B are 
unequal, the states fixed by the counters are nonstation
ary. In analogy with the case of two electrons in a mag
netic field considered above we may expect that there 
will be a temporal (and also a spatial or space-time) 
correlation between the counts of the two counters due 
to the interference of the amplitudes of the direct and 
exchange processes. We call direct that process as a 
result of which particle A arrives in counter 1 and par
ticle B in counter 2; in the exchange process particle B 
arrives in counter 1 and particle A in counter 2. 

Let us consider this problem in more detail. Assume 
that counter 1 singles out a state C by its decay or 
interaction products, and counter 2, the state D. The 
transition amplitudes (CIA), (CIB), (DIA), and (DIB) 
will be denoted by A1, A2, A~, and A~, respectively. 
Then 

IC)~A.jA)+A21B), ID)~A,'/A)+Az'IB). (9) 

We assume for simplicity that each of the particles has 
a well-defined momentum, where the laboratory system 
coincides with the center-of-mass system of particles 
A and B. Then 

PA = -pn = p, EA = cjp2 + m;~.2c2, En= cljp2 + mn2&, 

where p = IPAI = IPBI· We denote the coordinates of the 
counters by x1 and x2 and the moments of registration of 
the particles in the first and second counters by t1 and t2. 

The amplitude for the direct process must, according 
to the laws of quantum mechanics (cf. [21 , Ch. 5, Sees. 1 
and 2), have the form 

Fi(p, t" to) = A,A.'f (I' 2) ei(p. x,-x.)/lle-IE;~.I,IIIe-IEntJII, (10) 

and the amplitude for the exchange process, 

.F2 (p, t" t2) = A 2A 1'/(2, I)ei(p,x,-x,)/lle-iEnt,JIIe-iE;~.IIA, (11) 

Here p is the momentum of the particles hitting the 
first counter after the scattering, f(1, 2) = f(p) is the 
amplitude for the formation, in the scattering act, of 
particle A with momentum p and particle B with momen
tum (-p), and f(2, 1) is the amplitude for formation of 
particle A with momentum (-p) and particle B with mo
mentum p. 

According to the interference principle the amplitude 
for the registration of particles A and B by the two 
counters in delayed coincidence is, up to a normalization 
factor, 

2> All that follows applies, with obvious modifications, also to the 
cases when inelastic scattering occurs in the region where the beams 
meet or when the particles A and B are produced in one and the same 
production process, for example, in a decay of the type C-> A + B. 

.F(p, 1,, t2) = Ft (p, t,, tz) + e16Fz(p, tr, t2) 
= A,A2'/(1,2) exp [ -i(E;~.t, + Entz) IIi] (12) 
+ e16A2At'f(2,1) exp [ -i(EAt2 + Ent1) IIi] 

[the common phase factor exp(ip · X1- ip · x2), which does 
not affect observed quantities, is omitted]. 

We introduce the postulate that eili = + 1 if particles 
A and B have integer spin and eio = -1 if A and B have 
half-integer spin (the problem of the phase will be con
sidered in more detail in Sec. 5). Assuming the resolu
tion time of the coincidences r small compared to 
fl/IEB- EAI, we obtain for the number of delayed coin
cidences 

P(tt, t~) ~ T[ /A,A{/(1,2) 12 + IA,'Az/(2,1) 12 ( ) 
± 2 Re (A 1A{A2 A1"/(1,2)/(2,1)e-i(En-B;~.)tlll) ), 13 

where t = t1 - t2 is the delay time (we assume that 
t » r). The plus sign in (13) corresponds to bosons, the 
minus sign to fermions. 3 l 

We see that in our case, where IPAI = IPBI the count
ing probability is independent of the coordinates, and 
hence of the dimensions of the counters. For 
r » h/IEB- EAI the direct and exchange processes 
are distinguishable, since a sufficiently accurate meas
urement of the energy is possible during a long time; 
accordingly, the interference term in (13) becomes van
ishingly small after integration over t. If r < t 
« 1i /1 EB - E A I, particles A and B behave like identical 
particles. We note that if the difference of the masses 
of particles A and B tends to zero, the quantity 
fl/IEB - EAI and the retardation timet, satisfying the 
last inequality, can in principle be arbitrarily large. 

It is easy to understand that in the registration of 
monochromatic particles in the general case, when the 
laboratory system does not coincide with the c.m.s., the 
absolute values IPAI and IPBI are not equal when the 
momenta of the scattered particles A and B have the 
same direction. The interference term then contains 
"beats" not only in the retardation time but also in the 
coordinate difference between the two counters. It is 
clear that interference is observed if the dimensions of 
the counters satisfy the condition 

.1R...; lill/p;~.I-IPnll. 

If ~R »n/JIPAI -IPBII, the interference term vanishes 
after integration over X1 and x2. For IDA- IDB we have 
EA- EB and IPAI- IPBI, and the exponential in the 
interference term evidently goes to unity; we thus ob
tain the same formulas as for identical particles. 

4. CORRELATION EXPERIMENTS WITH WAVE 
PACKETS 

We now turn to a less academic case, when particles 
A and B are represented by quantum -mechanical wave 
packets with the effective dimensions ~x "": fl/~p, where 
~p is the uncertainty of the momentum. The collision 
region of the particles under consideration (or the reg
ion where they are produced) is evidently also localized 

3llf the first and second counters are completely identical (A 1 = A1 ', 

A2 = A2 '), then (13) has the same structure as (8) for electrons with 
opposite spins. 
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with the accuracy ~x. We shall assume that ~x is much 
smaller than the dimensions of the counters and their 
distances from the effective collision regions. 

It is known that the coordinate wave function of the 
wave packet has the form [41 

tjJ (R- vt) = e1<•R-Et)!ttf (R- vt), (14) 

where p is the average momentum, E = cVp2 + (mc) 2, 
v = pc 2/E is the group velocity of the wave packet, and 
f(R - vt) is some sufficiently sharp function of its argu
ment. 4 > Neglecting the dimensions of the wave packet, 
we can assert that the coordinate of the wave packet is 
related to the time passed from the moment of its crea
tion by the classical formula R = vt. It is easy to see 
that for R = vt the exponential in (14) has the form 

exp (- i Me'!!_), 
n vy· 

where R = IR I, v = lv I, M is the mass of the particle, 
andy its Lorentz factor; the quantity R/vy has the 
meaning of the proper time of the particle (cf., e.g., [51 ). 

In the case of unstable particles M must be regarded as 
complex: M = m- irl1/2c2, where r is the decay con
stant. 

Let us denote the average momenta of particles A 
and B pass;ng through the first counter by p A> and PB>, 
respectively; and the average momenta of A and B pass-
• <2 > d <2 > Th mg through the second counter, by p A an PB . e 
following conditions must be satisfied if interference is 
to occur in the registration of the wave packets A and B 
by the two counters: 

a) particles A and B have at least one common decay 
or interaction channel and both particles disappear as a 
result of the measurement; 

b) the wave packets of A and B passing through the 
counters overlap in time and space and hence their 
group velocities are almost equal [v _A> "" vf3>, v;{' "" v-ft' 
up to terms of order v~x/R]; 

c) the difference of the average momenta 

IP~~)-p~JI ~ IP~)-p~)l~fz/tix, 

i.e., is small compared to the uncertainty of each mo
mentum. In other words, the wave packets must also 
overlap in momentum space. If the last condition is not 
fulfilled, then the relative phase of the wave packets 
A and B becomes indefinite because of the too large 
dimensions of the wave packet. The interference term 
containing the spatial beats vanishes after averaging 
over the dimensions of the wave packet, i.e., the inter
ference is absent. 

It is easy to see that the above -mentiuned conditions 
can always be satisfied if ~m is sufficiently small (for 
extreme relativistic particles ~m/y plays the role of 
~.m). If they are fulfilled then the amplitude can be writ
ten in the form 

where the amplitude for the direct process is 

4lFor simplicity we do not take account of the spreading of the 
wave packet, which can often be neglected in actual cases ( cf. [4 ] ). 

r (,mBc2 rB \ R, J 
. exp - \ L '--:! + 2 u<•>y<•> ' (15) 

and the amplitude for the exchange process is 

(16) 

[ ( .mAc2 rA) R, l 
·exp - .. z-n-+2 v<a>y<•> _ • 

Here f(i, k) is the amplitude for the scattering (or pro
duction) of particles A and B corresponding to the emis
sion of A in the direction of the i th counter and of B in 
the direction of the k th counter, the amplitudes A1, A~, 
A2, and A~ have the same meaning as above, and R1 and 
R2 are the distances of the counters from the scattering 
(or production) region of particles A and B. 

Using (15) and (16), we obtain the following expres
sion for the probability of retarded coincidences in the 
registration of particles A and B: 

P = ~ ~ P (R1, R2 ) dR 1 dR,, 

where 
P(Rt, R,) = IFI 2 = IA 1A2' /(1. 2) 12 e--<r A't+r"''' 

+ lA• A{/(2, 1) I' e-<r A <,+r.,,> ± 2 Re { A 1A2'A 1 "A2 /( 1, 2)/* (2. 1) ( 17) 

[ r A+ rB i(mA- mB) l} 
Xexp- 2 (-r,+-r,)-·---ft--c'(-r,--r,)J, 

T1 = R1/v<1>y<1>, T2 = R2/v<2>y<2>, and the intervals ~R1 
and ~R2 determine the effective "region of observation" 
(the dimensions of the counters, etc.). 

If the region of observation has the dimensions 
liv<'~·<'Jy<'>·<•> 

tiR(I), (2) >' timc2 

the interference term in (17) vanishes after integration. 
The quantities 

evidently have the meaning of periods of the spatial 
beats in the coordinates R1 and R2 (actually we are 
speaking of space -time beats). 

If A1 = A~ and A2 = A~, then we have for R1 « l1, 
R2 « l2 and l(r A- rB)(Tl- T2) I « 1 

P(R,, R2 ) ~ l/(1, 2) ± /(2, 1) I"IA 1Ad'e-<r A'>+"B,,I ~ 

~ IJ(t, 2) ± !(2, 1) I", 

(18) 

which agrees essentially with the corresponding formula 
for identical particles. 

If the mass difference tends to zero, the periods of 
the spatial beats increase beyond limit. We can there
fore assert that the difference of the complex masses 
is a kind of parameter for the transition from noniden
tical to identical particles in correlation experiments 
with detectors each of which records a certain super
position of the particles A and B. For ~m- i~rfi/2c 2 

- 0 nonidentical particles interfere in the same way as 
identical particles. 

Another type of transition from nonidentical particles 
to identical particles occurs in the extreme relativistic 
limit, since in this case the periods of the beats Z1 and l2 
(and also the decay ranges) become arbitrarily large 
owing to the relativistic time dilatation effect. This 
means that in the extreme relativistic limit the corre-
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lations between nonidentical particles have the same 
character as in the case of identical particles, even if 
there is a large difference between the masses rnA and 
fiB (cf. also[ll). 

We note that correlations of the type (17) have been 
considered earlier in the study of the properties of 
K01(0 meson pairs. [SJ In the production of K°K0 pairs the 
short-lived K1 meson plays the role of particle A and 
the long-lived K2 meson plays the role of particle B. 
According to[6 J interference occurs when the detectors 
fix the following linear superpositions of K1 and K2: 
IK0 ) = (IKl) + IK2))//2 or IK0 ) = (IKl) -IK2))//2, in full 
accordance with the results of the present section. 

Besides K1 and K2, other elementary particles may 
also play the role of particles A and B in correlation 
experiments, for example, 1T and 71, p and w, etc., as 
well as nuclei, atoms, and ·molecules with different ex
cited levels. However, usually the mass difference 
rnA- mB is so large that interference can occur only 
at very high, in practice not attainable energies. An ex
ception are (besides the neutral K mesons) atoms and 
molecules with close -lying energy levels corresponding 
to different components of the superfluid, Stark, or 
Zeeman splitting. The interference in the registration 
of the scattering of atoms or molecules by two detectors 
is a quite real effect and has been observed in experi
ment. Here it is essential that one can alter the energy 
difference between close-lying levels or, in other words, 
the mass difference IDA - mB with the help of external 
electric or magnetic fields. In particular, one can make 
this mass difference arbitrarily small (level crossing). 
We shall not here go into the details of the corresponding 
concrete situations, since this requires a special con
sideration. 

5. SYMMETRY OF THE WAVE FUNCTION OF NON
IDENTICAL PARTICLES 

The interference effects considered above are inti
mately connected with the problem of the symmetry of 
the wave function of a system of nonidentical particles. 
From the formal point of view, any nonidentical parti
cles A and B can always be treated as two states of the 
same particle corresponding to different values of some 
discrete variable. On this basis one can further intro
duce the concept of a wave function which depends not 
only on the space coordinates but also on the "internal" 
coordinates. 5 > The description of this situation is 
analogous to that in the theory of isobaric spin. One 
must, however, emphasize the following peculiarity: 
since particles A and B can differ from each other in 
any of their properties (charge, mass, strangeness, ex
citation, etc.) there is no analog of isobaric invariance 
in the general case. 

What is the symmetry of the wave function with 
respect to the complete interchange of particles, i.e., 
the usual interchange of coordinates combined with an 
"isobaric interchange," which takes the state A into B 
and vice versa? To resolve this question we consider 
any state of the system of two particles described by a 
wave function of the type U(xl, x2)l A) UJIB) 12>. This way 

5) Among the internal coordinates one may also include the projec
tion of the spin of the particle on some direction. 

of writing implies that particles 1 and 2 are distributed 
in space in a definite manner [this space is not neces
sarily the coordinate space (it could, e.g., also be mo
mentum space)] in correspondence with the structure of 
U(xl, x2), and that particle 1 is in state A and particle 2 
in state B. 

We note now that in any real production process the 
formation of the state U(xl, Xa)IA)u>IB) 12> is always 
accompanied by the formation of the state 
U(x2, X1) I A) 12> I B) (lJ, which is physically indistinguish
able from the former. 

Therefore the state of the system is described by the 
linear combination 

1jJ = aU(xi, x2) IA)<l>IB><•>+ bU(x2, xi) IA><•>IB)(l>, (19) 

where a and b are some constant coefficients. 
A spatial interchange transforms 1/i into 

,jJ = aU(x2, XI) IA)(IJIB><•J + bU(xi, x2) IA)<2>IB)(l>, 

and a subsequent "isobaric interchange" transforms 
If into 

It is clear that ¢and 1/J describe the same physical 
"" 'E state; hence we must have 1/J = e1 1/J, i.e., 

aU(x2, xi) IA><2>IB)(ll + bU(xi, x2) IA)(IJIB)<2> = 

= ei•{aU(x~o x2 ) IA)<1>IB)!2l + bU(x2, x1 ) IA)<2JIB)<1>}. 

It follows from (20) that a = beiE and b = aeiE, i.e., 

(20) 

a2 = b2 or a =±b. In other words, the wave function (19) 
has the form 

1jJ = U(xi, x2) IA<IJIB)<2>± U(x2, xi) IA><2JIB)(IJ, (21) 

i.e., it is either symmetric or antisymmetric under a 
complete interchange. 6 > 

The invariance of all interactions with respect to a 
complete interchange of particles further leads to the 
result that the plus or minus sign is rigorously con
served in the time evolution of the system. Therefore 
all pairs of particles are divided into two classes; in 
the framework of quantum mechanics the principle of 
this division can only be established with the help of a 
special postulate. In the following we shall assume that 
the complete wave function is symmetric with respect to 
an interchange in the case of bosons and antisymmetric 
in the case of fermions. 7 > 

The result obtained above plays an essential role in 
the analysis of any interference phenomena in a two- or 

6lit is clear that this argument applies also to the "truly" identical 
particles. 

7lThis choice is in full accord with the corresponding postulate for 
"truly" identical particles. We note also that in the language of quantum 
field theory the complete wave function of particles A and B is sym
metric when the field operators A and B commute and antisymmetric 
when the field operators A and B anticommute at points separated by 
space-like distances. By the general theorems of local field theory [1•8 ] 

one can show that under some additional conditions (in particular, if 
the superposition of particles A and B is, in principle, observable with 
the help of some apparatus) the field operators A and B anticommute 
for half-integer spins sA and s8 , and commute for integer sA and s8 
and also if one of the spins is integer and the other, half-integer. Thus 
our postulate concerning the choice of sign can be justified in the frame
work of quantum field theory. 
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more-particle system. In particular, the symmetry 
character of the complete wave function (21) determines 
the choice of the sign of the interference term between 
the direct and exchange processes in the correlation 
experiments described above. Indeed, in the most gen
eral case the probability for recording particles A and 
B with two counters at the positions X1 and X2 is deter
milned by 

P = /U(x, x,)A,A,':!: U{x2, x1)A 2A1'J', (22) 

where A1, A2, A~, and A~ are the amplitudes introduced 
in Sees. 3 and 4, and the signs agree with the corre
sponding signs in (21). 

For a second example, one may mention the reson
ance interaction via the radiation field of the ground 
and excited states of identical nuclei in a diatomic 
molecule. L9J The dependence of the lifetime of the exci
ted state on the quantum numbers of the molecular 
levels considered in L9J is in the last instance connected 
with the symmetry of the coordinate wave function of 
the nuclei, which, owing to the definite symmetry char
acter of the complete wave function, determines uniquely 
the symmetry of the "isobaric" part of the wave func
tion (and vice versa). 

This correlation occurs also in the general case of 
arbitrary particles A and B. Indeed, if the coordinate 
function U(xl, x2) in (21) has a definite symmetry, i.e., 

(23) 

then the complete wave function (21) can be written in 
the form 

(24) 

It follows from (24) that in this case the normalized in
ternal wave function has the form 

l(lint==~ {JA)<1>JB)<:!l± JA)<'>JB)<'>}, (25) 
12 

i.e., also has a definite symmetry with respect to inter
changes (the plus sign corresponds to "isobaric spin 1" 
and the minus sign to "isobaric spin 0"). Equations 
(2 ·~) and (2 5) also imply that the symmetries of the co
ordinate and internal wave functions coincide for integer 
spins sA and sB, and are opposite to one another for 
half -integers sA and sB ! 

It should be especially emphasized that this result is 
in no way connected with some "isobaric invariance" or 
mass equality of particles A and B. In particular, it can 
easily be shown in connection with the above discussion 
that the isobaric spin of the deuteron is strictly equal to 
zero (if we neglect nuclear interactions which do not 
conserve parity) even when isobaric invariance is viola
ted (for example, on account of electromagnetic interac
ticms). 

In the general case the symmetry or antisymmetry 
of the complete wave function with respect to a complete 
interchange does not imply the symmetry or antisymme
try of the coordinate part of the wave function with 
respect to an interchange of the space coordinates of 
the particles alone. In this connection the logical analy
sis of a specific case is of interest, when some process 
leads to the simultaneous formation of particles A and 
B which agree in all internal quantum numbers except 

the mass. BJ Assume that immediately after the produc
tion of such a system its wave function has the form 
(21). Then the formation of a system with interchanged 
particles, A;::! B, is described by the wave function 

ljl' = U(x1, x2 ) JB)<1)JA)<2> ± U(xz, x,) JB)<2>JA)(1>. (21 ') 

On the other hand, if the mass difference between parti
cles A and B is very small, their interactions with any 
other particles must be almost identical because of the 
agreement of all quantum numbers. It follows from this 
that the wave functions (21) and (21') must be almost the 
same, i.e., 

U(x1, x2 ) JA)(I>JB)<2> ± U(x2, x1) JA)<'>JB)(I>:::::; 
:::::; U(x 1, x2) JB)O>JA)<2J ± U(x2, xt) JB)">jA)(tl, 

The last equality can hold only if 

(26) 

i.e., when the coordinate wave function is almost sym
metric (for bosons) or almost antisymmetric (for ferm
ions). The internal wave function is in both cases almost 
symmetric. 

The equation (26) is satisfied the more precisely the 
smaller the quantity Llm. 9 > For Llm- 0 the probability 
for formation of a system of such particles in states 
which are absolutely forbidden for identical particles, 
becomes vanishingly small. We see that also from this 
point of view, the parameter Llm plays a fundamental 
role in the analysis of the transition from a system of 
similar particles to a system of identical particles. 10 > 

6. CONCLUSION 

The differences in the behavior of systems of identi
cal and nonidentical particles are absolute only when 
this problem is considered without an analysis of the 
specific peculiarities of the given concrete situation in 
each separate case. It was shown above that such an 
analysis exhibits the existence of various interference 
phenomena and correspondingly, of a continuous transi
tion from distinguishable particles to identical particles. 
The criterion determining this transition is the relation 
between the mass difference Llm and the characteristic 
duration of the process under consideration: the smaller 

8lParticles A and B are here introduced by postulate; the question 
of their existence in reality is not considered. However, the following 
results hold also when certain quantum numbers of particles A and B 
do not coincide, if only they do not play a role in the interactions 
under consideration. 

9lFor the particles under consideration (26) is valid not only in the 
act of production but also at subsequent time instants. The smaller 
Llm the more exactly is the invariance of the interactions fulfilled, and 
the larger is the length of the time intervals during which (26) remains 
in force. At the same time, for any finite value of Llm the character of 
the spatial symmetry of the wave function may change radically sooner 
or later. 

10lrf the quantum numbers of the particles A and B are different, 
this correspondence between the wave function of these particles in 
the limit 6m-+ 0 and the wave function of identical particles does not 
in general exist. For example, the pair of particles K 1 and K2 having 
different CP parity can be in states with odd orbital angular mo
menta. [6 1. 
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the quantity .a.m, the larger the time interval during 
which the behavior of the distinguishable particles is 
similar to the behavior of identical particles. 

In this connection some additional questions arise 
which require special consideration. One of these refers 
to the characteristics of the quantum statistics of sys
tems of particles with almost equal masses. The 
properties of the equilibrium state of such systems are 
in many cases the same as for systems of nonidentical 
particles. However, one might think that the equilibrium 
is reached in two stages: first an intermediate quasi
equilibrium state is attained, the same as for identical 
particles, which then gradually goes over into the final 
equilibrium-the more slowly the smaller the quantity 
~m. 

Another range of questions is connected with the 
analysis of specific phenomena occurring in cases when 
particles of type A as well as of type B can be formed in 
each of the two generators considered above. Interest
ing effects also arise in the analysis of systems of un
stable particles, in particular, in the registration of 
such particles by a single counter, not two, as in corre
lation experiments (cf. also lll). 

In connection with the existence of a continuous tran
sition from the properties of systems of similar parti
cles to the properties of systems of identical particles, 
there arises also the following question of principle: 
to what extent can one regard as proven the assertion 
that particles which are traditionally considered identi
cal are indeed so? 

We expect to discuss these problems in subsequent 
publications. 
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