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Some features of the current-voltage curves of the tunnel current in anisotropic superconductors are 
investigated. Two groups of characteristic features can be discerned: 1) those connected with the ex­
tremal values of the gap on the Fermi surface (minima, maxima, and saddle points); 2) those related 
to the extremal values of 6. (minimum or maximum) on the lines of the Fermi surface v · 11 = 0 where 
11 is the direction of the normal to the junction surface. Singularities of the first kind occur in single 
crystals and polycrystalline substances (with crystallite dimensions » ~0). Singularities of the sec­
ond kind ("boundary singularities") are manifest only in single crystals; in this case the singularity 
amplitude may be appreciable for diffuse scattering of the electrons by the tunnel contact surface or 
if the barriers are very thin. The analysis is valid for Fermi surfaces of arbitrary shape and for ar­
bitrary anisotropy of the gap. 

INTRODUCTION 

THE study of the detailed singularities of the electron­
ic energy spectrum of metals is one of the central 
problems of modern solid-state physics. It has been 
established that the electron spectrum in metals (in a 
normal state) is very complicated-there exist several 
branches of the dispersion law Er(P) (energy bands or 
groups), in each of which the dependence of the energy 
on the quasimomentum p is essentially nonquadratic 
and nonisotropic. On going over to superconductivity, 
this should lead to the occurrence of a number of 
branches 6.r(n) in the dependence of the energy gap 6. on 
the direction of the quasimomentum of the electron on 
the Fermi surface n = p/p. The existence of appreciable 
anisotropy of the gap in superconductors was convinc­
ingly demonstrated in experiments on the investigation 
of the absorption of ultrasound, [1-41 surface resist­
ance/51 the tunnel effect, [ 6-aJ etc. The theory of ani­
sotropic superconductors was constructed in the papers 
of Pokrovskii. [ 9 • 101 Sometimes a distinction is made 
between the effects of anisotropy (the dependence of 6. 
on n) and the effects of the presence of many bands (the 
existence of several branches of the function 6.), but it 
should be noted that actually these effects can be con­
sidered in a unified scheme. In particular, the univer­
sal inequalities established by Pokrovskii for certain 
thermodynamic characteristics of anisotropic supercon­
ductors would remain unchanged in the multi-band case. 
As to the kinetic characteristics, the multi-band ef­
fects can lead here to a number of singularities.[ 11 • 121 

Although the magnitude of the gap anisotropy in cer­
tain superconductors is quite large (1i6./ 6. ~ 40%), none­
theless the effects determined by the average values of 
6. turned out to be little sensitive to changes of the gap. 
Thus, for example, addition of impurities to the super­
conductor, leading to "isotropization" of the gap (at 
l « ~0)/ 131 causes usually a very small change of the 
thermodynamic characteristics (in particular, of the 
critical temperature of the superconducting transition). 
At the same time, the effects in which selection of the 
values of the gap on definite lines or points of the Fer-
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mi surface is effected (for example the absorption of 
ultrasound or the tunnel effect), turn out to be much 
more sensitive to a change of 6. and can therefore be 
used for an experimental study of the anisotropy of the 
gap. The tunnel effect[ 14• 151 is from this point of view 
the most effective, since it makes it possible, in princi­
ple, to study simultaneously both the ''normal" tunnel 
current and the Josephson current[ 16• 17 J in the same 
sample, makes it possible to study the change of the an­
isotropy of the gap on addition of impurities, etc. The 
first observation of the anisotropy of 6. with the aid of 
the tunnel effect was made by Zavaritskii. [ 61 Recently, 
a number of both direct and indirect methods of study­
ing the anisotropy of the gap by determining the singu­
larities of the current-voltage characteristics of the 
tunnel current[ 7 • a, 18 -211 and others, have been pro­
posed and perfected. 

The present paper is devoted to a systematic inves­
tigation of the influence of gap-anisotropy effects on the 
single-particle tunnel current in superconductors and 
to the assessment of the information that this can yield 
concerning the spectrum of the superconducting state. 0 

Unlike earlier papers on similar topics, [ 22 • 231 we start 
here with the most general premises concerning the 
electron-dispersion law in the normal state Er(P) (i.e., 
the form of the Fermi surface) and the character of the 
anisotropy of the gap in the superconducting state 
6.r(n). The quantities Er(P) and 6.r(n) are assumed to 
be arbitrary functions satisfying the crystal symmetry 
elements and the condition that follows from the invari­
ance of the Hamiltonian against time reversal. 

Our analysis differs from that of [22 • 231 also in the 
following respect. In the calculation of the thermal cur­
rent, it is customary to start from the so-called ther­
mal Hamiltonian:[ 24 • 151 

" rr' + Hr = ~ Tpq ap,bqr•+ h.c., 
pqri·· · 

(1.1) 

where T~~:_matrix elements of the tunneling of the 

1>The same problem was investigated by us in an earlier paper [17 ) 

for the case of the Josephson effect. 
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electron from the state p (in band r) to the left of the 
barrier into the state q (in band r') to the right of the 
barrier. From a microscopic calculation of this quan­
tity (see, for example, l 25 l) it is clear that the tunnel­
ing can occur only when the electron velocity compo­
nent in the direction normal to the barrier is positive: 
Uz = il£r/ilpz > 0, Vz = il£r' /ilqz > 0 (or uz < O, Vz < 0 
for the inverse transition). This means that in the cal­
culation of the tunnel current on the basis of (1.1) it is 
necessary to restrict the summation over the momenta 
to those values of p and q for which uz, Vz < 0. At the 
same time, in the tunnel-Hamiltonian method the sum­
mation is usually carried out over all values of p and 
q. Such a model can apparently describe adequately the 
tunneling between polycrystalline samples, when all 
possible orientations of p and q relative to the crys­
tallographic axes, for which an electron tunnel transi­
tion is possible, exist as a result of the random orien­
tation of the crystallites. Therefore singularities of the 
tunnel current arise in singular points of the gap-min­
ima, maxima, and saddle points of the function .:l(n). 

We consider in the present paper both this case and 
the case of tunneling from a single crystal, and in the 
latter case additional singularities arise on the tunnel­
current curve, which we shall call limiting, and which 
are connected with the extremal values of .:l on the 
strip v · 11 = 0 of the Fermi surface ( v-direction nor­
mal to the junction surface). We note that similar sin­
gularities appear also in experiments on the absorption 
of ultrasound, l 26 l thus uncovering a possibility of direct 
comparison of data on the gap anisotropy, obtained with 
the aid of the tunnel effect, with the data of ultrasound 
absorption. It should be noted that in the case of specu­
lar transmission of the electrons through the barrier, 
the amplitude of the "limiting" singularities will be 
quite small, since in this case the tunneling probability 
decreases exponentially with decreasing Vz (see, for 
example, l 27 l). However, in the more realistic case of 
diffuse passage, such a strong dependence of the prob­
ability of tunneling on the electron-velocity direction 
may also not occur. Indeed, in the latter case we can 
assume that the surface of the tunnel contact is not 
ideally plane, but contains sections that are oriented at 
aU possible angles to the averaged (smoothed) junction 
surface. For any direction of the velocity v of an elec­
tron moving towards the barrier, there are thus sec­
ticms which are oriented pr.actically perpendicular to v, 
for which the tunneling probability is not small. In ad­
dition, a noticeable amplitude of the limiting singulari­
ties can be expected also in the specular case for very 
thin barriers (for example, such as used in the Joseph­
son effect), for in this case the dependence of the tun­
neling probability on the direction of the electron veloc­
ity becomes not so significant. 

2. TUNNEL CURRENT OF A NORMAL METAL 
INTO A SUPERCONDUCTOR 

As shown in a number of papers, l 24 • 28 • 29 l the use of 
a tunnel Hamiltonian (1.1) leads in the isotropy case to 
the following expression for the tunnel current between 
the two metals: .. 

J(V) = C ~; dn>1(e)v2(e + V)[F(e)- F(e + V)l (2.1) 

where V -bias applied to the barrier (e = 1), F(£) 
= [1 + exp ((c- !J.)/T]-1-Fermi distribution function; 
v1 (c) and v2 (c)-relative densities of the states in the 
left (1) and right (2) metals normalized in such a way 
that in the normal state v? = v~ = 1; C-conductivity of 
the tunnel contact at temperatures higher than Tc1 and 
Tc2 , when Ohm's law JNN = CV holds. 

As shown in l 17 l, in the anisotropy case Eq. (2.1) is 
rewritten in the following form (we use simultaneously 
the explicit expression for the density of states v(c)): 

!(V) = __£__<J.(n, n') ~ dw( th~- th"'- V) 
2n2 -·~ \ 2T 2T 

XlmG1R(w,n)ImG2R(w- V,n') )",.,' (2.2) 

where G~ 2 are the retarded Green's functions of the 
electron in the left and right metals, integrated over ~ 
(~-electron energy in the normal metal, reckoned 
from the chemical potential !J.; as always, .:l can be 
assumed independent of ~), A(n, n')-non-negative func­
tion describing the anisotropy of the matrix elements of 
the tunneling, (A)= 1. The angle brackets in (2.2) de­
note averaging over the Fermi surface ( ( 1) = 1). Using 
the explicit expression for ~(w, n) (see l 3ol), we can 
rewrite (2.2) in the form 

c (I 7 ( "' "'- v) l(V)=-- IJ.(n,n') 1 dw th--th--
2 • , 2T 2T 

-oo 

I(J)IIw- VIE?(iffil- ~,(n))El(lw- VI- ~z(n'))) 
X . 

[(ffi2- ~t2 (n)) ( (w- V) 2 - ~22 (n') )]'/, ruv 
(2.3) 

Here ® (x) is a function equal to unity when x > 0 and to 
zero when x < 0. Formula (2.3) pertains both to the 
case of a contact of two superconductors and to the case 
of a contact between a normal metal and a superconduc­
tor. In this section we analyze the singularities of the 
function J(V) for the case of a contact between a super­
conductor and a normal metal (J = JNs). The case of 
two superconductors will be considered in the next 
section. 

1. We consider first the case of zero temperature: 
T = 0. Then, putting .:l 2(n') = 0 in (2.3), we get 

v 
lNs(F)=C(J.(n) ~ dw (J) 8(l'-~(n))) 

. ' Mnl y,.,z- ~'(n) ' n 

= C (/.(n)yTJL ~2~)>nv, (2.4) 

where A( n) = ( A(n, n'))n'. In the last expression, the 
integration is carried out over that part of the Fermi 
surface, on which (at a given V) .:l(n) < V. From this it 
is clear, in particular, that JNs = 0 when V < .:lm, 
where .:lm-minimum value of the gap. The nonzero 
tunnel current appears in this case for the first time 
only when V > .:lm· The asymptotic form of the current 
as V--+ .:lm is of the form (T = 0): 

(2.5) 

Here Am-amplitude of the tunneling probability for the 
direction of the quasimomentum of the electron, at 
which the absolute minimum of the gap takes place, and 
S(V) is the relative part of the Fermi surface on which 
.:l( n) < v: 

1 dS 
S(V)= [(2n) 3 N(O)]-' J -;;-: 

(~(nl<'V) I< 
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(N(O)-density of states on the Fermi surface). At the 
point V = D-m, the function S(V) vanishes, so that the 
asymptotic form of the tunnel current JNs(V) near the 
threshold (at T = 0) takes the form (cf. [ 22 l): 

J NS( V);:::: A (V- L'.m)'h, (2.6) 

Here r m is the Gaussian curvature of the Fermi sur­
face at the minimum point (we assume for simplicity 
that the gap near the minimum is axially symmetrical: 
D. = D.(e)). The asymptotic form (2.6) differs from the 
corresponding formula of the isotropic model, in which 
the function JNs(V) near threshold has a vertical tan-

isotr 
gent: JNs (V) = cvv2 - D-2• 

2. At nonzero temperatures, the tunnel current dif­
fers from zero at all V. It is easy to obtain the asymp­
totic form at temperatures T « D. below threshold 
(V « D-m)· It is of the form 

J .' V ~ {Cy(2:n:TL'.m)'he-t>,JTeVi1', T<f;, V, 
NS( )~ Cy(2:rtL'.m/T)'hVe--t>,,IT, V<f;,T, 

(2. 7) 

where y is a certain numerical coefficient on the or­
der of unity.2> The last formula is valid at not too weak 
an anisotropy of the gap: oD. » z, where aD--anisotro­
pic part of the gap. From (2. 7) we see that in the case 
of NS contacts the current-voltage characteristic is 
ohmic as V __. O, and the conductivity decreases then 
with decreasing temperature like exp ( -D.m/T), where 
D.m is the absolute minimum of the gap on the Fermi 
surface. 

3. Finally, let us consider the case of large displace­
ments, V » D.(T), when asymptotic expressions valid 
under the most general assumptions concerning the 
character of the gap anisotropy can also be obtained for 
the current. Expanding the expression for the tunnel 
current, which follows from (2.3), namely 

in powers of D./V, we readily obtain 

iss= CV- J:( V), 

J 1 (V) = (C/2V)(),(n)il 2 (n)).,f(V/2T), 

where f(x) is given by 

X 8 dy f(x) = -- -----. 
- 2 _00 Y c.h2 (x + y) 

(2.9) 
(2.10) 

(2.11) 

At small and large values of x, the function f(x) can 
be represented by the asymptotic formulas: 

x~1, f(x)::::: 1+n2/12x2 

00 

x<f;,1, f(x):::::Ax2, A=~ rly(thy/y) 2 =1.68. (2.12) 

As seen from (2.10), the addition to the current J 1(V), 
due to the occurrence of superconductivity in one of the 

2>1n the model in which the angular dependence of the gap is given 
by the formula D.= /',0 + {j/', cos() [22•17], the coefficient 'Y equals 7r/4. It 
must also be taken into account, however, that the minimum gap 6m 
which enters in (2.7) is itself a function of the temperature, which leads 
to a certain renormalization of 't ( cf. !' 7] ) without a change of the 
character of the asymptotic expressions (2.7). 

metals of the tunnel pair, is proportional to (;\,D-2), and 
since the mean value of A is unity, it yields information 
concerning the magnitude of the gap (in the isotropic 
model ( ;\.D-2) = D-2 ). The obtained formula can be used to 
determine the gap and, in particular, its temperature 
dependence with the aid of the tunnel effect in the case 
when one of the metals of the tunnel junction cannot be 
made superconducting for some reason. In this case, if 
the temperature is not too low, the threshold of the tun­
nel current at V __. D.m is not very pronounced, making 
it impossible to determine D. reliably; at the same 
time, formula (2.10) makes it possible to determine D. 
directly from the change of the current upon destruc­
tion of the superconductivity (for example, by a mag­
netic field). 

3. TUNNEL CURRENT OF A SUPERCONDUCTOR­
SUPERCONDUCTOR CONTACT 

A study of the features of the current-voltage curves 
of the tunnel contact between two superconductors makes 
it possible to obtain much more complete information 
on the character of the gap anisotropy than in the case 
of a contact between a superconductor and a normal 
metal. An analysis of these singularities is based on 
Eqs. (2.2) and (2.3) of the preceding section. The deri­
vation is similar to that presented, and will be omitted 
in most cases; only the final results will be given. 

1. As is well known, [ 15 l in the isotropic model the 
tunnel current experiences a jump at a barrier voltage 
V = D-1(T) + D.2(T) (we emphasize that, in accordance 
with the theory, such a jump takes place not only at 
T = 0, but also at finite temperatures). Allowance for 
the anisotropy of the gap leads to a smoothing of the 
jump, but in the interval values of voltage between 
[D.Im(T) + D.2m(T)] and [D.1M(T) + D-2M(T)] there will 
take place a number of singularities of the tunnel­
current curve J(V) (or its derivatives dJ /dV, d2J /dV2, 
etc.), connected with the singular points of the gap­
minima (m), maxima (M), or saddle points (s). The 
first to call attention to the existence of such singulari­
ties was Bennett, [ 22 l but he considered only the case of 
zero temperature and assumed that one of the supercon­
ductors making up the tunnel contact is isotropic (in ad­
dition, the Fermi surface was assumed in [ 22 l to be 
spherical). Indeed, such singularities take place also at 
finite temperatures. In the case when both superconduc­
tors are anisotropic, the number of singularities in­
creases. 

In Table I we summarize the analytic behavior of the 
first derivative of the current-voltage characteristic of 
the tunnel current dJss/dV as a function of the voltage 
V near the singular point. In the first column of Table I 
are given the asymptotic forms of the corresponding 
functions to the left of the singular point, and in the sec­
ond column-to the right of the singular point. Figure 1 
shows a plot (not to scale) of the corresponding singu­
larities in the first derivatives of the tunnel current with 
respect to the bias. We note that our derivation pertains 
to the case of a nonzero temperature and is valid for an 
arbitrary (smooth) Fermi surface. 

In Table I we introduced the symbol 

1 -( t.· "'·;· e·k = -~1t.·t.•. th___:_-rth___:_ . 
' 2 r ' , 2T 2T 

(3.1) 



4~i8 A. E. GORBONOSOV and I. 0. KULIK 

Table I. Singularities of the conductivity 
dJss/dV of a tunnel junction made up of 

anisotropic superconductors. 

dJss!dV 

Ll1m + Ll2m const 

h. 18 + ~ 28 eonst- Be88 V -Yss 

Ll1M + Ll2M canst 

Llm + LlM canst 

const + AemmYmm 

4 r­
const - --;t Be88 l Yss 

canst-CeMM VYMM 

canst + DemMYmM 

c\JH + 8., 

LlM-j-Ll, 

const + EemsYms ln I Yms[ 

canst+ FeM,YMs In I YMsl 

Note. Yik stands for Vi (L':.j + L':.k) -1. 

The indices i and k pertain respectively to the first 
and second metals and characterize the type of the sin­
gular point (m, M, s). The quantity 1: determines the 
"amplitude" of the singularity (for example, the mag­
nitude of the jump of the corresponding function or its 
derivative). It is seen from {3.1) that when T = 0 this 
amplitude will be maximal. With increasing tempera­
ture, the singularities "smooth out" but do not vanish 
(their analytic character also remains unchanged). 

2. Let us see now what modifications in the behavior 
in the current-voltage characteristic of the tunnel cur­
rent are brought about by allowance for anisotropy when 
the bias on the barrier is on the order of I ~1 - ~2 1, at 
which there was a logarithmic current singularity in the 
isotropy case (if T if. 0). l 151 For simplicity we assume 
that one of the superconductors is isotropic (the case 
when both superconductors are anisotropic, in the model 
~1 2 = ~~ 2 + 6~1 2 cos e, is considered in the Appendix). 
T:~e character of'the singularity has in the isotropic 
case the form:l 151 

{3.2) 

Here 

as can be shown on the basis of (3.2), in the anisotropic 
case we get in lieu of formula (3.2) 

fss(V) = - 1/,C'\'t2ll ( V), 

where the function 17 (V) is given by 

{3.3) 

dS V TJ(V)=[(2n)"N(O)]~t ~-lnl---~-11 {3.4) 
VF lilt- Ll,(n') I 

(for simplicity we assume that the tunneling probability 
does not depend on n). 

The integral over the solid angle in (3.4) can be 
readily reduced to an integral with respect to ~2 by in­
troducing a function cp(w) analogous to the "gap-aniso­
tropy function" introduced by Bennett: 

1 sine 
<p(w)=[(2n) 3N(0)}--1 J d8d<p 6[w-Ll(8,<p)] 

VFf(8, 'Jl) 
(3.5) 

(r(e, cp)-Gaussian curvature of the Fermi surface at 
the point with angle coordinates e, cp). With the aid of 
{3.5) we get 

riJ 

~ 
I 

--~ d)41m+Azm 

Q 
liV 

I g) Am +AM 

FIG. I. a-c) Singularities of the conductivity of the tunnel con­
tact dj/dv, in which one of the superconductors is isotropic (see [22 ) ); 

d- i) sin!,'lllarities of the conductivity of the tunnel contact, in which 
both superconductors are anisotropic (the curves g-i are symmetrical 
with respect to both superconductors). 

Caleulating (3.5) asymptotically near the singular 
points of the gap ~2c (~1 = const) and substituting then 
{3.5) in (3.6), we obtain the form of the current-voltage 
curves J(V) near the singular points: 

A -j-ByMxMln lxMI, 
D - Fym ln I Xm I. 

Cv,ln lx,l. 

v-+ I Llt - i\M I' 
V-+ lilt~- Ll,,1. 

~·~~ILl,- il,l, 

Here 

'\' i = ' 1 !1,!1,( th ~_!_ - th ~~) 
r '· 2T 2T ' 

v 
Xi=-----1, 1:'1,-\,l 

(i = m,s,M). 

As seen from Fig. 2, in the anisotropy case the sin­
gularity "splits" near V ~ I ~1 - ~2 1, and on the basis 
of the position of the singular points of the derivative 
dJss/dV it is possible to assess the magnitudes of ~m• 
~s• and ~M· We note that these singularities are 
missing when T = 0. Their amplitude decreases with 
increasing temperature like exp (- ~2m/T) when T « ~ 
and V < (~1 + ~2m). 

3. We present, in analogy with Item 2 of Sec. 2, the 
asymptotic forms of the tunnel current at low tempera­
tures far from singularities. It can be readily shown on 
the basis of an analysis of {2.3) that their form is (~1 
= ~2) 

!Ns(V)"'=' {Cv'L':.m(rr;TjV)'I,exp(-L':.m/T), T~V (3. 7) 
Cv' !1, ( V /T) In ( 4T /V) exp (- L':.m/T), V ~ T 

(~m-absolute minimum of the gap, y'-a certain con­
stant on the order of unity). It is seen from formula 
(3.7) that, unlike the case of NS contacts (formula 3.7), 

FIG. 2. Form of the J(V) and dj/dv curve 
in the vicinity of the singular points V -lll1 -

ll2cl for a contact in which ll1 =canst and ll2 = 
ll2 (n) (the central part of the curve on the up­
per figure is shifted downward along the ordi­
nate axis for convenience). 

"!}!\\ 
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even in the case of small barrier voltages the current­
voltage characteristic of the tunnel current is not ohmic 
and has at V - 0 the asymptotic form V ln V (how­
ever, since ln V is a very slowly growing function, the 
deviation from ohmic behavior can be verified experi­
mentally only by investigating the derivatives of the 
current with respect to the voltage dJ/dV, d2J/dV2 , 

etc.). 
4. Finally, as was done for the NS junction, we can 

obtain a common asymptotic form (valid for an arbi­
trary form of the Fermi surface and gap anisotropy) at 
large biases V » ~1 , 2 and arbitrary temperatures. 
The asymptotic expression for the addition to the cur­
rent (see (2.9)) has in this case the form 

lt'(V) = (C/2V)(J.(~,'+ ~22 }>j(V/21'), (3.8) 

where the function f(x) has the same meaning as in 
(2.11). This increment is thus additive with respect to 
the two superconductors. Since the function f(x) can be 
readily tabulated, formula (3.8) makes it possible to 
study the temperature dependence of the gap. 

4. BOUNDARY SINGULARITIES OF THE TUNNEL 
CURRENT 

In the present section we analyze a class of singu­
larities of the current-voltage curve of the tunnel cur­
rent J(V), which are connected with the extremal values 
~~ (minimum) and ~M (maximum) on a Fermi-surface 
strip Vz = 0 (here ~~ :2: ~m and ~rv:r~ ~M). The gen­
eral classification of the singularities of the tunnel cur­
rent J(V) can be established on the basis of an analysis 
of the gap-anisotropy function cp(w) (formula (3.5)). 
Taking into account the fact that vz is positive, we 
should write 

2 2n B(~l sin 8 
rp(w)=(2rr)'l\'(O)- ~ drp ~ d8vFf(A,<p) O[w-~(O,!J')], (4.1) 

where e(cp)-curve on a sphere, which is a stereograph­
ic projection of the boundary line of integration on the 
true Fermi surface (see Fig. 3, where the dashed lines 
show one of such lines for a non-convex Fermi surface 
and its stereographic projection). The singularities of 
the function cp(w) occur at the singular points inside 
the integration region and on its boundary e = e (cp). 
The first class of singularities was considered in Sees. 
2 and 3. By virtue of the central symmetry of the Fer­
mi surface, the character of these "volume" singular­
ities in the tunnel current does not depend on whether 
the integration in (4.1) is carried out over the entire 
Fermi surface or over its half Vz > 0, i.e., it does not 
depend on whether we are dealing with a polycrystall 22 • 

181 or a single crystal. The second class of singulari­
ties is connected with the behavior of ~(e, cp) on the 
boundary line e = e(cp). In accordance with the forego­
ing, the total current can be broken up into two parts, 
J = J 1 + J 2 , where J 1 was calculated above, and J 2 can 
be represented with the aid of (2.3) in the form (for 
simplicity we consider the case when one of the super­
conductors is isotropic) 

2n 

J,(V)= ~ d<pF[El(rp),rr]. (4.2) 
0 

Here 
' 9(~) . 

F 8 , , =--2 __ 1 d D(e)sme 
[ (p), p] (2n)W(O) 

9
: 8 vFf(fJ,rp) j(S,<p), (4.3) 

with 

(' ( ()) (>)- v) 
j(8,rp)= J dw. th--th---

-oo I 2T 21' 

X~~w- V[EJ([w[- ~,)EJ( [w- V[-~2 (8,<p)~ (4 .4) 
l'(w- V) 2 - ~z2 (8, <p) l'<•>'- ~ 12 ' 

and eo is a certain angle chosen such that the region of 
integration in (4.3) does not contain "volume" singu­
larities of the function ~2 (e, <P ). 

As shown above, the amplitude of the boundary singu­
larities is quite sensitive to the character of the pas­
sage of electrons through the barrier. In the case of 
specular passage, we can use for the estimate the angu­
lar dependence of ~. given by the formula l 31 l 

D(O) ~ exp [- 2: )'2m(W- f1eos2 8)] (4. 5) 

(yV -height of potential barrier, Jl-chemical potential). 
According to this formula, D remains finite at e = rr /2, 
and the order of magnitude of the ratio 

D (n I 2) I D (0) ~ exp [ -2dli-1 (1'2mlV --l'2m(W - >tl] 

is quite small and can be noticeable only at very thin 
barriers (d = 10 A). In the diffuse case, the quantity D 
in (4.3) represents the average value of the transparen­
cy coefficient over all possible orientations of the ele­
mentary areas characterizing the micro-roughnesses 
of the junction surface. In this case we obtain D(e) 
""D(O) cos e. The amplitude of the boundary singulari­
ties turns out to be not small, but since D vanishes on 
the boundary line v · 1,1 = 0, the order of magnitude of the 
singularities is decreased by unity compared with the 
case of specular passage. Omitting trivial derivations, 
we present only the final summary of the singularities 
of J 2 (Z) in the case of NS and SS contacts (Table II). 
Plots of these singularities are shown schematically in 
Fig. 4. 

Summarizing, it must be stated that a study of the 
tunnel effect in superconductors, particularly in the 
case when one of the metals is a single crystal, makes 

ttzJNS iJss 
d'VY: I ~ I 
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I 1 

I : 

-V L- I 

---! ~ 
IJ.' m d' 

"' ~:+A~ 4,+/J.M 
/JNS .'!_~ 
dVZ I 

d)~ ~ , 
IJ.I+Il~ -----j AM 

I 
j' y IJ. +tf. ---=! 
m 1 m r----

I 
b ' 

FIG. 3. FIG. 4. 

FIG. 3. Stereographic projection of the boundary line vz = 0. 
FIG. 4. Form of the second derivative of the current d2 Jss/dV 2 

near the extremal points 6'm and l','M on the strip vz = 0 for NS and 
SS contacts: a-diffuse case, b-specular case. 
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Table IT. Second derivative d2J /dV2 for NS and 
SS contacts near the extremal points of the gap 

~:n and ~M on the curve Vz = 0. 

Diffuse passage 

~~I canst I canst+ ,1zm I canst _ I cons!+ Cl>1':r(V) 

~M canst+ BZM In 1 ZMI canst +C1ZMj canst+ c,zM 

Specular passage 

~;, I canst I const + A 

~.;I const +BIn 1 ZM 1 
I Al>tm 'l' (V) I) (Zm) 

const j const - B 

Note.I'(V)-smooth function of the order of unity,I'(L'lJm + 
llmJ = I. With increasing anisotropy (li 6-> 0) we have 

(c..1 ...... fl). -~cn-t: zi=V/.1.~-t. 

Zi =V/(.1.~ + .1.;) -1, (i, k = m, M). C1 > f2. 

it possible to obtain appreciable information on the lo­
cal and average values of ~(n). Some of the singulari­
ties listed above and shown in Figs. 1, 2, and 4 were 
identified experimentally (see [ 181 ), others are still to 
be revealed. Experimental study of the "boundary" 
singularities is of interest not only from the point of 
vi.ew of reconstructing the gap, but also for the investi­
gation of the tunneling mechanism itself, since the 
character and amplitudes of these singularities should 
depend strongly on the law governing the interaction of 
the electrons with the surface of the tunnel junction. 

In conclusion the authors thank M. I. Kaganov and 
I. K. Yanson for a discussion of the results. 

APPENDIX 

Let us show with a simple model of the angular de­
pendence of the gap (see [ 15 ' 22 l ), namely ~1 2 = ~~ 2 

+ 0~1, 2 cos e, that allowance for the anisotr'opy of both 
superconductors causes the singularities to appear 
only in the second derivative d2J /dV2, whereas the cur­
rent J(V) and the conductivity dJ/dV remain continu­
ous. For this case, from the general expression (2.3) 
for the current J(V) we easily obtain 

cFJ c 1 I Xt,2MXtM,21 (A.1) 
dV' = 41\6,1\62 Yi2 n Xtr.r, 2M x,, 2 · 

We note that calculation of the current-voltage curve 
d2J /dV2 in the case of an arbitrary anisotropy of the gap 
~( n) also leads to the conclusion of the appearance of 
singularities in the higher derivatives of the current 
with respect to the bias. Expression (A.1) admits of a 
transition to the limiting case when one of the super­
conductors is isotropic; ~1 = const, ~2 (13) = o~g 
+ o~2 cos 13. Indeed, letting o~1 - O, we get 

dJ c 1 lxt,2MI 
dV= 46~zV12 n ~ ' 

d2JjdV2 = - 1/,Cyi2(X1,2Xt,2M)-1, 

(A.2) 

(A.3) 

which coincides with the results obtained in Section 3. 
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