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We consider the influence of an electric field that is not strong enough to heat the electrons on the con­
ductivity of semiconductors in a quantizing magnetic field. Such an influence is due to the special 
sensitivity of the density of states to the electric field if the energy of the electrons contributing to the 
conductivity is close to the Landau level. By generalizing the method of Adams and Holstein [BJ a form­
ula is obtained for the current; this formula is valid for strong electric and magnetic fields. The field 
dependence of the current due to monoenergetic photoelectrons is calculated on the basis of this form­
ula. It is shown that when the electron energy approaches the Landau level, the current reverses sign 
and depends on the field like E- 112 • The current is calculated in the case of a degenerate electron gas. 
It is shown that when the Fermi energy is close to the Landau level, the current depends on the field 
like E-112 • This leads to a smoothing of the conductivity oscillations of the Shubnikov-de Haas type, 
as was apparently observed by Komatzubara l7l • 

IT has been recently established experimentally that 
it is possible to produce in a semiconductor non­
equilibrium electrons concentrated in a narrow energy 
interval by illuminating it with monochromatic light 
(see, for exampler11 ). Such a situation leads to anum­
ber of new effects[l' 21 and is also useful because it 
makes it possible to reveal the subtle details of the 
physical phenomena which sometimes are inaccessible 
as a result of energy averaging. In particular, interest 
attaches to the behavior of the monoenergetic electrons 
in quantizing magnetic fields, since the states of elec­
trons with energy close to the Landau levels turn out to 
be very sensitive to the electric field. 

Indeed, in quantizing magnetic fields (:110 » kT, 
n = eB/mc), the density of states near the Landau levels 
becomes infinite, leading, for example, to oscillations 
of the transverse conductivity. Of course, allowance for 
the attenuation eliminates the divergence. However, a 
stronger effect can be produced by the decrease of the 
density of the states as a result of the electric field, 
since the electron energy depends on the field. We can 
therefore expect the conductivity to decrease with the 
field near resonance. 

In the present paper we investigate the influence of 
the electric field on the transverse conductivity near 
resonance, when the energy of the electrons that contri­
butes to the conductivity approaches the Landau level 
E - 0:11/2. Such a problem arises in the consideration of 
negative conductivity due to monoenergetic photoelec­
trons in a quantizing magnetic field (see[3 1), when the 
energy acquired by the electrons from the field becomes 
comparable with the quantity E- 0:11/2 (resonance), and 
also in a consideration of the equilibrium conductivity 
of degenerate electrons near the peaks of the Shubnikov­
de Haas oscillations, if the energy transferred from the 
electrons from the electric field is comparable with 
~ -0:11/2, where~ is the Fermi level. 

It should be noted that the influence of a strong elec­
tric field on galvanomagnetic effects becomes manifest 
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also in the heating of the electrons (the temperature of 
the electron gas changes close), if the energy acquired 
from the field exceeds the energy given up to the lat­
tice. These phenomena were investigated by Kazarinov 
and Skobovr•J, who assumed that the influence of the 
electric field on the density of states can be neglected 
in the absence of scattering. The equation for the den­
sity matrix was expanded in a series in the electric 
field (see alsol51 ), the current being expressed in terms 
of a symmetrical distribution function with an effective 
temperature. However, in the case of resonance, when 
eE0-1v'ETri1> E- :110/2, such an approximation is not 
valid. We therefore use in this paper a different ap­
proach. Namely, the expression for the current in the 
quantizing magnetic field and strong electric fields is 
obtained by generalizing the results of the work of 
Adams and Holstein rsJ . On this basis, we analyze the 
field dependence of the current for the case of photo­
electrons and equilibrium degenerate electrons. 

We assume further a quadratic dispersion law for 
the electrons with effective mass m; the electron spin 
is neglected; the broadening of the Landau levels is dis­
regarded. The electric field is assumed to be insuffi­
cient for heating. 

1. CURRENT IN STRONG MAGNETIC AND ELECTRIC 
FIELDS 

To find the density of the current in a quantizing 
magnetic field we shall use the results ofl61 , which 
admits of a simple generalization to the case of a strong 
electric field. The equation of motion for the density 
matrix 

-iiip 1 &t = [r, H], H =Ho+ V 

is solved with the aid of the Laplace transformation 

P(s)= s ~ e-''p(l)dt. 

Here V is the potential of elastic scattering; 

(1) 
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Ho = 1/ 2 (hx' + k,') + 1/2(x- X) 2 - XF (2) 

is the Hamiltonian of the electron in crossed electric 
and magnetic fields in dimensionless form (length is 
measured in units of L = (nc/eB) 112 , momentum in units 
of 11/L, energy in units of nn, and force in units of 
nn/L), where X= ky + F-center of the Larmor orbit 
and F-force exerted on the electron by an electric field 
directed along the x axis; B is directed along the z axis. 

The function P(s) satisfies the equation 

-d'(o) ==[P(s), H]- isp(O). (3) 

where the initial density matrix is chosen in the form 

(4) 

Here EJJ. is the part of the energy that does not depend 
on the electric field, and the Greek indices denote three 
quantum numbers JJ. = ky, kz, N, EJJ. = N + 1/2 + k~/2. 
The total electron energy is EJJ. = EJJ.- XJJ.F. 

With the aid of Eq. (3) we can expand the function 
P(s) in a perturbation-theory series in powers of the 
scattering potential, and then calculate the current ac­
curate to terms of first order in this parameter. The 
density matrix obtained in [61 in this manner 

(5) 

eJA.v=·e~t-cv, Xllv=X~t-Xv 

is expanded in a series in an electric field up to terms 
of first order, after which the current is calculated. It 
turns out that it is possible to calculate the current 
with the aid of (5) without resorting to expansion. Fol­
lowing a procedure similar to that used in [6 J, we obtain 
for the dissipative current in dimensionless form 

pv 

where q = kJJ. - k 11 , V q, JJ. v is the matrix element of the 
scattering potential between the initial and final oscilla­
tor functions in the electric field. 

Substituting v ~ JJ. in the second term of (6) and then 
changing over from the variable kz to the energy E, we 
obtain finally 

j=-~ ~ r f(,;)qy,VQ,N,Mi'd,;_-:- (7 ) 
' (2.:t) 2 , . J (e-N- 1/z)'h(e-M-'/e+qvF)'" · 

_.'\' J\[,lj X' I} U 

The expression obtained from the current has a mean­
ingful form that illustrates clearly the mechanism of 
transverse conductivity in a quantizing magnetic field. 
It is seen from (7) that the current is proportional to the 
scattering probability, the densities of the initial and 
final states, and the distribution function. The electric 
field enters in the density of the final states and makes 
transitions with gain and loss of energy not equally 
probable. This circumstance causes a directional mo­
tion along the field, i.e., an electric current. We call 
attention to the fact that the field enters in the density 
of states as a first-power term. We note in this connec­
tion that the Komatzubara's[ 7J interpretation of the ex­
perimental data on the field dependence of the character 
of the oscillations of the transverse conductivity, of the 

Shubnikov-de Haas type, is in error. He assumed that 
the main contribution to the density of state is made by 
the quadratic term. 

2. PHOTOCURRENT IN A QUANTIZING MAGNETIC 
FIELD 

In this section we determine the photocurrent due to 
nonequilibrium electrons produced in the conduction 
band under the influence of a monochromatic source 
g( E - w). The equation for the density matrix has in this 
case the form 

-iiip / Ot = [p, H] - ig(f -- w) + ip he, {8) 

where p/Te describes the recombination of the electrons 
and Te is the lifetime, which is assumed small compared 
with the relaxation time of the photoelectrons on the 
acoustic phonons and with the time of electron-electron 
interactions[l 1 • It is assumed that the electron energy w 
is smaller than the energy of the optical phonon, and 
thus the momentum is scattered by point defects IV q 12 

= c1. 
We set the initial density matrix equal to 

(9) 

and neglect the broadening connected with the lifetime 
Te· Then we can use for the photocurrent the expression 
(7), with the substitution 

If we take the photoelectron distribution in the form of 
a o-function1> 

then we get after integration with respect to the energy 

For simplicity we consider the case 1/2 < w < 3/2. 
Putting in (10) N = M = 0 and integrating with respect to 
qx, we obtain 

ix = ~ I qdqe=q'/2 

Yw- 1/z yF -n i'l + q 

= --~--=-- exp(- rl'/4)[f("/.)D-•1,(- TJ)- f('/,)D-•f,(- TJ)] {11) 
Yw - 1/, JIF 

where Dp(z) is the parabolic-cylinder function and 

'l ·= (w- 1/2) IF, ~ = z-yz;:;cn;,(2n)-•. 

Let us investigate the limiting cases. In weak elec­
tric fields, when 7) » 1, simple calculations yield 

. ~Fy;v-8 
~--
x- (<>l-'/z)2' 

(12) 

or for the transverse conductivity in dimensional form 
(see[3 J) 

( 
.'lQ ) Q2 

<Jxx = -Go 32"' ~ _ r.!/2)2' {13) 

where O'o = 4e2 Ik(w)Te [3Q 2 Timm]- 1 is the "classical" 
photoconductivity at n Tim >> 1, Tim the time of relaxa-

!)We disregard here the broadening of g(efJ -w) due to the field. 
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tion on the defect, I the intensity of light, k(w) the light 
absorption coefficient at B = 0. The minus sign denotes 
that the conductivity is negative, i.e., the current flowing 
in a direction opposite to the applied electric field. When 
w- 1/2, an instant occurs when TJ ~ 1; in this case 

ix = ~ r("/.) (14) 
l'w-'hl/F 2'1• 

and the current becomes positive. 
Formula (10) for the current makes it possible to ex­

plain this effect completely, refining the quasiclassical 
interpretation proposed in [31 • Indeed, it is seen from 
(10) that the current is proportional to the number of 
transitions between the stationary states with energies 
w and w + qyF. In this case, the more probable transi­
tion is the one into the state with the lower energy, 
where the density of state is larger. The o-like distri­
bution function with w > 1/2 + qyF does not hinder this 
transition. Consequently, the electron energy in the 
electric field decreases during collision, i.e., the elec­
tron moves along the field, causing a negative current. 
If the energy w approaches 1/2, so that TJ < 1, motion 
with a decrease of energy is impossible, and the current 
becomes positive. 

It is easy to see from (10) that when w increases the 
resonance situations occur whenever w = Q(N + 1/2). 
On the other hand, at w = const the resonance condition 
is reached by varying the magnetic field with a period 

d(i f B)= el mew. (15) 

The total dependence of the current on the field is given 
by formula (11). 

3. CONDUCTIVITY OF DEGENERATE ELECTRONS 

Let us consider degenerate electrons with a distribu­
tion function 

/(e)={ 1, 
0, 

e< s 
e> i;. 

We assume that the momentum is scattered by point de­
fects, the electric field does not cause heating, and the 
Fermi level is 1/2 < ~ < 3/2. We substitute f(E) in (7) 
and integrate with respect to the energy E and with 
respect to qx with allowance for the assumptions made. 
As a result we get 

.. ---~ ---
ix = a { S qdqe-q'i2 ln lTJ + l'TJ + q - S qdqe-q'I•Jn lTJ + l'~- q } , 

0 yq 0 -yq 
(16) 

where 

TJ = (s- 1/z) IF, 
a = 2l'2'n~1 (2n:)-'. 

If the field is weak then, letting TJ -co in (16), we ob­
tain the usual expression [BJ for the conductivity 

Uxx = al'n I 2 I (6- 1/z). 

In the case of resonance, when TJ- 0, we get from (16) 

. =a 1/ s - 1/a re/.) = n~ (2n) 2 r("/.) (17) 
lx V F 2''• 2l'F 2'1• 

where n is the electron density 

n = 2"¥2l's- 1/z I (2n) 2• 

Consequently, the current near resonance depends on 
the field like F-112 , and decreases with increasing F. 
Experimentally this effect can appear in the following 
manner. With increasing electric field (yet remaining 
too weak for heating), the current in the peaks of the 
Shubnikov-de Haas oscillations increases more slowly 
(or even decreases, as in (17)) than far from resonance. 
Thus, the depth of the oscillations will decrease. It 
seems to us that this is precisely the phenomenon ob­
served by Komatzubara [?J • We note that fOT the diffusion 
coefficients the results will be essentially different, 
since the electric field has no influence on the diffusion. 
Therefore, the Einstein relation will be violated near 
resonance even in the equilibrium state. 

In conclusion, the author is deeply grateful to Yu. A. 
Bykovskii:' and V. M. Galitskii:' for a useful discussion of 
the work. 
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