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It is shown that absorption and dispersion of the velocity of transverse sound in superconductors of the 
first kind at low temperatures and relatively high frequencies is determined to a considerable degree 
by the macroscopic electromagnetic fields that are produced upon propagation of the sound. 

1. INTRODUCTION 

A study of the propagation of ultrasound in supercon­
ductors makes it possible to obtain important informa­
tion on their properties. Starting with the appearance of 
the microscopic theory of superconductivity, this ques­
tion has been discussed extensively in the litera-
ture [1- 121 ) •1> However, the discussion was confined either· 
to the internal deformational electromagnetic fields 
without account taken of the influence of the electrons 
and the elastic properties of the lattice (see, for exam­
ple P 1 ) or conversely, the analysis was carried out 
without allowance for the macroscopic fields occurring 
upon deformation [2- 91 • 

Let us stop to discuss briefly the situation for a 
normal metal. The complete system of equations des­
cribing the propagation of the sound consists of the 
equations of elasticity theory, Maxwell's equations, and 
the kinetic equation for the electron distribution function, 
which is written in a coordinate system moving together 
with the lattice l13- 151 : 

82ui ~ B2alm r 
P -{}-2 = f.if:,_lm -{}- T /i, 

{ Xk (1) 
. 4n aj dF ~ 

rot rotE=- -;;:-at, dt =!(F). 

Here F(P', r', t)-electron distribution function and 
!-collision operator. Allowance for the influence of the 
conduction electrons adds to the right sides of the elas­
ticity equations the volume force fi, which is a functional 
of F. 2 > The alternating magnetic field is excluded from 
Max'Well' s equation; the displacement current is neglec­
ted, so that div j = 0. The latter equation is equivalent 
to the condition of electroneutrality of the metal 

p' = Pet+ f\otr 0. 

The influence of the deformation on the conduction 
electrons can be taken into account in the electron dis­
persion lawl161 , which is specified in the system K', 
that moves with the lattice with velocity U.O! (r, t): 

e' (P', r', t) = eo (P') - Aa~ (P') Ua~. (2) 

Here u0!-displacement vector, Eo(P')-law of electron 

!)Since our analysis is limited to superconductors of the first kind, 
all the corresponding literature references pertain only to this cae. 

2lWe neglect here the Stuart-Tolman effect, which arises as a result 
of the non-inertial nature of the system K'. This effect leads to the ap­
pearance of a small additional term in the force, equal to (m0 /e) ajjat [ 15 ]. 

dispersion in the absence of external field (for simplic­
ity we assume it to be quadratic and isotropic), A0!(3-
symmetrical tensor of the deformation potential, whose 
mean value is zero on the Fermi surface3 >, and u0!{3-
deformation tensor. If we replace P' in Eo(P') by the 
generalized momentum in the electromagnetic field 
P' - eA' I c (where e- electron charge, e < 0 and 
A' (r', t)-vector potential in the moving reference frame 
with gauge q/ (r', t) = 0), then expression (2) for E' takes 
full account of the interaction of the conduction electrons 
with the deformation field and with the electromagnetic 
field. 

It should be noted that in [ll' 121 they considered also, 
for the case of a superconductor, a self-consistent sys­
tem of equations, similar to the system (1). These au­
thors, however, confined themselves to a consideration 
of only longitudinal oscillations. In the present paper 
we consider the propagation of transverse sound and 
show that absorption and dispersion of the velocity of 
sound are determined not only by the direct deformation 
interaction, but also by the macroscopic electric fields 
(a similar effect in a normal metal was considered by 
Kontorovichl151 ). 

2. EQUATIONS AND KINETIC COEFFICIENTS 

The Hamiltonian of the electron in the system K' will 
be written in the form 

!J£• = 2~11 ~ dr .f:cr+ (r) (iv -i- e.\' (r', 1))2 1}" (r) 

A(' , , • , 1(', • + 2 lr¢a+(r)¢cr,+(r)IJlcr,(r)¢cr(r) -i- 2lr1Jlcr+(r)[uu:;(r', t) .\aB (k) 

+ AaB (k) Uardr', t)] ¢rr (r). (3) 

We use a system of units with n = c = 1; we took explicit 
account of the gauge o(the electromagnetic field poten­
tial cp' = 0. Here A0!{3(k)-operator of the deformation 
potential tensor, which is symmE}trical in the indices 0! 
and {3 and is an even function of k. The magnitude of the 
components of A0!{3 is of the order of the Fermi energy. 

The first and second terms of the Hamiltonian des-

3lThe vanishing of the mean value of Acx/) is a consequence of the 
electric quasineutrality of the metal. If it is assumed that the average 
(over the Fermi surface) energy of interaction of the electrons with the 
sound IJE = -Acx/)Ucx/) differs from zero, then it is necessary to include in 
the expression (2) the energy ll11 (the change of the chemical potential), 
which is connected with the appearance of the volume charge. From 
the electroneutrality condition it follows that ll11 is equal to the average 
value of IJE over the Fermi surface. 
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cribe a superconductor in an alternating external field; 
A (A < 0) is a constant connected with the electron­
phonon interaction, which is responsible for the super­
conductivityl171. We assume that the second term re­
tains its form also in the moving reference frame, since 
the operatoz:..s $a(r) transform u~der Galilean trans­
formation: 1/!&(r) = exp[-imv· r]l/!u(r). Repeated spin 
indices in H ' imply summation. 

Our problem is to find the average force and the 
average current, which enter in the system (1), and also 
expressions for the kinetic coefficients relating the cur­
rent with the fields A and u. The analysis is carried out 
in the linear approximation in A and u. The electron 
free path is assumed to be infinite. 

To determine the kinetic coefficients we use the 
scheme proposed inl171 . We consider first the Gor'kov 
equations for a superconductor in the temperature tech­
nique and assume that the displacement vector u(r, T) 
and the vector potential A(r, T) depend on the imaginary 
"time" Tin the interval (0, {3) ({3 = 1/T, T-tempera­
ture). Then, solving these equations in the linear ap­
proximation, we find the kinetic coefficients. The true 
physical kinetic coefficients are obtained by analytic 
continuation in the region of the real frequencies. 

We shall need expressions for the current and force 
in terms of the Green's function. To this end, in accord­
ance with [?J , we have 

ie , I j(x)= -(\',•- \'r)G(x,x) 2e2 I 
- -;;:;-A(r,,;)G(x,x') ,,_, (4) 

n& r~r 

The force operator is defined as the variational deriva­
tive of the Hamiltonian with respect to the displacement: 

' 6:Jf' 1 i) ' ' ' ' ' ' 
fa'=--.-= ..,--l'i'ar (r) Aa_; (k) 'i'a(r) + (A<l,l (k)'i'a" (r)) 'i'o (r)J. 

OUa '" dx0 (5) 

We have integrat~d by parts and used the self-adjoint 
property of AQI[3(k). The average force can therefore be 
readily expressed in terms of the single-particle 
Green's function G(x, x'): 

The coefficient 2 is the result of the summation over the 
spins. The Gor'kov system of equationsl171 has the usual 
form 

( 
{-:.- :l~ (iV +eA) 2 + f.l- Uac }, ~(x) ) (7) 

-~'(x), L: - 2~ (-iV+eA)'+f-l-Uac} 

( G (x, x') 
X -

F(x,x') 

Here 

F(x,x;> l =(il(x-x') 0 ·) 
-G(x,x). 0 -b(x-x') · 

x= (r,,;), Uac = 1 /,(ua~(r,,;)Aa~(k) +Aa~(k)ua~(r,,;)). 

In the considered case of transverse fields, when div A 
= 0 and div u = 0, we can assume that in the linear ap­
proximation the gap remains unchanged. Indeed, in this 
approximation the addition to the gap can depend only on 
the scalar combinations of divA and div u, which vanish 
in our case. 

Solving then the system (7) and taking the Fourier 
transform, we obtain the following expression for the 

current density: 
2e2T .._, ~ [ j(k,OJo)=- , L.J dpp(pA(k,OJo)) Go(p.t)Co(P-) 

(2n:) 3 m2 "' 

. _ J 2Tie .._, 1 -
+ Fo(P+)Fo(P-) + (:ln)'~;:- -; J dp p(AadP)k~na(k, wo)) 

e' 
>< [Go(Pt)Go(P-)-Fo(Pt)Fo(P-)]--NA, (8) 

m 

where 

P± = {P±o OJ±}, P± = P ± k I 2, OJ± = W ± OJo I 2. 

The force density is given by the formula 

k 2ieT .._, 1 
/a( ,OJo)=- ('2n)'m L.J J dp(pA(k,OJo)) 

iw + ~ F _ p = t,2 , = !!_ _ 
Go(P) =- '"' + ; 2 + A', o(P)- o(P) w2 + ~2 + L'.' '" Zm fl. 

In the obtained expressions it is convenient to sum over 
w and to carry out an analytic continuation in the upper 
half-plane of the frequency w = i wo. 

We introduce the kinetic coefficients with the aid of 
the relations 

ia = <1a~(iOJA~) + Sa~U~, 
fa= Sa~' (iwA~) -la~vok~kvuo. 

(10) 

From a comparison of (10) with (8) and (9), after sum­
ming over w, we obtain expressions for the kinetic 
coefficients. The conductivity is determined by the 
usual formula [lBJ : 

iVe2 e2 \ 
cra~(OJ)= . ba~+ , , . J dpua(P)V~(p)Li+J(e+,f-, OJ.~). 

m(- !W) 4(2n) 3 (~0J) (11) 

The tensor -lQI{3yo(w), which determines the deforma­
tion contribution is the force, equals 

Here 

1 r - -
-la~vo(OJ) = -- J dp(AadP)Av~ (p) )LH(q, E-, OJ, L'l). 

4 (2n) 3 

Li±l(e+ e_ w t.)={(1--~+~-±L\~)( th~+th~--) 
' , , EtE- \ 2T 2T 

(12) 

x( 1 . + 1 . )+f1+_h~-±N) 
Et + E- + (J) + ~/) Et + E- - OJ - l{J \ Etf- ' 

X ( th Et -tb-8-=-)( 1 + 1 )} (13) 
\, 2T 2T Et- E- +OJ+ i/) Et- B-- OJ- i{J 

The tensor SQI{3• which determines the deformation cur­
rent, is given by the expression 

ikve 1 -
Sa~(w)=4(Zn)3J dpva(P) (A~v(P)) 

x{(S+ + ~-)( th="--th e-)( 1 . ---i~-) 
\ Et 8- \ 2T 21' Et-e-+w+i6 Et-E--w-il\ 

+(~+- £-)(tb="-+th E-)\( --1--- --~__!--)} (14) 
\ Et E- 21' 21' e++e-+w+i.S e++e--OJ-il\ : 

where v(ll = pQI/m-electron velocity, and t: = (e + A2)112-
excitation energy. 

The coefficients SQI {3 and S~{3 are connected by sym­
metry conditions, namely: 

Sa~(k,w) = -iOJS~a'(-k,-w). (15) 
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We note that if we put Acxf3 = 0 for the current in (8), 
then we obtain the well-known expression for the cur­
rent in an alternating external field[17l. On the other 
hand, if we neglect the deformation electromagnetic 
field, i.e., we put A= 0, then the remaining part of the 
force fa, 

2T 1 -
/c.(k,wo)=- (2n)' L; J dp(Ac.~(p)k~) 

., 

X (.\,.6(p) uvko)[Go(P+)Go(p-)- Fo(P+)Fo(P-)], 

essentially coincides with the expression for the polar­
ization operator[2l: 

II(k, iwn)= (:l~)' ~ ) dp[G(p)G(p- k)-F(p)F(p- k)]. 

In the limiting case of a normal metal, expression (9) 
for the force coincides with that obtained in[14' 15 l: 

2 a 1 
lim/c.(k, w)= -~-·- J dp' Aa~(p')F(p',r', t). 
"~· (2n) 3 ax~ 

Before we proceed to consider the different asymp­
totic forms of the kinetic coefficients, we must indicate 
that in the linear approximation the expressions for the 
current j and force f coincide in the systems K and K'. 

3. SOLUTION OF THE SYSTEM OF EQUATIONS 

Going over to Fourier components, we write the sys­
tem (1) in the form 

pw'n; = AiklmkhkzUm- /;(k, w), k2A = 4nj(k, w), 

ia(k, w) = iwaa,A~ + SaBU~, fa(k, w) = iwSaB'A~ -la~vok~k,.ua, '(16) 

whence, bearing in mind the isotropic case (see below), 
namely acxf3 = aocxf3' Saf3 = SOaf3' laf3yokyko = lk2oaf3 
(ex, {3, y, o = 1, 2), we get 

Su 
A=----

k2-4nia 

The contribution to the force rem, connected with allow­
ance for the macroscopic electromagnetic fields, is 
given by 

k2 -4:tio · 
(17) 

On the other hand, the deformation contribution rd is 
given by 

(18) 

We shall henceforth be interested in the role of the elec­
tromagnetic fields arising in the case of sound propaga­
tion. It is more convenient to go over immediately to 
the frequency increments ow = w- kso: 

Then 

1 f 
tiw~ ---, 

:lpw u 

'" 2pw 2 k2 -4niwa 

llwd =-1-l. 
w 2pso2 

(19) 

(20) 

(21) 

Here s 0-non-renormalized velocity of transverse sound. 

4. ASYMPTOTIC EXPRESSIONS FOR THE KINETIC 
COEFFICIENT 

Let us consider the asymptotic behavior of the kinetic 
coefficients in the region of the low temperatures and 
relatively high frequencies, satisfying the inequalities 

(22) 

This region corresponds to temperatures T ::;; 1 °K and 
frequencies w ~ 109-1010 sec-1• In this region of fre­
quencies and temperatures it is easy to satisfy the con­
dition wT>> 1, where T-electron free path time. The 
inequality w » (s/v)t. denotes that the wavelength of the 
sound is considerably smaller than the ordering param­
eter ~ o = v / t.. Owing to the smallness of the wave vec­
tor of the sound k compared with the Fermi momentum, 
the quantity Aaf3(p) can be replaced by 

XadP) =A(Iia~-3nanB), (23) 

where na-component of the unit momentum vector p/p 
on the Fermi sphere. 

The conductivity tensor was investigated in detail 
in[17' 18l, and we shall use the asymptotic expressions 
obtained there. As will be seen below, for the trans­
verse case the quantity Saf3 is proportional to aaf3· For 
complete clarity, we shall indicate briefly how the cal­
culations are performed, and present the corresponding 
expressions. As always, in evaluating the integrals we 
make use of the fact that the region of integration of the 
momenta is actually a narrow strip near the Fermi sur­
face. In this connection, all the slowly-varying factors 
such as v2 etc. are replaced by their values on the 
Fermi surface. Integrating over the azimuthal angle, 
w_e can easily see that the tensors acxf3 and Sa/3 are 
d1agonal: acxf3 = aocxf3' Saf3 = Soaf3 (ex, f3 = 1, 2) (were­
call that we are dealing only with the transverse part). 

In the case t./kv « 1 the main contribution to the 
integrand is made by the angle region Ieos e I ~ t./kv. 
Therefore the terms proportional to cos 2 e can be 
neglected compared with unity. This means that we 
confine ourselves to the first term of the expansion in 
the small parameter t./kv. 

In laf3yo(w) we substitute expression (23) and aver­
age over the azimuthal angle: 

(Aa~ (p) Avs (p)). = A2 {.4 1 + A2 cos2 e + A3 cos' 9}. (24) 

At= ocxf3oy0 yields the main term of the expansion. 
However, in the case of transverse sound this term 
drops out, since the corresponding term in the Hamil­
tonian is Auaa = A div u = 0. Therefore the quantity 
la{3yo for the transverse sound turns out to be of higher 
order of smallness in t./kv, with laf3yokf3ky = lk2 0af3· 
At the same time, for the case of longitudinal sound this 
term plays the principal role. 

To improve the convergence of the integrals with 
respect to ~ , we subtract the values of the integrand at 
w = 0, i.e., the stationary conductivity a cxf3(0) and 
-laf3yo(O). The term 

2 ,\:, dS- -
fo -la~vo(O) = -- ';l' -AaB(P)Avo(p) 

(2rt) 3 SF V 

gives the constant renormalization of the speed of sound, 
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which can be disregarded if so is replaced by s. 
In the expression for Sa/3• we integrate over the azi­

muthal angle, take the slowly-varying terms outside the 
integral sign, and reduce to a common denol\linator the 
terms 

( i - 1 ) 
\ 8+- 8~ + w + i6 8+- e_- w- i{j 

( 8++8-!w+-i{j -8++e-_!w-i6 ·). 1 

Introducing one power of cos 8 = ( ~.- ~ -)/kv under the 
sign of integration with respect to ~, and using the iden­
tities 

(6-r- G-)/\ 6-r ±G.-)= (8+ + 8-)( 1 ± G+G- + 1'12 
'\, (25) 

8+ 8- 8+8- I 

we can show that the following equality holds 

3 Am( Ne2 ) -iw-- iwa+- =S(w), 
2 f.' e m 

(26) 

i.e., Sis proportional to the conductivity without the 
diamagnetic term Ne2 /m. This proportionality takes 
place only for the transverse case. 

Finally, the asymptotic forms of the coefficients in 
the region of interest to us are determined by the follow­
ing formulas: 

3n• N e• t1 { 2i w ( t1 \ 4T } o(w)=----- 1---exp --·ln-
4 m(-iw) kv n T T I wy 

(ln y = 0.577) 

3 Am { Ne2 } S(w)= ----w2 o(w)+--.- , 
2 f.' e m(!w) 

l(w)= -~ NN ,(-!.Y{ 1 + 3Jti Texp(-~)}. 
2 f.' v kv T 

(27) 

5. RESULTS 

Let us analyze first the variation of the speed of 
sound, confining ourselves to the principal terms of the 
asymptotic expansions. The addition to the speed of 
sound, due to the direct deformation interaction 

{isd _ 9 (sA ) 2 

-.---8 ~ , (28) 

has the same form as in a normal metal. It is negative, 
its order of magnitude is (s/v)2 , and is independent of 
the frequency. Consequently, in this approximation the 
direct deformation interaction leads to a constant re­
normalization of the speed of sound. 

The change of the speed of sound connected with 
allowance for the electromagnetic fields is determined 
by the expression 

1+0(t1/kv) {isem 9 (sA )2 
-s-=- 32n -;f.'· ' (wc/w0s) 2 + 3:r~2st1/4wv' (29) 

where w0 = (4wNe2 /mc2 ) 112 is the plasma frequency. The 
magnitude of this addition to the velocity depends on the 
frequency. In the frequency region where 

(30) 

(31) 

the speed of sound changes in proportion to the fre­
quency. When w Rj 0 the change in the speed of sound 
due to the electromagnetic field is maximal and its 
order of magnitude is osd/s. In the region of higher 

frequencies (w > 0) the value of loseml decreases like 
-2 w . 

The absorption of sound is determined by the imagin­
ary part of the frequency and, as expected, decreases 
exponentially at low temperatures. In the frequency 
region under consideration, w << t:;,, there is no absorp­
tion due to the pair decay. The deformation absorption 
is connected with the imaginary part of the quantity l(w) 
in (27) and is given by the formula (r =-lim w/w 1): 

r,d = !!!_ e-1>/T (32) 
rnd w , 

where the coefficient of deformation absorption in the 
normal state rg is equal to 

r,d = 2;2~(; Y( ~ t (33) 

The quantity r~/r~ decreases with increasing frequency, 
and the damping decrement wr~ itself does not depend 
on w. The sound absorption connected with the electro­
magnetic field is given by 

r,em =-4-~~ e-11/T in!!_. (34) 
rn11 3n3 T s 1+(w/Q)3 yw 

In the frequency region w < 0, this part of the absorp­
tion increases in proportion to w, reaching a maximum 
at w Rj 0, and then decreasing like w-2 • The values of 
r~ and r~m at w Rj 0 are comparable in order of mag­
nitude. 

Thus, in the region of high sound frequencies (on the 
order of several dozen GHz) the dispersion of the veloc­
ity on the absorption of sound in superconductors are 
determined to a considerable degree by the macroscopic 
electric fields which arise when sound propagates. At 
low frequencies (w ~ st::./v ~ 108 sec-1) these fields do 
not play a noticeable role. 

In conclusion it should be noted that the role of the 
macroscopic electromagnetic field is considerable in 
those cases when th~ principal term in the deformation 
direction (the term A1 in (24)) gives a zero contribution 
for the transverse sound. A decisive role is played in 
this case by Aaf3 (23). pn the other hand, if the contri­
bution connected with A1 differs from zero, the electro­
magnetic fields can be neglected compared with the 
direct deformation interaction. 
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