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The method of Yaks, Larkin, and Pikin is used to calculate, to the first order in 1/rg (where r 0 is the 
radius of exchange interaction), the fluctuation corrections to thermodynamic quantities in a Heisen­
berg ferromagnet (cubic and uniaxial), with allowance for the dipole-dipole interaction of the spins. 
It is shown that in a cubic crystal, the dipole-dipole interaction does not change the character of the 
singularity of the fluctuation corrections; as before, they are proportional to 1/d.fT, where 
T = IT - T c 1/T c. In the case of uniaxial crystals, the anisotropy of the Lorentz field causes, at suffi­
ciently small T, a change from a root singularity to a logarithmic. 

1. The method of the molecular field is appropriate for 
description of the properties of ferromagnets in the im­
mediate neighborhood of the Curie temperature T c (that 
is, when T = IT- Tc 1/Tc « 1) if the radius of interaction 
of the atomic spins is sufficiently large in comparison 
with the lattice constant d[1 ' 2 l. Yaks, Larkin and Pikin[2 J 

showed that in a Heisenberg ferromagnet, the correc­
tions to thermodynamic quantities that result from fluc­
tuations form a power series in the parameter 1/r~.fT, 
where ro is the radius of exchange interaction of the 
spins in units of d. Since fluctuations of wavelengths 
A ~ d/.fT play a fundamental role in the correlation 
functions, it follows that at sufficiently small T-such 
that A :::::, dvoTc/4'lTJ.L 2S2 , where vo is the volume of the 
elementary cell, J.1. is the Bohr magneton, and Sis the 
spin of the atom-, the long-range dipole-dipole interac­
tion will become important. 

For this reason it has been suggested[1 ' 3 ' 4 J that the 
dipole-dipole interaction may appreciably extend (on the 
small-T side) the range of applicability of the molecular­
field method. 

In the present paper, the method developed in [2 J is 
used to calculate the first-order fluctuation corrections 
to thermodynamic quantities in a Heisenberg ferromag­
net (cubic and uniaxial) with allowance for the dipole­
dipole interaction. We have taken account of the mag­
netocrystalline anisotropy only to the extent that it is 
determined by the Lorentz field. Also neglected are the 
effects of the crystal surface and of the domain struc­
ture, since the wavelengths important to the problem are 
considerably shorter than the dimensions of the domains. 

2. The initial Hamiltonian has the following form: 

3C = -IJ. ~ S,H-~ ~ V(r- r')S,S,.- 2~ Dap(r-r')S,"'S,.P, (1) 
r 2 r¢r' r¢r' 

where 
{)2 1 

Dap(r-r')= ~t2-0 a -1--,-1 , 
ra. rp, r- r 

(2) 

and where Sr is the spin of the atom on site r; the first 
term in (1) is the Zeeman energy of the spins in the ex­
ternal magnetic field H, the second describes the ex­
change interaction, and the third describes the dipole­
dipole interaction. 
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It is convenient to divide the Hamiltonian (1) into 3Co, 
corresponding to the molecular-field approximation, and 
;;e 1 , describing the interaction of the fluctuations: 

N (S,)2 

3to = - 2- Wo- ((S,) W0 + !J.H) ~ s,z; (3) 
r 

::JC1 = -~ 2; W.,.p(r-r') (Sr"'- (S.,.)) (S,,P- (S~))o (3') 
r+r' 

Here 
4n~t2 

W 0 = 2; [V(r)+D,,(,.)]= Vo+--l,o (4) 
r Po 

The second term in (4) is the energy of a dipole in the 
Lorentz field; lx + ly + lz = 1. In a cubic crystal, 
lx = ly = lz = 1/3; 

W,.p(r-r') = V(r-r')lia~+Dap(r-r')o (5) 

The magnetic field His directed along the axis Oz. 
Hereafter we assume for simplicity that in a uniaxial 
crystal, Oz coincides with the axis and lz > lx = ly. 

3. We consider the correlator 

where 

p 

K (k w ) = .!.___ r ei~"'• d'Jo. ~ eikr av , " 2~ J LJ 
-P r 

X ( (Sr"'('Jo.)-<S.,.)), (S,,v(O)-(Sv>)cr(~) ), 

S,"' (J..) = eo""• S,"' e-·"•\ 
p 

0'(~) = f~exp{-) ::JC1('Jo.)d'Jo. }, 
0 

(o o o) = Sp{e-~"''o 0 o}{Spe-).>fo}-1, 

(6) 

TA is the ordering symbol, 13 = 1/T, Wn = 21TnT, and a 
and y = +,-, z. 

In the approximation of first order in 1/rg for 
Kay (k, wn), we get the three systems of equations 

Gav(oon) + G.~.(oo,)l'Vv~(k)K~v(k, Wn) = Kav(k, Uln), (7) 

where 

y = ~(Wo(S,) + ~tH), 
W,.1 (k)= L;eikrW,.1 (r), 

(8) 

(9) 
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and the nonvanishing components GaJ3(wn) are[2 J 

G+-(Wn) = G~(wn)= b/(y- iPwn), 

G,.(wn) = 6nob' = 6nodb / dy. 
(10) 

The value of y is determined by the condition for self­
consistency 

(S,) = (y- JLIIH) /f!Wo = b(y). (11) 

The determinant of each of the systems (7) has the form 

~(k, Wn) = [11-fi(Vk - 1/2Dn(k))G+-(wn) 12 

-IGr8kl 2][1-fi("Vk +D .. (k))G •• (w .. )] 

- 2Gzz( OOn)Re{G+-[1-fi(Vk - 1/zDzz(k) )G-r( Wn)] I C~~:l 2 

where 

+ Ck2B~~:·IG+-(wn) j 2}, 

Bk = 112f1[Dxx(k) - Dyy(k) -- 2iDxy(k)], 
Ck = 2-'i•II[Dxz(k) - iDuz(k) ], 

V~~:=~ eik•Jl(r). 

On substituting (10) in (12), we get for wn ~ 0 

~(k co )_Ak2-b2IB~~:I•-(ipw .. )• 
' n - y"-(iflwn)2 ' 

where 

(12) 

{13) 

(14) 

(15) 

From (14) follows the expression for the energy nk of 
the spin waves, 

(16) 

The expression (16) describes the spectrum of spin 
waves whose dispersion is dependent both on exchange 
and on dipole-dipole interactions. In the absence of ex­
change interaction and at T = 0 this spectrum coincides 
with the spectrum of a dipole-dipole ferromagnet, inves­
tigated by Cohen and Keffer[SJ. The dispersion depen­
dent on dipole-dipole interaction is important if Yo 
<;S JJ. 2/vo. When Yo» JJ. 2/vo, it is negligible, and then[5 ' 61 

4n~-t2 ( ku.kp ) 
Du.p(k)=--1 lu.llu.p---(1-liko) , 

Vo \ k2 

so that for a uniaxial crystal ( lz > lx = ly) the spin­
wave spectrum for k ~ 0 takes the form 

[ 112 ~-t2 J Qk2 = b( V0 - V~~:)+ ~-tH + 4n-b:sin2 -frk + 2n- bli 
vo Vo 

x[ b(Vo- Vk)+ ~-tH + 2111£. bli l, 
Vo J 

where 
{J = 3Zz -1, cos~= k,/ k. 

(17) 

(18) 

(19) 

Thus anisotropy of the Lorentz field produces a gap 
in the spectrum. This gap is proportional to b{y), and 
consequently it decreases as (Sz) near the Curie tem­
perature. In a cubic crystal, 1i = 0, and the expression 
(18) at T « Tc {then b{y) = S) reduces to the usual spin­
wave spectrum. In uniaxial crystals, the value of 1i de­
pends on the specific structure. For a hexagonal close­
packed lattice, 1i is small (P::: 10-3)(71 ; in simple hexa­
gonal and tetragonal lattices, 1i depends on the ratio be­
tween the lattice constants and can be ~ 1 [8 ' 91 • We shall 
see later that the character of the singularities of the 
fluctuation corrections to thermodynamic quantities 
near the transition depends significantly on the value 
of o .. 

4. To calculate the fluctuation correction F<1> to the 
free energy, we use the procedure explained in[10l; 
namely, we replace ::Jf 1 in the interaction Hamiltonian 
by g ::Jt 1, where 0 ::o g ::o 1; then 

elF(!) 1 
-- = --~ Sp Wu.p(k)Kpu.(k,con,g). (20) 

dg 2 k,n 

The equation for Kaj3{k, wn, g) is obtained from (7) by 
replacing W11JJ.(k) in it by gW11JJ.(k). It is easy to show 
that the determinant ~{k, wn, g) of this modified equa­
tion is related to the right side of (20) as follows: 

' d 
- ~SpWu.p(k)Kpu.(k,co .. ,g)=;rln~(k,w .. ,g), (21) 

k,n g 

so that on integrating with respect to g, we get 

1 f!Fl1l = 2 ~ In~ (k, COn). 

k,n 
(22) 

On performing the summation over discrete frequencies, 
we find finally that 

[:l}~t>=~ ln(...J!..... sh(Q~~:/2) J 
· k ! Qk sh(y/2) 

1 1 
+-2 ] ln2 {f!2Ck2 [1-fi(V~~: +Du(k))b1 

k y 

- 2bb'(Ak ICk 12 + b ReBk ·ck2) }. 

(23) 

The first term in this expression is obtained by summa­
tion of n from ± 1 to ± oo; the second is the contribution 
of ~{k, 0), that is of the denominator of Kzz{k, 0). The 
structure of this particular term is important for later 
purposes. 

5. We turn to the presentation of the results of the 
calculation of the mean moment (Sz) and of the heat 
capacity CH near the Curie temperature. The dipole­
dipole interaction plays a role if 7 << 1), where 
7] = 47TJJ. 2/voYo. For a cubic crystal, by use of the ex­
pression for the free energy J3F<0> in the molecular-field 
approximation[2 J and of the fluctuation correction (23), 
we get 

a) T > Tc, ch2/3ar « 1: 

(24) 

b) T< Tc, ch2/3a73 « 1: 

(S.) = v 3a~[ 1 +~( ch2 )''• + 5n ~ +~ ~(_!_~)"'] , 
c 2 3aT3 24 f2T 6 f't 3aT3 

a2 [3 3ny 7y(ch2 ;\'~l 
Cll=-;; 2+w-y2-C +16-y-:r ~} J . (25) 

Here the following abbreviations are used: a = S(S + 1)/3, 
c = %a2 + Y1oa, y = 3c-J6/27Tr~a2 , h = JJ.H/Tc. The Curie 
temperature is Tc = aWo + O(y). We shall not write out 
the terms O(y), since they are cumbersome and since 
we shall not need them hereafter. 

From a comparison of (24) and (25) with the corre­
sponding formulas from paper[2 J, it is seen that in a 
cubic crystal the dipole-dipole interaction does not 
change either the character of the singularity in the 
fluctuation corrections or their dependence on the mag­
netic field. It leads only to a certain decrease of the 
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numerical factor that multiplies y /f'i. Thus the criter­
ion for applicability of the molecular-field approxima­
tion remains, as before, the inequality y /..fT << 1. 

A different situation arises in the case of uniaxial 
crystals at temperatures T « 1}0. Here the root singu­
larity of the fluctuation corrections is replaced by a 
logarithmic one. The following expressions for (Sz) and 
CH are obtained, to within terms small in comparison 
with ln (1}6 / T): 

a) T > Tc, ch2/3aT3 « 1: 

ah( ch2 ·)[ yv2+b r]il] (S,) = ~- 1 1 - -· · ~ 1 +- ----In- , 
T \ 3a,;3 1 ' 4 r]<'l T 

(26) 

b) T < Tc, ch2/3aT3 « 1: 

(s,>=l/~'~(1+~V-/ )( 1+.!..V2+b In Ill\\, (27) 
c 2 3a-r3 · \ 4 111> ,; ' 

The condition for applicability of these expansions is the 
inequality 

(28) 

which in the temperature range considered, T << 1}0, is 
considerably weaker than the inequality y « .fT. When 
T >> 1}0, in a uniaxial crystal as in a cubic, the expan­
sion is carried out in powers of y /.fT. 

The expansions (26) and (27) have a range of applica­
bility if y is sufficiently small, since then the inequality 
y « ..fT is satisfied until T Rl 1}6 « 1. In what ferro­
magnets these conditions may be satisfied is in general 
not apparent. Favorable in this respect are ferromag­
nets in which a large role is played by indirect exchange, 
in particular via the conduction electrons (in this case 
it is to be expected that the correlation radius will be 
sufficiently large), and also ferromagnets with small T c 
and consequently not too small1}. 

Our results for ferromagnets are quite similar to the 
results of paper [lOJ for ferroelectrics. In ferroelectrics 
as in ferromagnets, the dipole-dipole interaction changes 
the character of the singularity in the fluctuation terms 
only in noncubic crystals. But whereas in ferroelectrics 
this result does not depend on the anisotropy of the 
Lorentz field, in ferromagnets precisely this anisotropy 
plays a fundamental role. For ferromagnets in which 
o « 1, the range of applicability of formulas (26) and 
(27) is greatly narrowed, giving place to an expansion in 
powers of y /.fT. 

6. In closing, we make a few qualitative remarks. 
We shall suppose that the interaction consists of two 

isotropic parts Yk and Yk: with radii ro and Ro respec-

tively, and with Ro >> ro. In this case a Fourier com­
ponent of the correlator Kzz(k, 0) near the Curie tem­
perature has the form 

a 

(Wo- Wk)/Wo + 2-r 

where Wk = Yk + Yk. Analysis of the expression for 
Kzz(k, OJ, which basically determines the character of 
the singularity of the fluctuation terms in thermody­
namic quantities, shows that in the interval1}(r0/R0) 6 

« T « 1} = Y~/Wo, an expansion can be carried out in 
the parameter 1/r~1} 112 • This result follows immediately 
from the form of the denominator of Kzz(k, 0) for wave 
vectors 1/Ro « k « 1/ro: 

(kro) 2 + 11 + 2-r. 

As is evident, in this case Kzz(k, 0) differs from the 
Ornstein- Zernike cor relator by the presence in the de­
nominator of the constant gap 1J. Since the dipole-dipole 
interaction has an infinite radius of influence, it might 
be expected that the expansion parameter 1/r~1} 112 would 
apply for all T << 1}. Actually, as we have seen, this is 
not so. This is explained by the fact that in a cubic crys­
tal, the contributions to the gap from the diagonal com­
ponents D0101 (k) and the nondiagonal components D01,B(k) 
of the dipole-dipole interaction tensor compensate each 
other. In a uniaxial crystal, however, there remains a 
contribution proportional to 1}0 cos 2 Ilk. The angular de­
pendence of the size of the gap leads to the appearance 
of ln T. 
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