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With the aid of a formalism developed by Pratt et al. [5l, analytic expressions are obtained for the 
total and differential cross sections of the photoeffect from the K-shell of the atom and for seven non­
zero polarization correlations between the incident protons and the outgoing electron at a photon 
energy close to the K-shell ionization energy. The matrix element is calculated with exact rela­
tivistic functions. Terms proportional to a 6 Z6 are discarded from the expression for the total 
cross section, and terms of the order of a 5 Z5 are discarded from the angular distribution. The 
correlations were calculated with a realtive accuracy on the order of a 2 Z2 • The results are ap­
plicable at photon energies k- Ib < ma4Z4/2 (k-photon energy, Ib-binding energy of the K 
electron). Screening is disregarded. 

1. INTRODUCTION 

THE relative photoeffect from the K shell at threshold 
(incident-photon energy close to the K-shell ionization 
energy) was investigated by Nagel and Olsson[ll, who 
obtained relativistic corrections of order a 2Z 2 and 
calculated numerically the total cross section, the 
angular distribution, and the polarization of the photo­
electrons for Z = 92. The entire analysis was made 
in the Coulomb field of the nucleus for the limiting case 
p = 0 ( p-momentum of the outgoing electron). Allow­
ance for the relativistic effects leads to a decrease of 
the cross section by 21% (for uranium), to non-zero 
cross sections for scattering forward ( () = 0) and 
backward ( () = 1r; () -angle between the direction of 
emission of the electron and the photon propagation 
direction), and to the appearance of polarization of the 
photoelectrons. Three numerical calculations for the 
Coulomb potential, pertaining to the threshold energy 
region, are given in[3l. Calculations with different 
models of the screened potential near threshold are 
scanty and were made only for the total cross sec­
tion[3'4l. 

In the present paper we use a general formalism 
developed by Pratt et al.[ 5 J to obtain analytic expres­
sions for the total cross section of the photoeffect from 
the K shell in the Coulomb field of the nucleus, the 
angular distribution of the photoelectrons, and all the 
non-zero polarization correlations between the inci-
dent photon and the outgoing electron at photon energies 
close to the K-electron binding energy. In this case the 
natural parameters of the expansions are aZ, k/TJ, and 
p/1]. Here TJ-average value of the K-electron momen­
tum ( TJ = maZ, m-electron mass), k-photon momen­
tum (k- Ib < ma2Z2/2; Ib-K-electron binding energy), 
and p-momentum of the free electron ( p - 0 when 

Coulomb and screened fields is approximately 3% (the 
cross sections are compared at identical photon ener­
gies; the photoelectron energies are then different, 
owing to the difference between the binding energies of 
the K electron for the Coulomb and screened poten­
tials). 

The angular distributions and polarizations of the 
photoelectrons are compared only with the data of the 
numerical Coulomb calculation(3' 4l for Z = 92, in view 
of the lack of similar calculations for screened fields. 

2. GENERAL FORMALISM 

In this section we follow[ 5 J. The differential cross 
section for the photoeffect is 

_!!c:_ = apE Jl \IJ/aeeikri!Jid'rl2. (1) 
dQ 2nk J 

Here ti = c = 1, a = 1137; p, E-momentum and energy 
of the outgoing electron; k, k, e-energy, momentum, 
and polarization vector of the photon; E and k are 
connected by the energy conservation law: 

E = k+mv, (1a) 

where my= m-1 1 - a 2Z2 -energy of bound K elec­
trons; a-Dirac matrix; IJii and IJif-wave functions of 
the bound and free electrons: 

( G (r) QJLM(r/r) ) 
\lli= 

iF(r) QJL'M (r/r) 

For the K shell, J = 12, L = 0, L' = 1, and M = ±12· 
The radial functions G and F are normalized by the 
condition 

co 

S (G2 + F2)r2dr = 1 

and are given by 

(2) 

(3) 

G = 1Yie4'(2w)"-', F = -u.Z(1 + v)-•G; \4) K -· Ib ). The formulas obtained for the total and dif­
ferential cross sections are suitable for elements with 
large Z. The screening effects are disregarded. For 

TJ = maZ, v = (1- a2Z2 )'f,, Ni = [TJ3 (1 +Y) I 1'(1 + 2y)]'-. (4a) 

the photon energies under consideration ( k - Ib, 
c < ma4Z4/2, where Ib,c is the binding energy of the 
K electron in the Coulomb field of the nucleus) the 
difference between the total cross sections for the 
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The wave function of the outgoing electron 1/Jf, in a 
suitable asymptotic form (plane wave plus a converging 
spherical wave), will be represented by an expansion in 
partial waves: 
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Here 

'ilt = 4n ~ ( Qj\"m ( L) w) z'e-i6, ( g,.(r)Q;zm(r/r) )· 
;zm\ \ P i/x(r)Q;z•m(r/r) 

6,. = 1/.n(l- y,.) - arg f("Vx + iv) + TJx + n /2, 
621~. = _ yx- iv = _ x- iv' 

x+iv' Yx+iv ' 
aZE , aZm 

.v=--, "=--, vx=fx2-a2Z2, 
p n 

x = ± (j + 1/2) when j = l + 1/z, l' = 2j -l; 

(5) 

(6) 

w-normalized spinor (w*w = 1) defining the polariza­
tion of the photoelectron in its rest system. The radial 
functions gK and fK behave asymptotically like 

1/ E + m 1 ( ln ) 
g,. ~ f ~ Pr sin pr- 2 + 6x + v In 2pr , 

1/ E-m 1 1 l:n; ) 
f,.~ V- '!.E p;:cos\pr- 2 +11x+vln2pr , 

(7) 

and are given by 

g,. = N,.(2pr)v.-1( }+, f,. = E! m N,.(2pr)Vx-1( }-, 

N =lf E+m e'fnl21r(oy..+tv)l 
" 2E r(1 + 2y,.) • 

(8) 

{}± = {e-ipr+i~"(Yx + iv)tF1(y,. + 1 + iv; 1 + 2y,.; 2ipr) ±C. c.}. 

The photon polarization vector e will be resolved 
along the unit vectors e 1 and ea: 

(9) 

e1 lies in the scattering plane (plane containing the 
photon and electron momenta k and p), and e 2 is 
perpendicular to this plane (along k x p). The triad of 
orthogonal vectors e1, and e 2 , and k form a right­
hand system. 

If we substitute (2), (5), and (9) in (1) and direct the 
z axis along the photon momentum k, then the inte­
gration along the angle variables can be readily per­
formed. In place of the bilinear expressions in e 1 and 
ea, which arise in (1), we introduce the quantities (the 
Stokes parameters) 

(10) 
sa= i(etez"- 62et"). 

Then the probability of electron emission with a spin 
directed in its rest system along t, averaged over the 
polarization of the initial state, is of the form 

da 1 1 ( 
dQ(i;)=2A ~ ~~~;B;;, 11) 

1,;-o 
so= ~o = 1, A= 16napE I k, (12) 

where ~l- ~ 3 are defined i-n (10). The three ortho­
gonal unit vectors ea X p/p, ea, and p/p form a right­
hand coordinate system, in which the projections of the 
unit vector t are defined:* 

~,=i;[ezp/p], ~=i;e., ~=i;p/p. 

The non-vanishing Bij (Boo, Boa, B10, Ba1, Baa, Bs1, and 
Bs3) are given inrsJ (formula (2.25)) and we shall not 
write out here general exPressions for them. 

*[e2 p/p] = e2 X p/p. 

If the photon is linearly polarized, so that(el 
e = e 1 cos 4! + ea sin 4! ( 4! -angle between the photon 
polarization plane and the scattering plane), then ~ 1 
= cos24!, ~a= -sin 24!, and ~3 = 0. For photons with 
right-and or left-hand circular polarization e1 
= ( e1:!: iea)/{2 and ~ 1 = ~a= 0, ~~ = ± 1. For unpolarized 
photons ~1 =~a= ~3 = 0. 

The differential cross section for unpolarized pho­
tons, summed over the spins of the outgoing electron, 
is 

( da) da da 
dQ unp = dQ (i;) j- dQ(- i;) = ABoo, (13) 

and (11) can be written in a different form: 

da (da) 1 ~ 
dQ = . dQ 2 .£J S!~,C;;, 

Uhp i,j=O 

(14) 

where the polarization correlations Cij 

C;; = B;; I Boo; 

are given by 

(15) 

Cij determines the degree of polarization of the photo­
electrons along the 'j direction if the state of the pho­
ton polarization is described by the Stokes parameter 
~i· 

The total cross section is obtained by integrating 
(13) over the electron emission angles: 

a=2nA fs,0 sin8d8=A ~ [!R,.+I 2 +IR,.-! 2]. (16) 
0 " 

The sum is taken over the integer positive and nega­
tive K, K f 0. The functions R~ for positive K ( K = l) 
and negative K ( K = -l - 1 ) are the following radial 
integrals: 

]11(/'l__l_i)"" 
R,+ = - 21 + 1 ~ r" dr Fg,(h-t + h+1), 

0 

+ )'l(l+1)(l+2)1 0 • 

R-H = 21 1 . Jr"drFg-z-t(ll-t +lz+t), 
+ 0 

(17) 

Rt- = 21i~ 1 :dr {Fgt(-liz-1 +(l + 1)iz+ll-(2l + 1)C/J,_,}, 

R-z-t = )'l + ~ fr"dr{Fg_,_~[-liz-1 + (l + 1)iz+tl + (2Z + 1)G/-z-tiz+t}. 
2l+ 1 0 

Here jz = jz ( kr) is the spherical Bessel function that 
results from the expansion of the exponential factor 
exp ( ik · r) in {1) in spherical functions. 

If all the R~ are calculated, then the problem of 
finding the cross section, the angular distribution, and 
all the correlations is solved (the Bij represent in­
finite sums of bilinear expressions made up of 
exp(iOK)R;, where the phase shifts are defined in {6)). 
In the next section we shall calculate R; and the total 
cross section of the photoeffect. 

3. CALCULATION OF THE RADIAL INTEGRALS AND 
OF THE TOTAL CROSS SECTION 

Equation (17) contains two types of integrals: of the 
product of the functions GfKjz, and of the product 
FgKjz. Using (4), (8), and the definition of the spherical 
Bessel functions 

. 1/---;:- ( 3)"" (-1)n(lcr/2)'+2n 
Jt(kr)= V ·-ll+'!,(kr)= ft- 2; ------, (18) 

2/cr \ 2 n=O n!f(n + l + 3/.) 
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we obtain for these integrals .. . 
\" m l 
.l Gfxhr2dr = N---- [(- x + iv')Hxz-(Yx- iv)H,z'], 
•0 E+ m v' 

.,. N . (19) 
\ Fg,jzr2 dr=-·--[(- x + iv')Hxz+(y,- iv)Hxz'l, 
·• 1 +'I 

where 

and 71K' yK, v, and v' are defined in (6), while y and 
TJ are defined in ( 4a). The asterisk denotes the com­
plex conjugate. Further, 

Hxz= ( !!._)V,-1_2Vxf(3/z) ~ (-i)nf(cn) ( k )l+2n 
\ m • f(1 + 2yx)n::'0n! f(n + l + 3/,.) \2,] 

X(1+if1)-'"zF1(1+yx+iv,cn; 1+2y,; 2if!l(1+if!)), (21) 

Cn = 1 + y + Yx + l + 2n, f1 = PI fl. (22) 

When considering small momenta of the outgoing elec­
tron (in the limit as p- 0, i.e., v, v'- oo ), it is 
convenient to expand (19)-(21) in terms of p. Using 
the asymptotic expansion for the r function contained 
in NK: 

(23) 
+ Yx(2yx- 3)] + O(v-4)}, 

and (6) and (8), we find that when p- 0 we get 

N ~ O(v'i,) (20a) 

for all K. The expansion of HKz in terms of p begins 
with terms 0 ( 1 ) for all K and l. 

In the same limit ( p - 0), the photon momentum 
approaches k- Ib = m(1 -Y)"" mo: 2Z2/2, and k/77 
- o:Z/2. Then 

H.,~ (k I fl)'""' (aZ I 2) 1, 

and we get for R~ (see (17)) 

(24) 

In order to calculate the differential cross section 
accurate to o: 4 Z4 , it is necessary to calculate all the 
R~ up to l = 5, i.e., from re6 to Rt (altogether 20; 
Ro corresponds to R~ = R':.1 = 0, see (17)). In order to 
calculate the total cross section with the same accuracy, 
it will be convenient to have a smaller number of par­
tial waves, up to l = 3 (from R~4 to Rt a total of 12), 
since the sum (16) contains only the squares of R~. 

HKz depends also on the parameter o: 2 Z2, which 
enters in yK. Expansion in terms of this parameter 
will be carried out: up to terms of order o:4 Z4 • 

How far beyond threshold can we advance in such a 
calculation method? It is seen from (24) that when 
k -· Ib < Ib ( i.e., k < mo:2Z2 ) one can still guarantee 
an accuracy up to o: 4 Z4 • But the expansion in powers of 
p narrows this region greatly, since in the case of 
(21) and (23) it is valid when v » yK (6). When cal­
culating the total cross section, we shall consider 
energies such that u = p/71 < o:Z, and retain as many 
terms in the expansion in fJ. as are needed to retain the 
previous accuracy to o:4 C4 • This limits the range of 

variation of k to the inequality 

k-lb < ma'Z'I2 (25) 

(for uranium this is approximately 50 keV above 
threshold). In calculating the angular distribution we 
shall consider a still narrower energy region 
( fJ. < o: 2Z2 ), since it is necessary to take higher K 

into account here. With these limitations, we get 

ei~. 1at.,hr2 dr= -M(1+ax) 
0 

,. 2M [ 1 e•~. ~ Fgxf1r2 dr = ---- ( 1 +ax) - ( -xH,, + yxHx,')-
,; 1 +v 2 

1 ( p2 ) iaZp ·l -- 1+8- ImH.,--4--H,, _.; 
1-t' m2 m (26) 

Here 

M--- . - zv-i [ 2rr(1 +v) ]'/• 
m pr(1 + 2y) 

(27) 

The expansion of HKZ (21) is in terms of k/77 = a/2 
+a%+af.J.2/ 2 +0(a5 ), f.J.=p/77, and a=o:Z. The main 
difficulty lies in the expansion of the hypergeometric 
function contained in HKZ in powers of p, since one of 
its parameters is of the order of 1/p. This expansion 
is best carried out by using the integral representation 
for the hypergeometric function. After long and 
laborious calculations, which we shall omit here, we 
obtain for the total cross section of the photoeffect 
from the K shell the following sample expression 1, 

where 

a= a0{Q(f!)- 0,393a2 - 0.144a' 
+ 1.023f12a2 + 0 (a6)}, 

ao = 29rr2ae-• I 3mk = 

= 335.8 m I k [ b ] 

(28) 

(28a) 

( k should be specified in units of the electron mass), 

Q(f!)= --1--exp[41_ 1-
11+1!2)3 \ 

arctg 11. )] 5 
--~~-- = 1-3~~-2+ 

94 + 45 11-' + O(~J."), 

a = aZ, f1 = p / fl, f1 = maZ; 

fJ. is determined from the energy conservation law. 

E = l'm2 + p 2 = k + ml 
(y = l'1- a2Z2). 

(28b) 

(28c) 

When p = 0, the last term in the curly brackets of 
(28) vanishes, and the first equals unity. In this limit 
we get for uranium 

a= 0.793a0• 

--1lNagel and Olsson give [I] for the total cross section the formula 
a = a 0 (I - 0.36 a2 ) (in the limit where p = 0). 
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z 

z 

50 { 

60 { 

74 { 

82 { 

92 { 

Table I 

102 1420 
120 921 

132 1030 
140 882 

Table II 
0, 

l from 

l'l 

921 

1026 
887 

k,keV 
from I from I from 
(2R) ['] [''] 

35,3 46oo I 
40 :1260 3160 3168 

52,1 3030 
60 2080 2040 

R1 1840 1801 
90 1400 1370 

102 1420 
125 834 R12 
132 1030 
150 738 731 725 
175 532 493 

The exact numerical calculation by Nagel and Olssonl1 l 
yields for this case 

o = 0,789oo. 

The difference is only 0.5%. With increasing distance 
from the threshold, the error in (28) increases. 

Comparison of the total cross sections calculated 
from (28) with the numerical Coulomb calculations of 
Hultberg, Nagel, and Olsson l3 l (there are only three 
such calculations) is shown in Table I, and comparison 
with the numerical calculations in screened fields, by 
Schmickley and Prattl4 l and by Racavy and Ron[3l is 
given in Table II. For each element, the first number 
in the table is the cross section at the Coulomb 
threshold. As seen from these tables, the difference 
between the cross sections does not exceed 1% in the 
first case and about 3% in the second, with the exception 
of k = 17 5 ke V for Z = 92, where the difference 
reaches 8%. But this energy value lies far beyond the 
Coulomb threshold (43 keV above threshold), where the 
accuracy of formula (28) is much worse. 

4. ANGULAR DISTRIBUTION AND POLARIZATION 
CORRELATIONS 

In order to calculate the angular distribution of the 
photoelectrons and their polarization, it is necessary 
to know the expressions for [ exp ( i6K)] R~ ( 6K -phase 
shift defined in ( 6)). Since (26) defines l exp ( i1JK ) J R~, 
we get for 6K - 1JK 

:rt • :rll 
llx-l]x=z- (l-yx)- argf(y,.+zv)= 2 (l-2yx) 

+J.Ibx(1-b~2 )+0(J.15), (29) 

b,. = 1I2Yx(Yx- 1). (29a) 

We have left out from (29) all the terms which do not 
depend on the summation index K (or l), since they are 
grouped in one common phase factor preceding the wave 
function. 

We now write out, again omitting all the intermediate 
calculations, the expressions for the functions Bij• 
which determine the differential cross section and the 

polarization correlations (see (11), (13)-(15)): 

C, 5 = B;; I B 00, B;; = Db;;, D = 4 I m2p; (30) 

b00 = q2[1- 'h112 - 0,393a2 + 4ta(J.1- 1/,sna2)-

- a•(0.340 + 0.020q2)] + a•(0,141 + a(8) ), (30a) 
b10 = q2[1- 5/sJ.12 - 0.393a2 + 4ta(J.I - 1/isna2 ) - a•[0.420 + 0,020q') ], 

b02 = - 1/sna2q[t- a(0.503 + 0.221q2) - ta2 (0,839- 0,207q2) ], 

b12 = -'fsna•q[t- a(0.503 + 0.221q2)- ta•(0.339- 0.207q2)]. 

b21 = 'l6na2q [1 - ta(0.503 - 0.640q2 ) - a2 (0.339- 0.336q2)], 

b23 = aaq2[-0.i01 + 0.335q•+O(a2)], 

(30b) 
(30c) 

(30d) 
(30e) 
(30f) 

b,11 = -'12a2q{q2[1 + a2(0.837- 0.670q2)] - 0,180 + 4/tsnta- 0.041'W}, 
(30g) 

ba3 = '12a2t{q2 [1 + a2 (0.010- 0.670q2 )] + 2a2(0.141 + ~(8))}. (30h) 

Here 
a = aZ, It = pIma, q = sin e, t = cos e. 

e -angle between the electron emission direction and 
the photon incidence direction, and 

~(8) = -0.176ta(1- 0,756q2 ) +0.0207a2 (1-1.733q2 + 0.927q4). 

(31) 

The inclusion of the term ~ (e) makes it possible to 
calculate Boo and B33 at small angles and at angles 
close to 180°, with a relative accuracy on the order of 
a2. At other angles, this term is very small and does 
not change the result noticeable. 

In (30c) -(30h) there are no terms linear in }J., and 
the terms 0 ( }J.2) have been left out (as already men­
tioned, we are considering here an energy region such 
that }J.2 < a 4 ). The relative accuracy is on the order of 
a 4 for the coefficients Boo and B 10, on the order of a 
for B 23, and on the order of a 2 for the remaining Bij· 

Having all the Bij, we can calculate the angular 
distribution of the photo-electrons and their polariza­
tion. If we are not interested in the spin of the outgoing 
electron (the detector counts all the electrons), then 
the differential cross section for linearly polarized 
photons is 

(do I dQ) Jp 1 = K (boo+ !;,bw) = K[2bw cos2 <I> 

+ a<(0,141 + o.osoq•+a(e))], (32) 

q. -angle between the plane of polarization of the photon 
and the scattering plane 

K = 26na I e'mk = 40.1m I k [ b/ sr ]. (33) 

For unpolarized particles we have 

(do/ dQ),unp>== Kboo. (34) 

We see from (32) that, unlike the nonrelativistic 
case, photoemission in a direction perpendicular to the 
photon polarization vector does not vanish ( ~ a4 ). 

Formula ( 34) gives a nonzero ( 0 (a 4 )) electron emis­
sion both forward ( e = 0) and backward (.e = 1T). 

In Fig. 1 we compare the angular distributions of the 
photoelectrons for Z = 92 and a photon energy 
k = 132 keV, obtained from formula (34), and numer­
ically in [ll. The electron polarizations along the axis 
defined by the unit vectors e2, p/ p, and e2 X p/ p 
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!. 
!. 

j 
j 

!. 

FIG. I. Angular distribution of 
\ photoelectrons for Z = 92 at a photon 

\ energy equal to the K-electron Coulomb 
\ binding energy (k = 132 kev). The solid 

'\ curve is plotted from (34), and the 
\ dashed curve is calculated numerically 

by Nagel and Olsson[ 1 ]. The curves 
are normalized to unity at 8 = 11/2. 

(Co2, Caaj and Ca1; in the notation of Nagel and 
Olsson[1 - P1, P2, and - P 3 ), calculated from formu­
las (30c), (30g), (30h), and (30), (30a) as well as 
numerically in (!J for the case of cyclically polarized 
photons with energy k = 132 keY and Z = 92, are in 
good qualitative agreement (see Fig. 2). Quantitatively 
the agreement is much poorer than for the angular 
distribution. This is connected with the fact that the 
accuracy of formulas (30c) --(30h) is small, especially 
at those angles, at which the principal term vanishes, 
and for heavy elements we can count only on a qualita­
tive agreement with the exact calculations. On the 
other hand, there are no numerical calculations for 
other Z, and we therefore do not present any plots for 
all the possible Cij in the region of small and medium 
Z, where good quantitative agreement may possibly be 
expected. The values of Cij for such Z, can be 
readily obtained from ( 30a) -( 30h). These formulas 
represent correctly the behavior of the polarization 
correlations at all angles, including the ends of the 
interval (angles 8 = 0 and 8 = 1T), if B00, which 
enters in the denominators of all the Cij, is taken with 
the maximum accuracy given by (30a). 

In conclusion we note that in(ll are given also ana­
lytie expressions for the polarizations P 1, P 2, and 
Pa (in the case of circular polarization of a photon) in 
the first non-vanishing order in az, suitable for 
angles that are far from 8 = 0 and () = 7T: 

P, =- i·a2 ctg0, P, = 0.40a2 cos 0, 

Pa = 0,40a''sin28- 0,~58 
sine 

FIG. 2. Polarizations of 
photoelectrons for Z = 92 and 
cyclically polarized photons 
with energy k = 132 keY. The 
transverse polarization C02 , per­
pendicular to the scattering 
plane, and the longitudinal 
polarization c33• calculated 
from (30c) and (30h), are shown 
by solid lines. The same polariza­
tions, obtained numerically in [1], 

are shown by the dashed lines 
(P1 and P2 ). 

(a = aZ). For these polarizations we get from (30), in 
the same approximation, somewhat different expres­
sions: 

Coo= - ~ a' ctg 0, Cas= 0.50a2 cos 8, 

2sin2 8- 0.180 -c.,= 0.50a ------- ---­
sin 6 
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