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We investigate the singularities of ponderomotive effects in resonant systems of electromagnetic 
radiation, when the frequencies of the mechanical system are much lower than the frequencies of the 
electromagnetic system. We discuss the nature of retardation effects and consider the conditions for 
the occurrence of ponderomotive instabilities near resonance of degenerate and nondegenerate radia­
tion systems. The approach developed in the paper is applicable for the analysis of electrostriction 
and magnetostriction effects accompanying both dimensional and frequency resonances of an electro­
magnetic system. 

THE stability of mechanical systems in which the elec­
tromagnetic-energy density is high was the subject of a 
number of investigations£1- 31 • Braginskit and Mikunin£11 

have shown that the mirrors of an optical Fabry-Perot 
resonator can be set in vibration, while Karliner, 
Shekhtman, and the author£21 observed instabilities of 
the walls of a cavity resonator of an accelerator1 >, and 
Braginskit and Minakova £31 investigated experimentally 
the self-oscillation of the plates of a capacitor of a 
lumped circuit. In all these cases, monochromatic radia­
tion of frequency w is applied to a linear (without account 
of the mechanical motion) electromagnetic system, and 
mechanical oscillations of frequency 0 << w are excited 
(0/w ~ 10-13 in£11 andO/w ~ 10-6 in£2 ' 31 ). The slow mo­
tion of the resonator walls in £1- 31 changes, as a result of 
the change of the natural frequencies of the radiation, 
the state of the electromagnetic system, and the resul­
tant change of the ponderomotive forces influences in 
turn the mechanical motion. The sharp dependence of 
the state of a high-Q radiation system on its configura­
tion, the prolonged transient time, and the possibility of 
high concentration of radiation, cause an effective inter­
action between the mechanical and electromagnetic 
vibrational systems, which differ greatly in frequency. 

The considered ponderomotive effects are of practical 
interest and can find an application. On the other hand, 
they are of independent interest, since they can be used 
as an example for tracing the mechanisms of interac­
tion between slow and fast systems. 

In [l-31 they considered manifestations of forces acting 
on the surfaces of the resonators, i.e., due to the Max­
wellian stress tensor of the electromagnetic field. Be­
sides the surface forces, in a number of cases volume 
forces are also important, for example, forces of elec­
trostriction or magnetostriction type. The theoretical 
analysis calls for a generalization in the sense that 
in£l-3 l the analysis was confined to the case when the be­
havior of the fast system can be characterized by means 
of one oscillator whose line width is much larger than 
the characteristic frequencies of the slow system. 

llFor radio-frequency resonators with high radiation density, the 
ponderomotive effects tum out to be [2 ] quite appreciable, and loss of 
mechanical stability frequently sets in much before other limitations 
(breakdown, overheating) come into play. This imposes additional re­
quirements on the construction of the resonators. 

1. Disregarding other nonlinear effects, we shall 
assume that in the absence of interaction the mechanical 
and electromagnetic systems are linear, the former 
being characterized by low frequencies and the latter 
by high frequencies, so that the effect of the high fre­
quency mechanical vibrations are small and the pon­
deromotive forces are averaged over the fast motion. 

The mechanical motion will be characterized by an 
aggregate of normal (in the absence of ponderomotive 
forces) Lagrangian coordinates X= {Xv}, the oscilla­
tion v being determined by its form of mechanical motion 
and by the coefficients of stiffness, inertia, and friction 
(kv, mv, hv); the coordinates X correspond to general­
ized ponderomotive forces F = {Fv}. In cases that are 
not fundamental, the index v will be omitted. 

We consider first the case when the radiation system 
can be represented by a single mode of natural fre­
quency wo and Q » 1, which is excited by an external 
monochromatic force of frequency w ~ wo. The radia­
tion density that is established in the system is a func­
tion of the electric parameters (wo, Q ... ) which in turn 
are functions of the equilibrium mechanical configura­
tion Xo. The change of the radiation state and of the 
ponderomotive forces F, caused by the change of X, 
proceeds with a certain delay. Therefore F = F[X(t- T)], 
and in the case of small and medium deviations 
x = X- Xo we have 

oF 
F:::::F0 + oX(x--r.i). (1) 

The term xaF;ax introduces stiffness in the mechanical 
system, and the term -rXa F ;ax introduces friction. 

The delay T gives rise to two effects. One of them is 
connected with the finite velocity of light. For the case 
of forces that act on a moving body exposed to light­
this is the so-called "light friction"; when v « c, the 
"light friction" is smaller by a factor of v/c than the 
light pressure (v-velocity of the irradiated body, c­
velocity of light). In our case the "light friction" does 
not exceed F mx/ c, where the speed of light c is ex­
pressed in units of x and Fm is the value of Fo at reson-
ance w = wo. 

Of greater importance for resonant radiation systems 
is another nonrelativistic effect, which is due to the 
dissipative properties of the radiation systems. In the 
nonrelativistic approximation, the ponderomotive forces 
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correspond to tension of the electromagnetic field for 
an immobile configuration X, i.e., without allowance for 
mechanical motion, and the influence of the latter on the 
radiation system is assumed to be equivalent to the 
change of Jhe electric parameters (for example, the 
natural frequency wo) simultaneously with the mechan­
ical motion. The nonrelativistic retardation T is the 
relaxation time of the radiation under perturbations of 
the electric parameters and under changes of X. It is 
clear from physical considerations that this time is of 
the order of the time constant To = 2Qiwo. A rigorous 
acc:ount of the retarded forces in the nonrelativistic ap­
proximation, as well as the conditions of applicability 
(1), will be discussed later. 

We now estimate the order of the nonrelativistic re­
tarded forces and compare them with the ''light fric­
tion." 

The change of F under the influence of X is connected 
ma:inly with the change of the detuning w - wo, since 
(a F /oX) max R:J F ml ~X, where ~X corresponds to re­
tuning of the radiation system by an amount equal to the 
width of the resonance curve wo/Q. In order of magni­
tude, ~X~ 2Z/Q, where l is the characteristic dimen­
sion (in units of X) of the volume in which the radiation 
is concentrated. Hence, putting T = 2Q/wo, we find that 
the ratio of the maximum values of the nonrelativistic 
friction to the ''light friction'' amounts to 

c; A 2Jtc 
~\,X~ Q' Trrl' A = --;; . 

Thus, the possibility of neglecting relativistic retarda­
tion is determined by the smallness of the parameter 
a = 2rr lQ-2 /"A. In the cases of practical interest, a is 
small and we shall henceforth, just as in[1-3 J, neglect 
the relativistic retardation (in[l-3 J, a ~ 10-11-10-9 ). 

2. A rigorous account of the retardation of the pon­
deromotive forces can be obtained by solving the equa­
tion of motion of the radiation 

.. + wo. + 2 . t a Q u w0 u = qeJ" , (2) 

where u(t) is the generalized coordinates of the radia­
tion mode, the right- hand term is the external source, 
the parameters Wo, To = 2Q/wo and q are functions of 
X(t), and j is the imaginary unit. 

Putting u = Uejwt, we represent (2) in the form 

AU + ( ~ + 2jw) if + U = q (3) 

where 

m,ffio ( w roo) A(X) =- (i-y), y(X) =Q --- . 
Q Wo w . 

In the case of slow changes of X(!J. = 0To < 1, 0-charac­
teristic frequency of the mechanical motion), the solu­
tion (2) can be sought in the form of a series U = Uo + U1 
+ ... ,where Uk is of the order of smallness IJ.k. In the 
zeroth approximation U0(X) = q~ -l, in the first approxi­
mation, U1(X, X) R:J -2jwUo~-\ etc. 

The ponderomotive forces are quadratic in the field, 
so that when account is taken of the averaging over the 
frequency w, the generalized forces can be represented 
in the form F = (1/2)a I U 12 , where a = { av }-weight co­
efficients that depend on the distribution of the electro­
magnetic field and the form of the mechanical oscilla-

tions. Confining ourselves to the first approximation we 
obtain for F = (1/2)a(UoUci + UoUt + U6U1) an expression 
of the form (1), the time T being dependent on the fre­
quency difference w - wo. Thus, the delay T relative to 
the change of wo(X) equals T = 2To/(1 + y2). Near reson­
ance, T differs from To by not more than several times, 
and identification of T with the time constant To is ac­
ceptable for estimates. 

For a radiation system with Q » 1, the line width 
w0/Q may turn out to be commensurate with the fre­
quency of the mechanical oscillations, so that the ap­
proximation fJ. « 1 no longer holds. It is then advan­
tageous to introduce in lieu of T another dissipative 
characteristic of the radiation system, namely the ac­
tive component R of the impedance at the frequencies 
w ± n (see Sec. 4). 

For an unambiguous determination of a, we shall 
henceforth choose the coordinate u in such a way that 
the radiation energy stored in the system is 
iS = (1/2) IU 12 • Let us confine ourselves here to the 
adiabatic terms of the interaction of the mechanical 
system with the radiation, then 

1 awo 
av= -~ OXv' 

(4) 

which follows from energy considerations: in the adia­
batic approximation (influx of radiation from the outside 
and dissipation of the radiation, both slow relative to the 
change in oX), the processes in the system occur with 
conservation of the adiabatic invariant 0'/wo, and conse­
quently 

oft Owo dwo oX 
~ --;;;;; = dX wo · 

At the same time, this change o 0 under the influence of 
oX is equal to the work done by the ponderomotive for­
ces, with the sign reversed: o 6 = -FoX, where the for­
ces F correspond to the equilibrium energy at the given 
X. Since F = a0, this leads to (4) . 

3. We now consider the manifestations of the pon­
deromotive effects. 

The behavior of the mechanical system under the in­
fluence of ponderomotive forces in the form (1) is des­
cribed by an autonomous system of equations: 

aF 
mviv + 2hviv + kvxv = ~ (xa- Tia) _v, v = 1, 2, ... , (5) 

a OXa 

where 

1 Owo fi m 
Fv=-~-•--, 

Wo i1Xv 1 + y 2 

( w UJo \ 
y=y(X)=Q\ ----), 

(!)Q {!) I 

0'm-radiation energy at resonance (y = 0), and the val­
ues of BF1,/BXa, Fv, and T correspond to the unperturbed 
value y = y(Xo). The equilibrium state of the mechanical 
system Xo at a given radiation density is determined 
from the relation 

kvXuv = Fv(Xo), V = 1, 2, .... (6) 

It is convenient to characterize the radiation system not 
by the energy 0, but by the power W = Wo 0' m/Q(l + y2 ) 

proceeding from the source. Then 

_a!'_v_ = -~~(i)~~'~ Q~- w. (7) 
i1Xa 1 + y 2 oX,. i!X~ ,,,0" 

The coupling between the oscillations of x 11 results from 
the fact that Wo is a function of the entire aggregate X. 
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Generally speaking, the appearance of the ponderomotive 
forces does not leave the mechanical system holonomic, 
so that gyroscopic forces fvaXa (where fva = -fa vl, can 
appear besides the terms written out on the right side 
of (5). Without considering here the effects due to the 
coupling of the oscillations, we shall take into account 
in the sums of (5) only the terms with a = v. 

It follows from (5) and (7) that on the right slope of 
the resonance curve (w > wo) the ponderomotive forces, 
just as the elastic ones, are directed such as to return 
the system to the equilibrium position (kvkpv ~ 0, kpv 
=-a F vlaXv), and when w < wo they move the system 
from the equilibrium position (kvkpv < 0). Accordingly, 
the increment introduced into the mechanical system as 
a result of the delay Tis negative when w < wo, and the 
mechanical oscillations are additionally damped, and is 
positive when w > wo. At large powers W and at w > wo, 
when 2hv + TllFv/llXv::::: 0, self-oscillations arise in the 
system (mechanical vibration and modulation of the 
radiation). 

The excited mechanical-vibration mode is the one 
having maximum hv(llwo/llXvf2 • Self-oscillations set in 
when the radiation power fed to the system is W ~ Wvib 

(1 + y')" Woz • 
W·b- · wv 

vt - Sy QQZ fr , 
(8) 

where Wfr = 02w~v(Qllwo/llXvf2 is the power lost to 
mechanical friction at an oscillation swing <lXv, corre­
sponding to a frequency change .:lwo ~ wo/Q. The thres­
hold Wvib is maximal when y = 1/v'3, where (1 + y2 ) 2 /86 
RJ 0.4. The frequency of the arising oscillations is 
n ~ (kv + kpvl 112 /mv; for a high-Q mode v (2hv « kvT) 
the frequency n is close to nv = (kvlmv) 112 • 

The steady state of the self-oscillations is determined 
by the nonlinearity of the resonance curve, so that near 
the optimal frequency deviation (y ~ 1/v'3) the modula­
tion of the radiation becomes appreciable even when W 
exceeds W vib slightly. In r21 , the depth of modulation 
reached 80-90%. 

As already indicated, when w < Wo the oscillations 
become deformed, but the fact that the stiffness intro­
duced thereby by the ponderomotive forces is negative 
(kvkpv < 0) can lead in the case of large W to a reversal 
of the sign of kv + kpv· When kv + kpv ::::: 0, the initial 
state Xo becomes unstable. The left slope of the reson­
ance curve then takes on a hysteresis form, and there 
is no stationary regime on the steep section of the slope. 
When the radiation system is tuned, jumps were ob­
served in the change of the steady-state radiation energy 
at w < wo, due to the transition of the mechanical sys­
tem to new equilibrium states. 

Inasmuch as the motion is not periodic, the threshold 
of the static instability is determined by the contribution 
of all the mechanical-oscillation modes (for details 
seer21 ): 

. 1 + y2 
Tl'stat =---woK, 

2y 

If the contribution of the mode v predominates in the 
sum in K, then K ~ (1/2)kv<lX2 , i.e., it equals the energy 
of elastic deformation following a change .:lXv in which 
the frequency of the radiation system is changed by an 
amount equal to the line width. 

Thus, at sufficiently large radiation densities, the 
ponderomotive effects cause both steep sections of the 

slopes of the resonance curve to be unstable2 >. The 
threshold Wthr depends on the mechanical friction, while 
Wstat depends on the stiffness. lnr21 , the minimum val­
ues of Wvib and Wstat were of the same order. The 
situation is approximately the same also for the systems 
considered in r1 ' 3 J, so that static instability can be ex­
pected there, too. 

4. In the preceding analysis, the radiation system 
was assumed to be single-mode and the vibrational sta­
bility was calculated in the approximation in which n T 

<< 1. Let us stop to discuss the more general case. 
Representing the radiation system by means of a set 

of independent (at X = Xo) oscillators with natural fre­
quencies wi(Xo), and confining ourselves as before to the 
adiabatic terms of the interaction with the mechanical 
system, we can represent the radiation energy in the 
form 

where Ui(t)-coordinate of i-th oscillator, bik• Cik-func­
tions of x = X- Xo, which vanish when x = 0. The equa­
tions of motion can be represented in the form 

(9) 

(10) 

For simplicity, the mechanical motion is assumed 
single-mode and index v is omitted. Generally speaking, 
in Eqs. (9), just as in (5), additional terms due to the 
appearance of the gyroscopic potential and not taken into 
account by the Hamiltonian are possible. We shall dis­
regard effects connected with violation of the holonomy 
of the couplings. As before, we confine ourselves to the 
case when the external source is monochromatic: qi(t) 
= qiexp(jwt), and the quality factors are Qi » 1. 

Let us determine the power transferred to the mech­
anical system in the case of periodic motion 
x = xoexp(jnt) + xciexp(-jOt). In the approximation linear 
in x, the solution of (9) takes the form 

u, = u,<">+ u?>. 

" (J)2 

Z;(v)=--- ·-~ 
w;2 - v 2 + jvw;/Q;' 

Za,. = de'!:_ _ __!___ dbil, 
dx w2 dx ' 

where ut> ~ ejwt is the zeroth approximation (x = 0), 

and Zi(v) = Yi- jRi is the normalized impedance of the 
radiation mode i at the frequency v. The power trans­
ferred to the mechanical system during the oscillation 
period 211/0 is 

Fx = 2xoXo Qw2 L; au,aul[Rn(w- Q)- R,(w + Q)] ui">u:•>·. 
i,k,l 

When this quantity exceeds the power dissipated in fric­
tion Wfr = 4h02xoXci, vibrational instability occurs in 
this system. If, for example, one radiation mode with 
index i is excited in the zeroth approximation, then the 
increment transferred to the mechanical system is 

2)The mechanism of vibrational instability was first proposed in [3 ]. 

The analysis presented here is based on the result of[2 ], in which, besides 
the vibrational instability, the static instability was observed and ex· 
plained for the first time. 
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Q,W, 
6 = ~-- ~ a,.2 [Rk(w- Q)-R,(w + Q)], 

w;Qm k 

(11) 

where Wi is the radiation power coming from the out­
side. 

For those forms of mechanical motion, at which the 
energy transferred to the radiation is stored in the en­
eq,ry of coupling between the oscillators i and k, the off­
diagonal coefficients aik differ from zero. If the radia­
tion system is close to degeneracy then, as seen from 
(11), the conditions for vibrational stability (8) are 
radically changed. If it is possible to retain in the sum 
of (11) one term au =a, then the one-mode approxima­
tion is valid, and in particular, when n/w- 0, we get 

aR 2y 
R(w-Q, - R("'+QI = - 2Q 75:;; = ·1-+!J'IhQ 

and we arrive at the case considered in Sec. 3. 
5. For ponderomotive forces of electrostriction or 

magnetostriction nature, the effects considered above 
can take place not only when the radiation system is 
exc:ited (size resonances), but when the natural frequen­
cies of the polarization or magnetization are excited 
(frequency resonances). These are, for example, the 
magnetoelastic instabilities of ferromagnets in ferro­
magnetic resonance, which were investigated in(4 ' 5l. 

We have assumed that the electromagnetic system is 
linear in the absence of mechanical motion, but the dis­
cussed effects are typical also of the more general case, 
when the state of the electromagnetic system changes 
strongly upon deformation and a retardation of the 
ponderomotive forces relative to the deformation takes 
place. In particular, a similar situation can arise when 
the electromagnetic system is excited at multiple or 
fractional resonances. Such instabilities were observed 
in[fiJ in parametric resonance (w ~ 2wo, n << wa). 

In conclusion we note that the considered instability 

mechanisms can be used to interpret the interaction be­
tween fast and slow vibrational systems of a different 
nature, such as the experimentally investigated interac­
tions between transverse and longitudinal elastic oscilla­
tions[7J, spin-spin instability[BJ, etc. It can be shown 
from general considerations that in the zeroth approxi­
mation (n/w - 0) the fast system serves as a reservoir 
of potential energy for the slow system (and sometimes 
also kinetic energy), thus causing the static instabilities; 
retardation effects appear in the next higher approxima­
tion, and one of their characteristic manifestations is 
the vibrational instability. 
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