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It is shown that quasi-shock waves with an oscillatory structure can propagate in an electron beam 
moving against an immobile ion background or in a definite waveguide system. 

J. A single -velocity electron beam is described by a 
system of Maxwell's equations and the equation of mo­
tion. We shall write the equation of motion in the Euler 
form 

av I at+ (vV)v = -l]E- Lvroa], (1)* 

where v = V ( r, t) -velocity of the electron beam; E­
electric field intensity; WH = 'f/C-1 H. Here TJ-absolute 
magnitude of the specific charge of the electron, c­
speed of light, and H-intensity of the magnetic field. 
We call attention to the following circumstance. The 
only nonlinear term in {1), if WH is specified by the 
external magnetic field, is the hydrodynamic term 
( v · V ) v. In this connection, it is natural to suggest the 
existence of hydrodynamic analogies in the nonlinear 
motions of the electron beam. In particular, it is of 
interest to consider the possible existence of motions 
of the shock-wave type in electron beams. This is the 
subject of the present article. 

2. We consider first an unbounded beam moving 
against an immobile ion background. The initial sys­
tern of equations is 

av av acp 
-at+ v ax= 11 8x' 

an a 
-at+ fJx (nv) = 0, 

azcp ( 
ax2 =4ne(n-IZ(}), 2) 

where v-velocity of the electron beam, cp -electro­
static potential, n-electron density, n0 -ion density, 
and e-absolute value of the electron charge. 

We seek the solution of {2) in the form of a plane 
stationary wave: 

v = v(6), cp = qJ(6), n = n(s), 

where ~ = x - ut. 
From {2) we get 

'f2 - 21]qJ = 'fo2, n'f = no'fo, 

tP<p 
- = 4ne(n- no), 
ds' 

where T = v - u-velocity of the electron beam in a 
coordinate system moving with velocity u; To = Vo 

(3) 

- u-velocity of unperturbed electron beam in the mov­
ing system of coordinates. 

We note that To > 0 if the wave velocity is smaller 
than the velocity of the electron beam (slow waves) and 

[V WH] = v X WH· 
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To< 0 if the wave velocity exceeds the velocity of the 
electron beam (fast waves), sign T =sign T 0• 

The system (3) yields 

d2 ( l'fol . ) dS' ('t'2) = 2rop\--"ts,gn'f-1 , 

where w~ = 41Te'f/no. Integrating (4), we get 

~(d:)' + ('f2::F 2l'folt + C)'f-2 = 0, 
C!lp d;, 

(4) 

( 5) 

where the minus sign is taken for positive values of T 

and the plus sign for negative values, and C is an 
arbitrary constant. Using the first equation of (3), we 
can rewrite ( 5) in the form 

1/.(dlP I dl)' +Ill -211 +Ill+ 1 + C' = 0, (6) 

where 

2l]<P rop C' __ ..£_ 
Ill=~, l=r;r1', "to'. 

The phase trajectories of Eqs. (5) and {6) are shown 
schematically in Figs. 1 and 2 respectively. It is seen 
from these figures that in the case of a single -velocity 
electron beam against an immobile ion background 
there can exist no steady-state periodic waves with 
amplitude larger than Tlim = 2 j To I or <I> urn = 3. The 
limiting periodic solution is realized at C = 0. 

dqJ dl 

FIG. 2. 
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We can note, however, the following. If in some 
spatial region there exists a reflected electron beam, 
then we get in lieu of (6) the equation 

'/4 (d<D I dl) 2 +<I>- 2af1 +<I>+ 1 + C" = 0, (7) . 

where a> 1. This can be verified by taking into ac­
count the reflected beam in the third equation of (2), 
and then integrating the obtained equation. The limiting 
amplitude of the periodic solution (7) equals <l>lim 
= 4a 2 - 1 > 3. This circumstance allows us to find 
unique steady-state waves in the electron beam. Fig­
ure 3 shows schematically such a typical wave. On the 
boundary between the regions I and II, the electron 
beam is reflected. Region I is the region of the single­
velocity electron beam, while region II is the region 
of a two-velocity beam. 

The potential in region I is described by the equation 

'/.(d<I> 1 dl)2 +<I> -1'1--t=ID + 1 = o, ( 8) 

and the potential in region II is given by 

1/.(d<I> I dl)2 +<I>- 311 + <D + 1 = o. 
The coefficient a in region I equals Y2; this means 
that half of the electron beam passes into region I. 

(9) 

For region II, the coefficient a equals :Y2, meaning 
that half of the electron beam is reflected from the 
boundary between regions I and II. Owing to dissipative 
processes, the oscillations in I and II attenuate slowly. 

The stationary wave of the type of Fig. 3 can be 
treated as a unique shock wave that couples two differ­
ent states of the electron beam. On the boundary be­
tween regions I and II, a jump takes place in the aver­
age electron density. Such a shock wave is analogous 
in a certain sense to the collisionless shock wave pro­
duced in a non-isothermal plasma without an external 
magnetic field(1, 2l. The difference lies in the fact that 
in the electron beam there cannot exist a solitary wave, 
so that the oscillatory structure of the quasi -shock 
wave occurs not only behind the front but also ahead 
of the front of the wave. 

It is shown in [Jl that in the presence of an external 
magnetic field, there are possibly such states of a 
purely electronic beam, in which nonlinear longitudi­
nal waves oriented along the magnetic field behave just 
as in an electron beam on an immobile ion front in the 
absence of a magnetic field. This offers evidence that 
the quasi -shock waves with oscillatory profile can 
exist also in such electronic beams. 

3. Let now the electron beam move in a simple 
waveguide system. By way of the latter we assume the 
following model. We assume that the waveguide system 
is a multiconductor line filling all of three-dimensional 
space. The conductors of the line are parallel to the 

xy plane and make an angle a with the yz plane. The 
electron beam moves along the z axis. In the absence 
of a beam, a plane wave with components Ex, Ey, and 
Hz can propagate in the system. 

The initial system of equations is in this case 

av I at+ (vV)v = -T]E- T)C-1[vHo], 

on/ ot + div (nv) = 0, 

1 82£ 4rr 8j on 
L1E-- -=---4rre--, 

c2 ot2 c2 at dr 

j = -env+ aE, (10) 

where Ha-external magnetic field, assumed to be much 
stronger than the magnetic field produced in the system; 
icon= aE--density of the conduction current flowing 
along the multiconductor line. 

Assuming that a wave with components Ex, Ey, and 
Hz propagates in the system, and that aj ay = ajaz = 0, 
we get from (10) 

av ov 
Ot+ VOX=- T]Ex, 

an a 
-+--(nv)=O, 
at ax 

82Ex 1 a2Ex 4:rt ojx " on 
iJX2 - ·cz-fj£2- =&at- -':Ute Ox' 

o'E" 1 o'E• 4:rr aj. 
----;;;:; - C2 -fii2 = -;;:fit ' 

ix = -env + jc00 (sin a, jy = iconPOS a, 

Ex sin a+ Ey cos a = 0. (11) 

The last equation of (11) is the consequence of the as­
sumption that the conductivity a along the multicon­
ductor line is infinitely large. We note that from the 
Poisson equation it follows that 

.a2Ex an 
---- = -4rre-
a.r2 ax 

The system (11), with account of (11), yields 

ov av on a 
-+v-=-T]Ex, -+-(nv)=O, 
i)t ax at iJ.x 

ax' v 2 at' ph 

4rrecos2 a iJ_ (nv) 
"P~ at ' 

(12) 

(13) 

where Vph = c sin a. . . 
The system (13) is best treated as that descnbmg 

the propagation of electromagnetic waves in a certain 
nonlinear medium with an effective polarization P. To 
this end, we represent all the unknown quantities in the 
form 

v=vo+v1(x,t), n=no+n,(x,t), 

Ex=Exo+Ext(x, t), x=xo+x,(x, t), (14) 

where the zero index denotes the quantities pertaining 
to the unperturbed beam, and unity denotes the pertur­
bations. The function x1 ( x, t) describes the displace­
ment of the electrons from their positions in the un­
perturbed beam. The velocity perturbation v 1 ( x, t) is 
connected with the function X1 ( x, t) by the relation 
v 1 = dx1 I dt, where 

d a a 
dt==·at +(vo+,v,)a;;. 

We define the polarization P as follows: 

P = -en0x, (x, t), (15) 
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It can be shown that 
oP oP ( 

en1 =ox' e(nu)!=-at. 16) 

Substituting (16) in (13) we get, with allowance for (14), 

where 

ct'P,- !llpz E 
dt2 - 4n xi, 

d:'P .. f 1 oP )-' 1 o . f 1 oP )-z 
-=P 1+-- ---(P)Z 1+--
dt2 - 1 en0 ox en0 ox \ eno ox 

1 o2P \ 1 ap )-3 

+---- (P) 2 1 +--
e2n02 ox2 eno ox ' 

. ap ap 
P ==a~+vo---r;;, 

o•P o•P o•P 
P == -· + 2vo--+ Vo2-. ot• ax at ox2 

(17) 

We seek the solution of (17) in the form of a plane 
stationary wave: 

P=P(s), Ex,=Ex,(s), s=x-ut. 

Substituting (18) in (17) we get 

-~e3no'(vo-u) 2 ..!:..(eno+-~!__)-2= !llpz Ext 
2 ~ ~ ~ ' 

d2E.<t 4nu2 ros2 a d2P 

~ = v p~- u2 ds2 

From (19) we get 
az ( dP )-2 2wp2u2 cos2 a dP 

- e2 eno + - = --:;-:-.,..._;.---:::-:-----:::-ds• ds eno'(u2 - vp~) (vo- u) 2 ds 
We note that 

eno + dP / d6 = en. 

On the other hand, from the continuity equation it 
follows that 

nT = noTo, 

where, as above, T = v - u and To= vo - u. Taking 
(21) and (22) into account, (20) yields 

(18) 

(19) 

(20) 

(21) 

(22) 

d:: (T2)=2wp2a( l:ol sign,;..:..1), (23) 

where a= u2 (u2 - vph2 t 1 cos2 a. 
Equation (23) coincides with (4), accurate to the 

constant a. However, if a< 0, i.e., u2 < Vph• the 
solution (23) differ qualitatively from the solutions (4). 
Integrating (23), we get 

w:z(~~r +a(,;Z:F2jTojT+C)c2 =0, (24) 

where the minus sign is taken for positive values of T 

and the plus sign for negative values. 
4. In the case when a> 0, the phase trajectories 

(24) are shown in Fig. 1. The period of the oscillations 
is now equal to 

2rr I I 'I A.=- 'toaz. 
!Jlp 

(25) 

FIG. 4. 

Relation (25) determines the dispersion properties of 
the nonlinear-medium model under consideration. 
From (25) we get 

(vo- u)2(u2- V<!J2) = ( !Jlpz~ r u2cos2 a (26) 

or 

u=vo±~(u), (27) 

where 
I. " ~=illp 2:rta·'. 

Equation (27) determines, for specified values of vo, 
vph• and .\, the phase velocity of the wave u. Solving 
(27) graphically, we can readily determine all the 
dispersion properties of the considered model. 

Comparing (24) with (25), we can see for the case 
when a> 0, in an electron beam moving in the con­
sidered waveguide system, there can exist quasi-shock 
waves with an oscillatory structure, essentially the 
same as in an electron beam against an immobile ion 
background. The difference lies in the fact that the 
period of the oscillations is different ahead of the 
front and behind the front of the wave (see (2 5)). 

5. If a < 0, we can see from (26) or (27) that in this 
case u is a complex quantity. This offers evidence of 
the presence of instability in the system. 

Figure 4 shows qualitatively the phase trajectories 
(24) in the case when a< 0. This case calls for a 
special study. Motions of the shock-wave type are ap­
parently in this case solitary waves with captured 
electrons. 

In conclusion, the author thanks V. G. Leiman for 
useful discussions. 
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