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The thermodynamic equilibrium of a system consisting of a disordered crystal and monatomic gas, 
both with isotopic impurities, is considered. The difference between the isotopic masses is arbitrary. 
The free energy of the imperfect crystal, the chemical potentials of the isotopes, the partial vapor 
pressures, and the dependence of the isotopic separation coefficient on the difference between isotopic 
masses and the temperature are evaluated to the first power of the small concentration of the minority 
constituent. The quantum effects connected with the structure of the vibrational spectrum of the imper­
fect crystal are shown to be of importance in investigations of the equilibrium of a quantum crystals 
with a monatomic gas. 

THE introduction of a small amount of impurities in a 
crystal lattice changes significantly the spectrum of its 
oscillations, leading in many cases to the occurrence of 
local and resonant oscillation modes(1-6l. Such a change 
in the vibrational spectrum is reflected also in a change 
in the thermodynamic properties of a crystal with de­
fects(2'7-12l. The simplest to consider is an isotopic 
defect in a crystal, for in this case the dynamic and 
thermodynamic problems can be solved completely. In 
particular, it is of interest to consider the thermody­
namic equilibrium of a system consisting of a gas and a 
crystal containing isotopic defects. Such a problem was 
considered many times( 9 ' 13- 15 J and it was shown that in 
the classical limit of high temperatures the differences 
of the chemical potentials of different isotopes do not 
depend on the aggregate state. Accordingly, the vapor 
tensions of different isotopes are identical, and the iso­
tope separation coefficient is equal to unity. 

Deviations from these classical laws were obtained 
when account was taken of quantum effects. In the gas 
phase, the quantum phenomena are connected with the 
presence of vibrational and rotational degrees of free­
dom in a polyatomic gas. In the crystalline phase, the 
quantum corrections were calculated with the aid of 
thermodynamic perturbation theory, in which the expan­
sion was in terms of the parameter tiwL/T, where T is 
the temperature and tiWL is the maximum characteristic 
vibrational energy of the crystal. There are, however, 
crystals for which the melting temperature is lower 
than or of the order of the maximum frequency of lattice 
vibration. For example, the crystal LiH has a melting 
temperature Tm = 961 o K( 16 J and tiWL = 1380° K( 17 l. 
Thermodynamic perturbation theory is not applicable in 
this case. Nonetheless, the calculations can be carried 
out by using the method, developed by I. Lifshitz and 
Stepanova [8J, of expanding the thermodynamic functions 
in terms of the small impurity concentration. 

We use this method in the present paper to consider 
the thermodynamic equilibrium of a system consisting 
of a gas and a crystal with defects. To calculate the 
free energy we used the solution of the dynamic problem 

for a crystal with defects, obtained in(7' 11 ' 18-25 l by ex­
pansion in terms of the concentration. For simplicity 
we consider the case of a monatomic cubic crystal in 
equilibrium with a monatomic classical gas. The quan­
tum effects are due in this case only to the crystal with 
the isotopic defects. The difference between the isotope 
masses is assumed to be arbitrary, and the impurity 
concentration is assumed small. We calculate the free 
energy of the crystal with defects in an approximation 
linear in the concentration, the chemical potentials, the 
partial vapor pressure, and the dependence of the iso­
tope separation coefficient on the isotope mass differ­
ence and on the temperature. 

1. FREE ENERGY OF CRYSTAL WITH DEFECTS 

The vibrational part of the partition function of the 
crystal with defects, at a fixed location of the impuri­
ties, characterized by the symbol A., can be represented 
in the form [8J 

IT [ 2 b liw,(A.) J-1 z,= s ~ , 
w.,.(h) 

(1) 

where nw 11 (A.)-vibrational energy levels of the crystal 
with defects. The quantity ZA. can be written down in the 
usual manner in terms of the distribution function of the 
frequencies of the defective crystal gA.(w 2)[ 10J: 

wL2(f..) 

z, = exp{- ~ dw2g,(w2)!n[ 2 sh :; ]} , 

• 
(2) 

where wL(A.)-maximum frequency in the crystal spec­
trum. 

It will be convenient for us to make use of the con­
nection between gA. (w 2) and the time-dependent Fourier 
component of the retarded Green's function of the lattice 
vibration[25 l DR (l l'· w 2 + 2iw6)· 

Cl' {3 ' ' • 

(3) 
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.. 
Do;pR(l, l'; ro2 + 2iro6} =) d,; ei(w+IO)<Ga.~R(l, l'; -r}, 

GapR(l, l'; 1:} = -i([u"(l; 0), uP(l'; -r)J} 9(-r}, 

{ 1, -r> 0 
9 (-r}= 0, -r<O' (4) 

Here ua(l; T)-a-component of the displacement of the 
l-th atom at the instant of time T; the square brackets 
denote the commutator, and the angle brackets denote 
averaging over the ground state; iO - iO; CA. ( l) equals 
unity if the site l is occupied by an impurity, and equals 
zero if the site belongs to the host lattice. In this nota­
tion, the summation over l should be carried out over 
the entire lattice; MI and M11-masses of the host and 
impurity atoms. 

Let a crystal consisting of N atoms contain Nn de­
fect sites, and let the number of atoms of the host 
lattice be NI = N- N11. Averaging (2) over the random 
distribution of the non- interacting impurities we obtain 
for the partition function of the crystal 

Nl 
Z=~ ZA=--z. (5) 

A Nr!Nnl 

Here z differs from ZA. from (2) in that gA. (w 2 ) is re­
placed by g(w 2) = gA. (w 2)-the frequency distribution func­
tion (3) averaged over the positions of the impurity 
atoms. Using the results ofr7 ' 11 ' 18- 251 in the approxima­
tion linear in the concentration, we obtain for a mon­
atomic cubic crystal the following convenient expression 
for g(w2 ): 

where en-impurity concentration, 

p(ro2)= ~ (;;) 3~) d'k6(ro2-ro;2(k)), 
3 

2 -- c p(Q2)dQ2 
l(ro }- 1 ro2-Q2 ' 

d 
p'(ro2) = dw2 p(w2), 

d p'(Q2)dQ2 
l'(w2) = dw2 l(w2) =-8 w•- Q2 ' 

(6) 

(7) 

(8) 

(9) 

(10) 

•l(w2} = (1 + ero2J(wi'}]{[1 + ew2J(w2)]' + [new2p(w2)]"}-1, (11) 

y(w2} = [nero2p(w2}]{[1 + euN(w2)]" + [new2p(w2))2}-•, (12) 

Yo-volume of unit cell. 
It is shown in Appendix 1 that g(w 2) from (6) satisfies 

the necessary normalization condition 

(13) 

Substituting (6) in (5) we get 

(14) 

(15) 

(16) 

Then the free energy of the crystal in the approximation 
linear in the concentration is written in the form 

F = TN(crr Incrr + crln cr} +N(J.L + CrrJL'), (17) 

and the chemical potential of the atoms of the first and 
second sorts are equal to 

J.Lr =Tiner+ J.L, 
!!II= Tin en+ J.l + J.L'· 

(18) 
(19) 

It is seen from (15) and (16) that f.l is the chemical 
potential of the atoms of the pure .lattice, and f.l' gi ~es 
the change of the chemical potential due to the realign­
ment of the vibrational spectrum of the crystal in the 
presence of the impurities. The free energy of the de-

l d 1. . [7,a,l2J I r11 fective crystal was calcu ate ear 1er m . n 
the free energy was expressed in terms of a multiply­
valued function of the shear. Since the shear function 
has discontinuities in the region of the frequencies of 
the continuous spectrum in the presence of resonant or 
even local vibrations [3' 4 ' 261 , it is essential to take cor­
rect account of this discontinuity in the various choices 
of the branches. The expression obtained in the present 
paper for the free energy is in terms of the derivative 
of the shear function, which is a single-valued function. 
It coincides with the expression of[7l if one uses for the 
shear function in[ 71 the positive branch when c: > 0 and 
the negative branch when c: < 0 1>. The question of the 
choice of the branches of the shear function were dis-

th [12] cussed earlier in a paper by one of the au ors . 

2. PARTIAL VAPOR TENSIONS AND ISOTOPE SEPAR­
ATION COEFFICIENT 

It is necessary to add to the values of the chemical 
potentials (18) and (19) an electronic part f.le, which we 
shall assume to be the same for the different isotopes 
in the same aggregate state, but different for the crys­
tal and the gas. 

The equilibrium of the phases is characterized by 
equality of the temperatures, pressures, and chemical 
potentials: 

(JLr + JLe} cryst ~= (JLI + JL.')gas, 

(J.Ln + Jl.e) cryst = (JLrr + 11e')gas· 

For a monatomic classical gas we haver131 

[ c ;P 1 2nli2 )"'] 
(JL;}gas =.Tin T'l• \ M, 

(i-species of isotope, P-gas pressure). 

(20) 

(21) 

(22) 

From (20) and (21), substituting (18), (19), and (22), 
we get for the partial vapor tensions the expression 

P; o= (c;)gasP = POi(c;)cryst, (23) 

where the vapor tensions of each of the isotopes are 

T'!.llfr'l• { (JLe) cryst - (J.Le1 )gas + J.L } Por = exp --'-'=::c_:=-~...::.:c:::........:._;__ , 
(2nli2)'h T 

T'I•Mu'l• { 
Pon = (2rrli•)% exp 

(24) 

(25) 

Thus, Poi coincides with the vapor tension of the pure. 
main isotope I, and P oil is not equal to the vapor tenswn 
of the pure isotope 11. We shall find it convenient in 

llThe authors I. P. I. and A. A. K. are deeply grateful to I. M. 
Lifshitz for a discussion of this question. 
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what follows to consider the quantity 

Par- Porr 

Par 
1 - ( 1 - e)'/, exp ( ~ ) , (26) 

which does not depend on JJ.e and is expressed in terms 
of the change of the chemical potential in the defective 
lattice /.J. 1 • 

Calculating (20) and (21) term by term and substitut­
ing (18), (19), and (22), we obtain an expression for the 
isotope separation coefficient a: 

In a =.In [ (en ) ( .::__) J = -In { ( 1 - e )'l'e"'IT}. (27) 
\ Cr cryst, en ·gas 

The obtained expressions (26) and (27) are valid in 
both the quantum and the classical regions of the tem­
peratures and for an arbitrary isotope mass difference. 
In Appendix 2 it is shown that in the classical limit of 
high temperatures /.J. 1 tends to equal the difference of the 
chemical potentials of the pure isotopes II and II: 

~'lr~oo = ~1°- fln° = 3/zTin(1- e). 

From this we get the correct classical limit for (26) and 
(27): P,1 = P 0II and a= 1. 

In the case of a small isotope mass difference 
(lEI« 1) we get from (16) 

Por-Pon =~[ST-E(T)], 
Por 2T 

e 
a= 1 + 2f[3T- E(T)]. 

Here E(T)-total vibrational energy per atom in the 
lattice of the host crystal: 

E(T)=3 ~ dw2p(w2)/iw(n(w)+ 1h), 

(28) 

(29) 

n (w) = (e'wiT -1t1• (30) 

Expanding n(w) in powers of nw/T in the high-tem­
perature limit and retaining the first term of the expan­
sion, we obtain the first quantum correction to the 
classical limit: 

3/i2 (' 
~[3T-E(T)]=---e.l w2p(w2)dw2, 
2T 24T2 

(31) 

which agrees with the previously obtained results [13 ' 151 • 

Let us find now the dependence of the quantities 
(P0J- P 0II)/P0J and a onE= (MJ- Mn)/MJ for the 
following cases: 1) a light isotopic defect 0 < E <;::;, 1, 
and 2) a heavy defect lEI» 1, E < 0. 

1) 0 < Ecr < E <;::;, 1. Here Ecr-critical value at 
which a local vibration appears in the spectrum of the 
lattice. For typical ionic crystals Ecr?: 0. 5. In this 
case y(w 2) from (12) can be represented near the local 
frequency w0 > wL in the form 

y(w2) = :rt[ewo2I'(w02)- w0-•]-16(w2 - wo2). (32) 

When w < WL, formula (12) remains in force. Then 
I.J. 1 from (16) can be written in the form 

~~ = sr{ ·-r dw2 [- ew2~(w2)ln( 2 sh ~;) J p' (w2) 

0 

+ ~ "f dw2 [ ew21' (w2)- w! ]v (w2)ln( 2 sh ;; ) } 
n o 

+3Tln(2sh~;'). (33) 

This expression simplifies somewhat for the case of a 
very light defect, when E <;::;, 1 and Wo » wL. Since the 
impurity atom oscillates in this case essentially at the 
local frequency, the quantity y (w 2 ) is approximated at 
this frequency by expression (32) and by zero at all 
other frequencies. In other words the contribution of the 
local frequency to the normalization integral (Al. 5) is 
practically equal to unity, i.e., 

It follows therefore that, at the indicated accuracy, 

[ 1 l 1-e ewo2I'(wo2)--· =--
Wo2 _ €Wo2 

(35) 

and from (Al. 3) we get 

1 
~(w•)=--

1- e 
ewo2 1 ew2 0 ( wr.2 ) 

-:1---e.,.-(w-,o2=---oJ-2 ) = - (1- e)w02 + w02 • 

(36) 
Substituting (34) and (35) in (33), we obtain finally an 
expression that is valid in the entire temperature region: 

~~ = 3T ~ ( ew2 \ [ liw l 
dw2 -1+ }ew2p'(w2)ln 2sh-, 

(1-e)wo2 2TJ 
0 

[ liwo] +3Tln 2sh-zr . (37) 

Therefore (Pol- P oii)/P ol and a are determined with 
the aid of formulas (26) and (27). 

To determine the direction in which a deviates from 
its classical limit, which equals unity, it is sufficient 
to calculate the first quantum correction to this classical 
limit. Using the expansion 

[ hw J /iw 1Pw2 

ln 2sh2T = lnT+ 24T2 + ... , 

we shall find the first quantum correction to /.J. 1 from 
(37) in the classical limit T > nwo> nwL. As shown in 
Appendix 2, the integration of the first term of this 
expansion gives the value JJ. 1 =- (3/2)T ln (1 - E). The 
second term can be integrated approximately by using 
for ~(w 2) the expression (36) and assuming that y(w 2) 

differs from zero only near the local frequency Wo. 

Then, recognizing that 

w02 ~ - 8- (w2) = - 8- (' p ( w2) w2dw2, 
1-e 1-s .l 

we get 

3 31i2 1 2 - e2 ) 
~~ =--Tin(1-e)+-(w2) \--

2 24T 1-8 (38) 

and from (26) and (27) we get 

Par- Pan 

Por 
= _ x {31i•(w2)(2-e2)}=-]li•(wz)_(2-_~) 

1 e p 24T2 1 - 8 24T2 1 - e ' 
(39) 

a=1- 31i•(."''~(2-e2). (40) 
24T2 1- s 

We found that a < 1 in the case of light defects; this 
means that the relative concentration of the light iso­
tope is larger in the gas than in the crystal. 

2) E < 0, IE I » 1. If the conditions for the existence 
of the resonant mode are satisfied, then at the resonant 
frequency w~es = IE r 1(w-2r\ where (w-2 ) = jp(w 2)w-2dw 2 
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the quantity y (w 2 ) is well approximated by the expres­
sion 

·{ :2 -lelw:O,J' (w:.,) r 6(w2- w:.,). (41) 
res 

From the normalization condition (A1.5) we get 

1 2 , 2 1+lel 
--2- -I 8 I !Jlresl ( !Jlres) = -1-1- 2-

Wres 8 wres 
(42) 

and from the dispersion relation (A1.4) we have 

1 8!Jl:Os 
Ll(w2)= 1+1-;j--1+181 wi.,-w2. (43) 

Substituting these approximate expressions for 6. (w 2 ) 

and y(w 2 ) in (16), we get 

r { 1 I 8 I w;., 1 } 
~t' = 3T J dco• T+TeT- 1 + 18 I w~, - w• lelw2p'(w2) 

[ liw l [ liw,.,, 
X In 2sh2r _ + 3Tln 2sh2T j- (44) 

Calculating the first quantum correction in the classical 
limit T /n » WL, we again find that the direction in 
which the quantities (Poi- P 011)/P oi and iJ.' deviates from 
its values in the classical 'limit. We find that the heavier 
isotope has a smaller vapor tension and its relative 
concentration in the solid phase is larger than in the 
gas phase. 

By way of illustration, we have calculated the separa­
tion coefficient Ql in a wide temperature range for 
several values of E. The calculations were made for a 
cubic face-centered crystal with central nearest-neigh­
bor interaction. The results are shown in the figure. 
The critical value Ecr for the chosen model of the crys­
tal is Ecr = 0.24. Consequently, the curve with E = 0.2 
corresponds to the case when there is still no local 
oscillation, and the curve with E = 0.3 to the case when 
it has just appeared. The value E = 0.3 corresponds to a 
local-oscillation frequency w0 = 1.0078wL, and when 
E = 0.9 we get w 0 = 2.2654wL. The frequency of the 
resonant oscillation atE =-10 is Wres = 0.175wL. 

It is seen from the figure that when E > 0 the separa­
tion coefficient Ql < 1 in the entire region of tempera­
tures. Similarly, when E < 0, we have Ql > 1. In both 
cases Ql is a monotonic function of the temperature. The 
characteristic temperature at which Ql tends to the 
classical limit, equal to unity, turns out to be essentially 
dependent on E, i.e., on the isotope mass difference. 

In conclusion, we note once more that in the quantum 
region of temperatures Ql differs appreciably from the 
elass ical value unity. This indicates that it is necessary 

to take into account quantum effects due to the crystal 
lattice in investigations of the thermodynamic equili­
brium of a polyatomic gas with polyatomic crystals 
having a Debye temperature close to the melting tem­
perature. 

The authors I. P. I. and A. A. K. are deeply grateful 
to Yu. M. Kagan, M. A. Krivoglaz and V. I. Perel' for 
useful discussions. 

APPENDIX I 

The function g(w 2) from (6), calculated in the approxi­
mation linear in the concentration en, should satisfy the 
normalization condition 

S g(w2)d!Jl2 = 3N, (A1.1) 

To prove this, we use the condition for normalization 
of the frequency distribution function of the pure main 
lattice 

(Al.2) 

and the dispersion relation connecting the real and im­
aginary parts of the analytic function (!J.(w 2)- 1/(1- E)). 
This relation can be obtained by a method similar to the 
derivation of the dispersion relations for the dielectric 
constant r271 • In the presence of a local oscillation in the 
frequency spectrum of the crystal, it takes the form 

"'L' 
Ll(w2)--1-= -~ C y(Q2) dQZ- [ewo2f'({l)o2)-_:_J-' 1 

1-e no'J gz-wz woz' woz-wz 

~ -=-~ c y(Q2) dQ2-~~ y(Q2) dQ2=-~~ y(Q2)dQ:___, 
n ~ gz_ 002 "'.,L, gz_ 00z n 0 (Q2-w2)P 

(A1.3) 
The second term in the right side of this relation is due 
to the pole y(w 2 ) at the local frequency. The last 
integral in (A1.3) is taken in the sense of the principal 
value with respect to the denominator of the integrand. 
Putting w2 = 0 in (A1.3), we get 

Ll(0)--1 -=-__!_~ y(QZ) dQ2. (A1.4) 
1-8 n o gz 

From (11) we see that 6.(0) = 1. Consequently, from 
(A1.4) we have 

(A1.5) 

Formulas (A1.2) and (A1.5) make it possible to calculate 
the integral with respect to frequency of the first and 
second terms in (6). 

The integral of the third term in (6), after substitut­
ing (10) and taking (A1.3) into account, reduces to the 
form 

oo ewz oo e 
~ dw2-;-y(w2)J'(w2)= ~ dw28w2Ll(w2)p'(w2)+ i-e . (A1.6) 
0 0 

The integral of the fourth term in (6) is taken with the 
aid of (A1.5): 

en_!_ 1 y(w2)d!Jl2 =·Cn-1-. 
ne 0 w2 1-8 

(Al. 7) 

Substituting (Al.2), (Al.5), and (Al.6), and (Al.7) into 
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the integral with respect to frequency of (6) we can 
verify that condition (A1.1) is satisfied. 

APPENDIX II 

To obtain the classical limit of iJ. 1 , we replace 
ln[2sinh(nw/2T)] in (16) by 

liffi 1 T 
lnT = -zlnffi2-]nT 

and rewrite the curly bracket of (16) in the manner used 
in (s, 1oJ : 

T"" d 
1'1 =--S dffi 2 ln ffi 2 - ln(1- AD"R)' 

2n 0 dffi2 

1'"" d 
= -- ~ dffi2 In ffiz-ln Ill- ALJORII, 

2n 0 d(J)2 
(A2.1) 

where A= M1Ew 2/n and A= A6zi5zzd5af3· Substituting the 

determinant I ILL -1 11 = 1 under the logarithm sign, where 

L l l M, 1 I 

a~(l, ; ffi 2 + Ziffib) = h (ffi2 + 2iffib) lia~bll'- h<Da~(l, l) 

and <Paf3(l, l 1
) are the elements of the dynamic matrix, 

we transform (A2.1) into 

I T '( d IIL-1.11 
11 = -- J dffi2 lnw2 -·Imln-c-=-

2n o dw2 IlLII 

r"" a 
= --S dffi2 lnuJ2 -Im{(In IlL- t-11)-In IlLII}. (A2.2) 

2n 0 dw 2 

The determinants in (A2.2) coincide with the secular 
determinants of the ideal crystal (IlL II) and a crystal 
containing one impurity atom (IlL- A II). We denote the 
eigenfrequencies of these two determinants by W0 s and 
Ws· We then get for iJ. 1 

where 

fl 1 = ~ In~ w,2 - ~ In~ wol 

=_!'_In IIM-'f,<DM-'1•11 -!__In IJM-'I•<DM-'1•11 
2 (I 0 2 ' 

-'(, I ( 1i )'(, 
Moa~ (ll) = M,- ba~liw, 

'I ( 1i )'I• M;;~· (ll') = - ba~liu•. 'M, 
We finally get 

(A2.3) 

(A2.4) 
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