
SOVIET PHYSICS JETP VOLUME 28, NUMBER 1 JANUARY, 1969 

SUPERCONDUCTIVITY AND QUASI-ONE-DIMENSIONAL (THREAD-LIKE) STRUCTURES 

I. E. DZYALOSHINSKII and E. I. KATS 

Institute of Theoretical Physics, USSR Academy of Sciences 

Submitted February 12, 1968 

Zh. Eksp. Teor. Fiz. 55, 338-348 (July, 1968) 

A model of a metal is considered which is one-dimensional with respect to all electron properties, ex­
cept oscillations of the electron density. As a consequence all previous objections [2 ' 3 3 against the 
possible existence of superconductivity of a peculiar one-dimensional type [1•63 become invalid. With 
respect to magnetic properties our metal is a superconductor of the second kind with a critical field 
Hc2 ~ Tclll (Tc is the transition temperature and ll the Bohr magneton) which considerably exceeds 
the thermodynamic field He. (Even at low transition temperatures of the order of 5-10°K, the field 
Hc2 will be of the order of hundreds of thousands of Oe.) 

1. INTRODUCTION 

SEVERAL years ago, Little[ll advanced the idea that 
one possible way of increasing the temperature of a 
superconducting transition is to use long polymer 
chains. Figure 1 shows one of the possible chains of 
this type; R denotes here some definite monomer. If 
the distances between the neighboring carbon atoms 
turn out to be equal (i.e., the case of resonance), then 
the chain of carbon atoms will constitute a one-dimen­
sional metal with one free electron per atom (with half­
filled band). If, in addition, the monomer R has one or 
several excited electronic states lying in the optical reg­
ion, then attraction is produced between the electrons in 
the chain -C=C-C=, and according to Little's esti­
mates the magnitude of this attraction can exceed in 
certain cases the Coulomb repulsion. The presence of 
attraction of such intensity should, in Little's opinion, 
cause a transition of the conduction electrons into a 
superconducting state even at temperatures on the order 
of hundreds or even several thousand degrees. 

However, soon after the publication of Little's paper, 
Ferrel and Rice[2 J pointed out that a one-dimensional 
system cannot go over into a superconducting state at 
all. Later Hohenberg proved this statement with abso­
lute rigor[3 J. Physically this impossibility is due to the 
destructive action of the free-electron density fluctua­
tions. On the other hand, Little's mechanism is not 
effective in ordinary more or less close-packed metals, 
in which there are no electronic excited states at all in 
the optical region. 

In this connection, it is natural to consider a metallic 
system in which the atoms of the "metal" (the latter 
may be, for example, carbon atoms) are packed with 
the minimum density, so as to leave room for the action 
of the Little mechanism, and, on the other hand, the fluc­
tuations of the electron density have the ordinary three­
dimensional (plasma) character. Such a metal can be 
visualized as made up of regularly arranged polymer 
chains of the type shown in Fig. 1. The bonds between 
the metallic chains -C=C-C= will be realized in this 
case via several lateral monomers, thus greatly hinder­
i.ng the transition of the electrons from one metallic 
chain to another. Therefore the conductivity retains the 
usual metallic character along the chains, and is either 
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FIG. I 

nonexistent at all in a transverse direction, or is ex­
ceedingly small (the latter corresponds to the fact that 
the effective mass of the transverse motion of the elec­
trons is exponentially small compared with the longi­
tudinal mass). At the same time, the long-wave fluctua­
tions of the conduction-electron density, by virtue of the 
long- range nature of the Coulomb interaction between· 
the electrons from different chains, will remain prac­
tically the same as in ordinary metals, and by the same 
token will not destroy the superconductivity (Sec. 3). 

A real analog of substances of the type described 
above are crystals of tetracyan-quinone-dimethane 
(TCNQ) or its compounds (see, for example,[43 ). The 
conductivity of certain substances of this class reaches 
100 ohm-1 cm-1 , and its anisotropy is of the order of 
1:3000. It should be noted, to be sure, that(TCNQ) itself, 
judging from the character of the temperature depen­
dence of its conductivity, is a semiconductor. However, 
by introducing a sufficient amount of donors, the charac­
ter of the conductivity can in principle be changed to 
metallic. We note also that, as shown by Zavadovski1[5 J, 

the introduction of impurities in a quasi-one-dimen­
sional system, even in amounts that are comparable with 
the number of conduction electrons, does not influence 
at all its superconducting properties. 

2. THE MODEL 

To investigate the feasibility of superconductivity in 
systems of the type described above, we shall consider 
a simple model of a quasi-one-dimensional metal. It 
can be represented as consisting of regularly arranged 
chains of metallic atoms (conducting filaments). The 
distances between the fi.laments exceeds by several 
times (not necessarily by one order of magnitude! ) the 
distances between the neighboring metallic atoms within 
the limits of one chain. It is clear that the Fermi sur­
face of such a metal will be a corrugated plane, and the 
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amplitude of the corrugation will be exponentially small 
compared with the Fermi energy E0 • In other words, the 
character of the motion of the electron along the fila­
ment corresponds to the weak-coupling limit, while the 
motion across the filaments corresponds to the strong­
coupling limit. For concreteness we shall use in the 
estimates the following dispersion law: 

e(p) =v(Jp,J-po) +a(cosapx+cosapy) (1) 

with a << vp0 = Eo. The case when there is no conduc­
tivity across the filaments obviously corresponds to 
a = 0. According to the foregoing, the distance between 
filaments, a, coincides in order of magnitude with 1/po 
(in our case of one electron per atom, Po= 1T/2c, where 
c-distance between the atoms in the filament). 

If it turns out that a is much smaller than the tem­
perature T c of the super conducting transition, then, in 
the logarithmic approximation, all the results of 
Bychkov, Gor'kov, and one of the authors[ 6 J, obtained 
for the case of a one-dimensional metal, remain valid 
for our model, the only exception being that the "one­
dimensional" interaction constant g is replaced by A/a2 , 

where A is the three-dimensional constant. In fact, in 
the theory of a superconducting transition in a quasi­
one-dimensional system, just as in [BJ, an important role 
is played not only by the Cooper diagram C (Fig. 2a), 
but also by the zero-sound diagram Z (Fig. 2b) with a 
longitudinal-momentum transfer Pz equal to 2po. In the 
calculation of the diagram C (in the technique using 
finite temperatures) the logarithmic integration in it is 
always cut off at a temperature T, while in the diagram 
z the cut off is at the larger of the two quantities T or 
a. If T » a, then it is possible to neglect the quantity 
a throughout in the integrands of C and Z, and the inte­
gration is over the entire range of variation of the mo­
menta Pz and Py· This yields the already mentioned fac­
tor 1/a2 at the interaction constant A. 

The vanishing of the temperature T c of the super­
conducting transition in the case of a purely one-dimen­
sional metal occurs in approximations that follow the 
logarithmic approximation. However, the theory of[6 J is 
so complicated, that the transition to the next-higher 
approximations can hardly be effected. We therefore 
confine ourselves, following Ferrel [2 J , to an estimate of 
the influence of the electron- density fluctuations on T c· 

Unfortunately, we have no proof that the Ferrel 
formula (2) takes correct quantitative account of the 
presence of fluctuations in all cases. Moreover, this 
certainly is not the case if the contribution of these fluc­
tuations is not large, as is the case, for example, in 
three-dimensional systems. We think, however, that 
formula (2) gives a qualitatively correct asymptotic de­
pendence of T c on the system dimensions L when the 
fluctuations exert a destructive action. In particular, it 
can be verified that the dependence of Tc on L, which 
follows from Ferrel's results [2 l , does not contradict the 
Hohenberg inequalities. 

3. FLUCTUATIONS 

According to Ferrel [2 J, the transition temperature 
Tc (or, which is the same, the superconducting gap .:l), 
with allowance for the fluctuations of the electron den-
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sity, is given by the formula 

Tc = const·exp {-(rp2 (0)) /2}, (2) 

where cp(r)-operator of the phase of the oscillations, 
connected with the velocity operator v by the ordinary 
relation 

mv = grad<p, (3) 

m-mass of the free electron. With the aid of the con­
tinuity equation 1> 

iOn I ih + no div v = 0, (4) 

where n0-average density of the conduction electron, 
we can express the mean-square fluctuations of the 
Fourier components of the phase Cf'Kw in terms of the 
density fluctuations nKw: 

• . ffi2m2 K K * 
(<pKw'I'Kw) = n'K' (n wn w ). 

0 

(5) 

From this we get for ( cp 2 (0)) (when T = 0) 

' - m' \. • w' • (6) 
(<p ) - (Zn)'ng " dwd K K' (nKwfiKw ). 

In the calculation of ( nn*) it is necessary to take into 
account the Coulomb interaction between the filaments. 
Let us calculate, for example, the spectrum of the 
plasma waves (assuming that the conditions of perturba­
tion theory e2 /v « 1 are formally satisfied). To this 
end we sum, as usual, the sequence of diagrams of Fig. 
3, where the broken line represents the ordinary 
Coulomb potential V0(r) = -e2/r. Its Fourier component 
coincides, obviously with the known expressions for the 
system of uniformly charged filaments. In different 
limiting cases, they take the form 

{
- 4ne2 /K', Ka~ 1, 

V 0 (K) = :-;;: 2 e2a2 ln.(a/p0), K -1/a, 
.:.__ 2 e2a2 ln (1/qpo), q ~ 1/a. 

Here and throughout we denote by k and q respectively 
the transverse and longitudinal components of the vector 
K, and by p 0 the "radius" of the filament. Inasmuch as 
in our model ln(a/po) and ln(l/popo) are small, we can 
use for the estimates the ordinary three-dimensional 
expression for all K. 

The screened Coulomb potential at Ka << 1 is given by 

V =- 4ne2 /( k2 + q2 + :x' w' :q:'q' ) · (7) 

where K-Debye momentum, which has the usual order 
of magnitude K2 ~ e 2/va2 ~ e 2mpo. Formula (7) is valid 
at not too small longitudinal momenta vq » a. At still 
smaller momenta q, the expression for V has the usual 
three-dimensional form. From (7) follows a formula for 
the frequency of the plasma oscillations 

(8) 

w 0 = vK. Thus, unlike the one-dimensional case, in our 
model there exists a finite albeit angle-dependent gap. 

I >We use throughout an imaginary time -ir and imaginary frequen­
cies iw (cf., e.g. [ 7 1 1 ). 
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This circumstance affects also the character of the 
long-wave fluctuations of the electron density. Noting 
that N = ( nn*) is connected with the screening potential 
V by the obvious relation 

V = Vo + V 0NVo, 

we obtain directly 
m'2 \ (1}2 

(fJl2) = -~---- J dw d3K-- (V- V0 ) 
(2:1l)'no2 K'Vo2 • 

Taking the integral over w and over the angles, we 
get 

(9) 

The main region of integration in (9) lies, if the con­
dition e2 « v is satisfied, at large values of the momen­
tum, K » K. In order of magnitude, formula (9) yields 
(when K :S Po) 

It is clear that this result should not change also for 
e2 ~ v, when K ~ p0 • 

The transition to the limiting case of a single filament 
occurs when the distance between filaments a tends to 
infinity. The essential region of integration will now be 
q ::;: 1/a - 0. In this region Vo = 2e2a2 ln qp 0 , and the 
screening potential and the spectrum of the plasma os­
cillations coincide with those of one charge filament 
with radius Po· The result of the calculations of ( ql) is 
given by Ferrel E21 • 

We note that although the transverse-motion energy 
a from (1) does vanish as a - oo, the vanishing of a 
itself still does not denote at all that we are dealing 
with a single filament. When a = 0 there occur no jumps 
from one filament to another, but, as follows from the 
preceding calculations, the effect of the Coulomb 
screening does not disappear. 

A second dangerous circumstance for the theory is 
the infrared catastrophe mentioned in E61 , connected with 
the fact that in the case when the dependence of the elec­
tron energy on the transverse momentum is neglected, 
the electron can generate, with adherence to the conser­
vation laws, an arbitrary number of electron-hole pairs 
or, what is the same, an arbitrary number of long-wave 
quanta of electron-density oscillations. This circum­
stance is expressed mathematically in the fact that the 
correction of order n to the self-energy L (n) had in E61 

the form 

2;(n) ~ 
(ico- v(p- Po) )n-1 

(10) 

This form of L (n) denotes that the exact electron Green's 
function <!l has an essential singularity in place of the 
usual single-particle pole at w = -iv(p- p0 ). This ex­
plains by the same token the results of Tomonaga raJ and 
GaudinE9 J, who have shown that the spectrum of the low­
lying excitations of a one-dimensional Fermi system is 
limited to the ordinary density oscillations. 

Allowance for the Coulomb interaction between the 
filaments changes the situation radically. (Physically 
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this is connected with the fact that the emission of os­
cillation quanta with energy w [from (8)] is now forbidden 
by the conservation laws.) In fact, expressions of the 
type (10) in any arbitrary diagram result from the inte­
gration over the region in which the longitudinal 
momenta of all the lines are close to each other and to 
p0 • This means that the singularity is determined only 
by the interaction with small transverse, i.e., Coulomb 
interactions. Replacing the bare Coulomb potential by a 
screened potential, it is easy to verify that the singu­
larities of interest to us are now given by diagrams of 
the type of Fig. 4, where the wavy line denotes the 
screen potential (7). Calculations show that singulari­
ties of the type (10) go over into 

l;(nl ~ (iw- v(p- Po)) ]nn-! (ico- v(p- Po)). (11) 

Corrections of this type fit in naturally within the 
scheme of the logarithmic approximation developed 
in E61 . It can be verified, in particular, that expression 
(11) contains the interaction constant raised to the power 
n (in the form e 2n). Thus, the relative corrections to the 
Green's function are of the order of g(gL)n- \where L 
is a large logarithm, and can be discarded with logarith­
mic accuracy. 

4. MAGNETIC PROPERTIES 

The magnetic field influences a superconductor in 
two ways: via the orbital motion, and by tending to 
break the antiparallel spins of the Cooper pair. We be­
gin with the influence on the orbital motion. In Appendix 
I we calculate with logarithmic accuracy the zero-sound 
diagram Z and the Cooper diagram C without allowance 
for spin. It is shown there that the field does not act on 
Z at all, and that C depends on the orientation of the 
field relative to the filaments. In particular, in a field 
parallel to the filaments we have 

C ,._,In ~-~-8'-0 ---
max {T, a yeHa2/ c} 

and in a perpendicular field 

C ~ In ~---8.:_0 
max {T, yaeHa/c} 

(12a) 

(12b) 

It follows therefore that the orbital critical fields are 
given by the expressions 

T0 2C Tc Toeo 
H,,ll~--~---, 

a 2ea2 f! a' (13) 

Tc2C Tc Tc 
Hc2j_ ,._, -- ,._, ~-, 

aea f! a 

where fl- Bohr magnet on. In the transformations we 
used, in order of magnitude, the relation a ~ 1/po. 

On the other hand, it is physically obvious that the 
magnetic field breaks the spins of the Cooper pair even 
in much weaker fields, H ~ T c/ fl· It is therefore suffi­
cient to consider only the action of the field on the spin. 
The values of the diagrams C and Z now depends on the 

+ 
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spin indices of the Green's functions. We shall denote 
the orientation relative to the magnetic field by the 
symbols + and -. It is easy to verify that two of the 
diagrams of Fig. 5 (C •• (C--) and z._) are not affected by 
the field, and two others, as expected, are proportional 
to 

(14) 

To find the transition curve we turn to the previously 
obtained equations for the vertex part [6 J • It is clear that 
when !J. H < T the magnetic field has no connection with 
them and the old answer is retained. 

(15) 

In the region !J. H > T, the systems (9) and (10) of[ 6 J are 
altered. Without showing the derivations, we present the 
results. 

The form of the equations depends on the spin indices 
and on the channels (Cooper and zero-sound). We intro­
duce several symbols (all the undefined symbols coin­
cide with those given in [6 J ; we recall only that we calcu­
late the vertex part with the following disposition of the 
momenta: ra{3y6 (po, -po; -po, p0)). The quantities 
r •••• (r ____ ) and ~ ++++ (~ ----) will be denoted by r 1 and~ 1, 

and the quantities r+--+ {r-++-) and S+--+ (S-++-) by r 2 and S2 • 

In addition 
1 eo 

t.=2:rw lnT, 
1 Eo 

h=·-ln-. 
2:rcv f!H 

1. Cooper Channel 

a) 1) < ~ < h, 1) < h < ~ < t. In these regions, the 
equations retain their earlier form [6 l : 

' q 

r~c~.s)= i:t(llHl:t(l'J) ~ r~(~,\:)ds+ ~ ~~(s)ft(s.~)d\;, (16a) 

b) h < TJ < ~ < t: 
h 

l't(£) =~!(h)+ ~~(h) rt(£) (;-h)+~ ~~mr~ (\;, ~)ds. (16b) 
0 

2. Zero-Sound Channel 

a) ~ < 1), h < t. In this region the equations retain 
their earlier form[ 6 J: 

q ' 
f2(l'J,£)=S2(\;)-S2(0 ~ f2('1'],\;)d\;-~ S2(\;)f2(1'],\;)d\;. (17a) 

• 0 

b) h < ~ < 1) < t: 
h 

f2(1']) = S2(h)- S2(h) f2('11) ('11- h)-~ S2(\;) f2(~, \;)d\;. (17b) 
0 

The quantities r+-+- and r-+-+ depend only on h in the 
region of interest to us, h < ~ and 1) < t, and coincide 
with the corresponding quantities r(h, h) of[6 J. 

Equations (16) and (17) can be easily solved (Appen­
dix II). We present the results for ~ = 1) = t: 

r (t)- f!(h) 
' - 1-f,(h)(t-h) ' (18) 

r ( r2(h) 
2 t)= 1+f2(h)(t-h) (19) 

Here r(h) coincides with the corresponding quantities 
r(h, h) from[ 6 J, and equal 

g2h 
ft(h)=-1+2gh. (20) 

r h-- 1+gh 
2 ( ) - g 1 -1. 2gh . 

The quantity r+-+- (h, h) = r 3(h) equals [6 J : 

g 
fg(h)=1+2gh. 

(21) 

(22) 

The poles of expressions (18), (19), and (22) describe 
the possible transition curves. We start with the case 
on the traction. As already mentioned, when !J. H < T c 
(fgfh > 1) the transition always takes place at a tempera­
ture Tc (15). When fgfh < 1, i.e., IJ.H > Tc, the vertex 
parts r1 and r 2 have no poles at all (we recall that ex­
pressions (18) and (22) are valid only when t > h). The 
quantity r3(h) has a pole at h = 1/2lgf, i.e., when Hcz 
= T c/ !J.. Thus, the critical magnetic field does not de­
pend on the temperature (with logarithmic accuracy) and 
equals Hc2 = T cl !J.. Since it exceeds greatly the thermo­
dynamic field He ~ T c v'mpo(Hc/Hc 2 ~ ev112 /c), our 
metal is a superconductor of the second kind with 
parameter K ~ c/e v'V. The state diagram in terms of 
the variables Hand T is shown in Fig. 6. 

It is interesting to note that a transition takes place 
also in the case of repulsion in a magnetic field. We 
shall explain its nature in a special article, and confine 
ourselves here only to a determination of the transition 
curve, with logarithmic accuracy. When IJ.H < T, as fol­
lows from [BJ, the vertex parts have no poles. When 
!J. H > T, a pole appears in r 2 • The equation of the 
corresponding transition curve is 

Tc = f!H exp {- 2:rcv 1 + (g/:rcv)ln(eo/f!H) 1. . 
g 2 + (g/:rcv)ln(eo/r.tll) f' 

in weak fields 

and in strong fields 

(23) 

(23a) 

(23b) 

The diagram of state is shown schematically in Fig. 
7. 

APPENDIX I 

Estimate of Diagrams in a Magnetic Field 

The Green's function of the electron in the magnetic 
field has in the quasi-classical approximation the form 
(see, for example, [?J) 

, { e , ( r + r' )} ®H(r,r)=exp i-(r-r)A -- ®(r,r'), 
c ' 2 

(A.1) 

where A is the vector potential and & the Green's func­
tion without the field. The latter is of the form (see(2 J) 

®(r,r')=-1- rd3p 'ljlp(r)'IJv·(r') 
(2:rc)3J. iw-v(Jp,J-p0 )-a(cosapx+cosapy) (A. 2 ) 

w = (2n + 1)nT. 
Here lf!p(r) is the Bloch function of the electron, corre-

FIG. 6 
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FIG. 7 

sponding to the energy (1). The longitudinal-motion wave 
function can be taken in our model in the form of a plane 
wave 1/J 11 = exp(ipzz). The transverse-motion function, in 
accordance with the strong-coupling approximation, is 
conveniently written in the form of an expansion in 
Wannier functions w1(P): 

'IJ.l (p) =a 2: exp (- ip .Lla) w1 (p). (A.3) 
I 

Here 1-number of filaments: 1 = (lx, ly), lx, ly = ... , 
- 1, 0, 1, .. . . In our approximation we can neglect, with 
exponential accuracy, the overlap integrals of the func­
tions on different filaments 1. 

We change over in (A.2) to the Wannier representa­
tion in terms of the transverse coordinates. After inte­
gration over the momenta, we get: 

i { e e } ®H(l,l'; z,z')= --;;-signw·exp i--;;- (z -z')A,+ i--;;-a(l-l')A 

{ 
1 z - z' II w 1 ia 1 z - z' 1 } 

x exp - v + ipo I z - z' I sign w - v sign w 

X exp{ i(lx -lx' + ly -ly') ~} 

( alz-z'l ) ( alz-z'l) 
X J,x_1'x\- v Jly-l'y\ ---V-- . (A.4) 

Here J-Bessel function; the vector potential in (A.4) is 
taken at the point (A(1 + 1')12, (z + z')l2). In the deriva­
tion we used the well known formula 

1 " 
ln (x) = _ ~ e-in<P+txsln ~ d!p, 

2rr 
-n 

The Cooper diagram C has in the Wannier repre­
sentation the form 

C = ~ ~ \ d(z- z') ~ ®H(l, I'; z, z'; w)®H(l, I'; z, z'; -w), (A.5) 
v2a2 J 

(() 1-1' 

and the zero-sound diagram 

Z = : 2 ::8 ~ d(z- z') ~ ®H(I, I'; z, z'; w)®H(l', I; z', z; w). (A.6) 
v n. · 

(I) 1-1' 

We see that Z does not depend on the field. 
In a longitudinal field, C can be written in the form 

Summing over 12 and w in (A.7), we get 

C = _!'_ ::8 ~ dz sh-' ( 2nlz IT) !?-( az) J/ 2~sin eHa2l \. (A.8) 
r2a2 1 v v \ v 2c ) 

The sum over l (at large Qlzlv) converges rapidly, 
;md the main contribution is made by terms in the nar­
row region near l = QIIZ llv. Using also the fact that 
~~J/(x) = 1, we rewrite (A.8) in the form 

T ~ ( 2n I zIT \ ( a2eHa2 ) C ~ --· dzsh-1 ---IJ0\--z2 . 
v2a2 v I cv2 

(A.8') 

The integral in (A.8') diverges at the lower limit. As 

usual, it must be cut off at distances lz I ~ vI Eo. The 
logarithmic integration takes place in the region vI Eo 

« lzl « viT. If T » Qlv'eHa2lc, then it is necessary to 
choose T as the upper limit; on the other hand, if the 
inverse inequality holds, then the integral is cut off at 
lzl ~ viQiv'eHa2lc. This leads to the result given in the 
text. 

In a transverse field we get in lieu of (A.8') 

T ~ ~ dz (az) ( e ) C = --LJ / 12 - cos -Halz . 
v2a2 1 sh(2nlziT/v) v c . (A.9) 

Similar arguments lead in this case to formula (12b). 

APPENDIX II 

Solution of Eq. (16) 

It follows from (16b) that r1 does not depend on 17 
when 17 > h. Taking this into account, we rewrite (16a) 
in the region TJ < h in the form 

r,(1J, ~l = l:d1Jl (1 + r,(~l (;-h)) 

FORlV h " (A.10) 

+:S,(1J) ~ r,(?;,;)d~+~ :s,(~)r,(U)d\:. 
" 0 We make the substitution r 1(11, ~) = f(TJ, 0(1 + r 1(0(~- h)). 

Then 
h " 

/(1J,s)= :S,(1JJ+:Lt(1J) ~ /(U)rl~+ 5 l:,(~)f(~.s)rl~. (A.ll) 
" 0 

This equation coincides with the corresponding equation 
in the absence of a magnetic field when ~ = h. There­
fore 

r!(t],~J =ft(t],hJ(1+rdsJ(s-hJJ, (A.12) 

where r 1(77, h) is the vertex part, calculated in[ 6 J. We 
now substitute (A.12) in (16b): 

h 

r~(~J=( :Lt(hl+~ r,(~,h):St(s)ds) (1+ft(£J(s-h)J. (A.13) 
\ 0 

But the expression h 

l:,(h)+ ~ l:!(\;)f!(~,h)d~ 
0 

is none other than r 1(h, h)= r l(h) defined in the text. 
Thus, 

(A.14) 
from which follows formula (18). 

Equations (17) are solved in analogous manner. 
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