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Some phenomena resulting from the interference of independent photon beams are considered. It is 
found that depending on the delay time the delayed coincidences undergo damped beats. The nature of 
the damping depends on the processes occurring in the source. The area under the delayed coincidence 
curve depends on the frequency difference of the interfering beams and on the damping mechanism. 

INTERFERENCE phenomena of light beams produced 
by independently radiating sources have been discussed 
and observed in a series of papers. [1- 71 The existence 
of these phenomena is connected with the identical na­
ture of the emitted particles. (3' 71 Let us consider two 
excited atoms located at the points ra and rb, having 
energies Ea and Eb, and two atoms (two elementary 
counters) located at points rc and rd. [71 One and the 
same final state of the system (registration of the pho­
tons by the counters at given instants t and T) can by 
virtue of the identical nature of the incident particles be 
produced by two possible paths: (a- c, b- d) and 
(b - c, a- d). These two paths cannot be differentiated 
by observation. Therefore the probability Pab (rc, t; 
rd, T) that at the instant t the radiation will interact with 
the atom located at the point rc and at the instant T with 
the atom at the point rd contains an interference term 
and can be written in the form 

Pab(r,,t;ra,T)=A I exp{i(kar.,-wat+ba)} cxp{i(kbrba~_(>lbT+bb)} 
rae l'r,il 

+ exp{i(karaa-war+lla)} exp{i(kbrbc-:-_t"_~!_+bb)} \', (1) 
I ad T!Jt:. 

where A is a constant which is immaterial for this dis­
cussion. [7 J An expression of the type ra1c exp{ i(karac 
- wat + 6a)} is a wave function of a photon with a wave 
number ka = wale emitted at the point ra with an initial 
phase 6a and absorbed at the point rc. For simplicity 
it is assumed that the radiation emitted by the atoms is 
monochromatic and has the same polarization. We note 
also that (1) does not in fact depend on the random pha­
ses 6a and ob· 

If it is assumed that the distances between the atoms 
in each pair are much smaller than the distance R be­
tween these pairs, then (1) goes over into 

2A 
Pab(r,,t; rd,T) ~ R4{1 +cos[ka(r.,- raa) (2) 

+ kb ( rbd - rbc) - ( Wa - Wb) ( t ·- T)]}, 

where rae= Ira- rei, etc. The first term in the curly 
brackets of expression (2) would describe the probabil­
ity of the simultaneous registration of two photons if 
they were not identical particles. The second term 
corresponds to a change of this probability due to their 
identical nature. It is seen that allowance for the in­
distinguishability of the particles leads to the circum­
stance that the probability Pab (rc, t; rd, T) is an os­
cillating function of the coordinates and undergoes beats 
in time at the difference frequency of the emitted pho­
tons. 
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Since real sources and detectors contain many pairs 
of atoms, (2) must be summed over these pairs. The 
interference term of interest to us does not vanish as a 
result of such summing if in changing the positions of 
the atoms within the volumes of the sources S and de­
tectors D the cosine entering in expression (2) does not 
undergo oscillations. Consequently, the inequality 

(3) 

should be fulfilled for any pair of atoms within the limits 
of S and D. Condition (3) under which the interference 
of independent beams does not vanish can also be writ­
ten in the form [71 

(4) 

or 

(5) 

where Js(D) = Zs(n)IR is the angle at which the source 
(detector) with transverse dimensions Zs(ln) is seen 
from the detector (source) located at a distance R from 
S(D); A. is the wavelength of the radiation (it is assumed 
that t:.A/A.« 1). If the inequalities (3)-(5) are fulfilled 
and if t = T (registration of coincidences without delay), 
then the second term in (2) is equal to the first term. 
Consequently, the probability of counting identical parti­
cles in coincidence differs from the result of the classi­
cal calculation by no more than a factor of two. Hence 
it also follows that the possibility of observing interfer­
ence is determined by the possibility of registering 
coincidences in the classical situation. If the beam in­
tensity is such that random coincidences of particles 
without account of their identity do occur in a given ex­
periment, then interference effects will also be ob­
served. 

Since the number of coincidences obtained during 
s,ome time T fluctuates, the intensity of the sources and 
the time T must be such that the average number of 
coincidences ( N) during the indicated time be larger 
than the magnitude of the fluctuation of the number of 
coincidences 6N = ((N2 )- (N) 2 ) 112 ~ (N) 112 ~ (n1n2 TcT) 112 

[n1(n2) is the number of particles registered by counter 
1 (2) per unit time, T c is the resolving time of the coin­
cidence circuit]<>. The inequality (N)/6N "=' (n1n2 TcT) 112 

> 1 should consequently be fulfilled. If p is the surface 

l) For definiteness we consider the case of small loads on the coin­
cidence circuit. In the opposite case one must speak instead of the 
number of coincidences of the correlation function. [ 3 •4 ] 
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intensity of the source, 7]-the efficiency of the counters, 
then n1,2 ~ pls(lb/R2 )1J. When condition (5) is fulfilled, 
we have n1,2 ~ p>..2 1J. Thus, we finally have 

(N) I {):V ~ T]pA.2'}'-rcT > 1, (6) 

which coincides with the expression obtained in [BJ for 
the case when the length of the incident wave train is 
comparable with the time Tc· 

Expressions (1) and (2} were obtained under the as­
sumption that the atoms of the source are fixed and do 
not undergo any perturbing interactions. Generally 
speaking, this is not the case under real conditions. 
Thermal motion and the collision of atoms in the source 
will lead to frequency modulation of the emitted photons. 
In this general case the wave function of the photon can 
be represented in the following form: 

1)Ja(t) ~ exp{-i[w.t + Q.(t) ]}, (7) 

where ila(t) is the change of the photon phase as a result 
of the thermal motion and the collisions of the radiating 
atom a. 

If the dimensions of the sources and detectors satisfy 
inequalities (3}-(5), then one can write down with the 
aid of wave functions of the type (7} for the probability 
Pab (rc, t; rd, r) averaged over the state of the atoms 
a and b in the source an expression of the form 

Pab (rc, t; rd, -r) = const· (i exp{-i[w.t + Q.(t)]} 
X exp{-i[wbT + r;h(-r)]} + exp{-i[WaT + Q.(-r)]} (8) 

X exp{--i[whl + lh(t)]} j2), 

where the angle brackets denote the indicated averaging. 
Equation (8) includes the quantity 

Gab(t, -r) = (exp{-i(Qa(t) -- Q.(-r) + Qb(T) - Qb(t) )} ), 

characterizing the kinetic processes taking place in the 
source2>. In order to simplify the treatment, we assume 
below that one can neglect correlations between atoms 
a and b (for instance, we investigate the radiation of a 
gaseous source). Then, 

Gab(t, T) = Ga(t, -r)Gb* (t, -r),Ga, b(t, -.:) = (exp{-i[Qa, b (t)- !Ja, b(T)]} ). 

For homogeneous systems Ga (t, r) = Gb (t, r) = G (t, r). 
In the majority of practically interesting cases G(t, r) 
can be represented in the following form (9 ' 10J : 

G(t- -r) = exp{-w2(t- -r) I 4}, 

where Y2w2(t- r) = ([ila(t)- ila(r)]2). 

(9} 

Utilizing (9), we obtain from (8} the following equal­
ity: 

{ { Re[w2 (t--r)]} 
Pab(t --.:) =.const· 1 + exp - 2 

X COS [(wa- Wb) (t --r)]}. 
(10) 

Let us sum (10) over all pairs of atoms in the source3 > 

2) As is seen from (8), in studying the correlations taking place in 
the radiation of the source the probability of registering delayed coin­
cidences with two counters depends only on the mutual correlations 
between the two atoms a and b. If we were to measure triple or mul­
tiple correlations, then the corresponding probabilities would depend 
only on the mutual correlations between three or more atoms. This 
is somewhat different from the situation occurring in studying the cor­
relation in the radiation scattered by some target when the energy 
spectrum of the scattered radiation measured in such experiments also 
depends on the time correlations of the state of a single atom. 

3lSuch a summation can be carried out if the photon density in the 
source is such that one can neglect the stimulated emission of the atoms. 

and in the detector, assuming that the source emits with 
equal probability photons of only two frequencies w 1 and 
w2. As a result we obtain for the probability P(t- r) that 
one photon will be registered at the instant t and another 
at the instant r the following expression: 

P(t --r) = const·{ 1 + exp{- Re[w•~t --.:)]}cos•[ WI; wz -(t- -.:) J} 
(11} 

Thus, the delayed coincidence curve experiences 
modulated beats depending on the delay time e = It- Tl 
at a frequency equal to the difference between the fre­
quencies w 1 and w2. In principle, the beat frequency can 
be regulated with the aid of various external interac­
tions, for example by placing the source in an external 
magnetic field. 

Let us now determine the total number of coinciden­
ces Nina given experiment (i.e., let us determine the 
area under the delayed coincidence curve if the maxi­
mum delay time used in the experiment is equal to em)· 
To do this, one must integrate (11) over e = t- r be­
tween the limits [0, em]; this yields an expression of the 
type 

em 

N = const· {em+~ exp{-Re[w~(e)]} c~{ WI -2(i)z e1 de}. (12) 

The first term proportional to em would correspond to 
the number of coincidences if the photons were dis­
tinguishable. The second term gives a contribution to N 
which is due to the fact that account has been taken of 
the identity of the particles. Therefore, allowance for 
identity leads to the circumstance that the area under 
the delayed coincidence curve is not proportional to em, 
as would be the case for distinguishable particles. 

Let us consider formula (12) for two limiting cases: 
in the first the source is an ideal gas at a temperature 
Q; in the second case the source is such that the main 
role in modulating the frequency of the radiation is 
played by collisions whose effect we will take into ac­
count in the impact approximation. [llJ In the first case 
Re [w2(e)] = k2v2e2 (v2 is the mean-square thermal veloc­
ity of_!_he atoms), in the second case Re [w2(e}] 
= 4p(v2) 112ae (p is the density of atoms in the gas and a 
is the collision cross section}Y1J Substituting the indi­
cated expressions for w2(e) in (12), we find for the first 
and second case the following expressions: 

om -

N = const· {em-f- s exp(- k•;• e2 ) cos'[ WI~ wz e J dtJ} , (13} 
0 

N'=const·{em+-1-+ r (14) 
2f 2 [(w1- wz) 2 + f2] 

_ e-rem ( 1 + afcos[(wl- wz)em + <p])} 
2I' \ ( w1 - wz)2 + f2 1 ' 

where aeicp = r + i(w1- w2) and r = 2p("?') 112a is the im­
pact width of the level 4 >. 

U em(v2k2)112 » 1 and rem» 1, then (13) and (14) 
can be rewritten in the form 
, {. 1/--n 1/ :r [ (w,- wz) 2 J} 

.V ~ const·em 1 + Y v•em•k• + Y v•am•k' exp - "ii2k-.• --. '(15) 

{ 1 1 f2 } 
N' ~ const. 9m 1 + 2I'9m + 2f9m. (WI - wz)" + [2 . (16) 

4lln cases in which one can neglect the Doppler and impact width 
of the level, expression (14) in which r is the natural width of the level 
is valid for the area under the delayed coincidence curve. 
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Thus the area under the delayed coincidence curve 
depends on the difference frequency w 1- w2 and on the 
modulation mechanism of the frequency of the radiation. 
If w 1 = Wz, then expressions (15) and (16) differ from the 
result for classical particles by 2(1T/\?tl~k2 ) 112 and 
1/rem respectively. If, on the other hand, (w 1 - w2WVZk2 

» 1 or lw 1- wzl >> r, then the number ol.._ coincidences 
is larger than the classical result by (1T /v211~k2) 1 / 2 and 
1/2rem respectively. This means that in fulfilling the 
indicated inequalities photons of frequency w 1 can be 
considered not to be identical with photons of frequency 
wz; at the same time, photons of the same frequency 
(w 1 or w 2) remain of course identical, which manifests 
itself in the fact that N and N' differ from the values 
predicted for classical particles. 

We note in conclusion that it would be attractive to 
carry out such experiments not only for light but, for 
example, also for Mossbauer y quanta. However, be­
cause of the short wavelength of the y quanta, it is at 
present practically impossible to satisfy conditions (5) 
and (6). Indeed, from inequality (5) we find that whereas 
for light with A R:J 10-5 em and ls ~ lD ~ 10-1 em we 
must have R > 103 em, for y quanta (A R:J 10-8 em) with 
the same soufi:e and detector dimensions we must have 
R > 106 em. A more detailed analysis shows that this 
difficulty could be avoided by means of certain artificial 
assumptions. However, even more rigorous require­
ments result from inequality (6). From the latter it 
follows that with other conditions being equal the time 
of observation in the region of the x-ray spectrum T 
should be larger by many orders of magnitude than the 
corresponding time T c in the visible region 
[Ty R:J (Ac/Ay) 4Tc, i.e., Ty R:J 1012Tcl· The above also 
refers to the case when a scattering target[8 ' 12 ' 13 J is 

placed between the sources and the detectors, since the 
target can be simply considered to be the source of the 
scattered waves. Analogous serious difficulties also ap­
pear for other forms of radiation (electrons, neutrons). 

The authors express their deep gratitude to V. L. 
Lyuboshitz for useful discussions. 
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