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In a number of cases the calculation of the cross section for the excitation of atoms by electron im­
pact in the first Born approximation leads to an error which is unusual for this approximation: the 
calculated cross section is smaller than the experimental one. It is shown that such a situation 
arises when the probability for the direct excitation is relatively small and the transition via a 
virtual level in second order perturbation theory plays an important role. An approximate formula 
for the calculation of the cross section in second order is obtained. Calculations for the quadrupole 
transitions in He and Ne with account of a single virtual level lead to results with an error which is 
"typical" for the Born method. 

1. The cross sections for the excitation of atoms by 
electron impact are in most cases (at least in applica­
tions) calculated in the Born approximation. As is 
known, this approximation is rigorously proven only 
for large energies of the incident electron. N everthe­
less, the available experimental data show that even for 
small energies E ~ ( 2-3 )~ E (~ E is the excitation 
energy) the errors of the Born method are not too 
large: the cross section comes out 1. 5 to 2 times too 
large in the region of the maximum. For the following 
it is convenient to call this error the "standard error 
of the Born method.'' For many applications this type 
of accuracy is completely acceptable. 

Until now it has not been possible to give a more 
exact method for the calculation of cross sections 
which is applicable for a wide class of transitions and 
energies. The methods based on a formal mathematical 
extension of the theory (for example, the known strong 
coupling theory) are, as a rule, unsuccessful because 
of the extremely slow convergence of the method. One 
must therefore analyze the situation by starting from 
more perspicuous physical ideas. 

The standard error of the Born method is mainly 
due to the repulsion of the external and atomic elec­
trons. This repulsion leads to an increase of the mean 
distance between the electrons and hence to a decrease 
of the inelastic scattering cross section. 1 ) One of the 
possible methods to take account of the repulsion is 
the model proposed in [1 J. However, this model is 
applicable only to transitions from the ground state. 

lJWe note in this connection the principal difference between the 
elastic and inelastic scattering. The polarization of the atom owing to 
the repulsion of the electrons leads, as is known, to an additional at­
traction between the electron and the atom as a whole, i.e., to an in­
crease in the elastic scattering cross section. However, for the inelastic 
scattering the most important role is played not by the attraction of 
the electron to the center of the atom but by the effective distance 
between the external and atomic electrons, which increases owing to 
the repulsion. Thus one and the same effect influences the elastic 
scattering in the opposite manner. 
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In a numjjer of cases other effects become imp or­
tant, which are not included in the Born approxima­
tion. Here the error of the calculation turns out to be 
different from the standard error. One of the well 
known examples is the so-called "violation of the 
normalization" of the cross section when the partial 
cross section a ( l) calculated in Born approximation 
exceeds considerably the theoretical limit set by the 
particle current conservation. This situation usually 
occurs in transitions between close levels. A fully 
satisfactory method of overcoming this difficulty is 
the "normalization" method based on the use of the 
R matrix. [2 J The "normalization" procedure allows 
one to calculate the cross section for transitions be­
tween close-lying levels with an error which does not 
exceed the standard error of the Born method, whereas 
the cross section may come out too high by an order 
of magnitude without normalization. 

In the present paper we consider another important 
case of the violation of the above-mentioned standard 
error: transitions for which the Born method yields 
a cross section which is small for one reason or 
another. Here the transition goes with great probabil­
ity via an intermediate state in second order perturba­
tion theory. For example, the cross section for the 
quadrupole transition 1s - 3d will in first order Born 
approximation be smaller than the cross section for 
the transition 1s - 2p - 3d in second order (with a 
dipole transition in each step). It is important to 
emphasize that we are speaking of the calculation of 
the leading term in the perturbation series and not of 
the correction of second order to the Born approxima­
tion. By physical arguments one singles out from the 
sum over intermediate states one or two terms. Thus 
in transitions from the ground state of the atom that 
resonance level is especially important which is ex­
cited with a probability close to unity during the time 
of passage of the electron. 

The calculation of the corrections of second order 
in cases where the first -order term is dominant is, 
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according to the philosophy discussed above, of little 
promise. In this case one must sum overall intermedi­
ate states, which is connected with very great mathe­
matical difficulties. Moreover, this sum contains 
terms describing at least three different effects: the 
attraction of the electron by the average field of the 
atom ( Uoo,' U11 ), the coupling of the different channels 
( Uoa, Uad, and the polarization of the atom ( Uoa, Ua1 
for the states a which are energy-forbidden). The 
description of these effects requires a different 
accuracy of calculation and depends differently on the 
higher orders of perturbation theory. The situation is 
here still far from clear. It can only be said that a 
second-order correction is hardly realistic if it is 
close to the first-order term, as was the case in [31 • 

In conclusion we note a circumstance which can 
lead to misunderstandings in the comparison of theory 
and experiment. Transitions via intermediate levels 
lead, in the cases of interest to us, to an increase of 
the cross section, i.e., their effect is opposite in sign 
to the repulsion effect. Thus an accidental compensa­
tion may occur. Such a situation obtains in the exci­
tation of the D levels of He: the Born approximation 
cross section turns out to be somewhat smaller than 
the experimental one. (The calculation for the 3D 
level was carried out in [4 J; cf. also Fig. 1 for the 4D 
level.) However, if one takes account of the repulsion 
of the electrons, for example, by the method [t , then 
the cross section comes out considerably below the 
experimental value. 21 

Below we consider the excitation of atoms via an 
intermediate level in the simplified version of the 
second Born approximation. 

2. We consider the excitation of an atom by elec­
tron impact from the state 0 to the state 1. The cross 
section can be written in the form (we use atomic units 
with Rydberg units for the energy) 

2 ho+k1 2 

a=-a_o __ ~ qdq·~ ~~~dreiqrW1.(r)Uao(r)j, (1) 
S3llgoko2 ko-kL MoM, a 

where q = ko - k1 ; k1 is the wave vector of the ex­
ternal electron, M is the projection of the angula1 
momentum of the atom on the z axis, and g0 is the 
statistical weight of the initial state. The matrix ele­
ments of the potentials U and W are taken with re­
spect to the coordinate of the atomic electrons rj. The 
matrix element W1a includes the nondiagonal polariza­
tion potential:[s] 

W= 1+WII+ ... , WII= ~ dxU(r-x)G.(x)eik,X, 

G exp {ikax} k z E k 2 E k 2 a(.t-}=- , a+ ao= 1 + to= o, 
4nx 

(2) 

(3) 

where Ga is the Green's function of the operator V 2 , 

Ei is the energy of the i-th state of the atom, and Eij 
= Ei - Ej; the first term in W corresponds to the 
Born approximation. In accordance with the task we 
set ourselves in Sec. 1, we retain one term in the sum 
over intermediate states a in (1). Moreover, we as­
sume that E 0 < Ea < Et. 

Let us consider first a single-electron atom and 
2Jin [4] the interaction of the levels 3P and 3D was also considered, 

which turned out to be small. This result is very natural, but the use of 
the R matrix method in this paper calls for some objections. 

leave out the interaction with the nucleus in U:31 

U=-2--=~. WI'=~ dx 2 Ga(x)efk,x. 
I r - r.j P I P - xI 

The calculation of the second-order term wii is 
connected with serious calculational difficulties. For 

(4) 

k1 - 0 the expression for wll simplifies considerably. 
Using the spectral representation of the Green's func­
tion Ga we obtain 

Hence, for k1- 0, k~- Eta 
2 wn = -- (f- exp[i(Eta)'l•p]), kt---+0. {5) 

EtaP 
This formula indicates, incidentally, the region of 

applicability of the known adiabatic approximation, 
where one assumes [sJ 

1 1 
Ga(x)=-ll(x), Wli=-E U. (6) 

R~ .. 
If E1a is sufficiently large, the rapidly oscillating ex­
ponential in (5) can be neglected and (5) goes over into 
(6). The adiabatic approximation is widely used in the 
theory of elastic scattering, but in problems of in­
elastic scattering it has essentially not yet been em­
ployed. 41 

For large k it is not possible to obtain an expres­
sion which is as simple as (5). It can, however, be 
shown, for example with the help of the quasiclassical 
approximation, that the operator wll becomes pure 
imaginary and decreases like k-1 • [ 7 J The simplest 
extrapolation formula satisfying this condition and 
going over into (5) for kt - 0 has the form 

WII = ~[ __!_ (1- cosl'Etap)- i_ sin l'EtaP]. 
kaP ka 1/Eia 

(7) 

The comparison of a number of examples with the 
results of numerical calculations showed that (7) gives 
good results over the whole range of energies. [7 ] The 
generalization to the many -electron atom and the in­
clusion of the interaction with the nucleus (the latter is 
necessary when the atomic wave functions are not 
orthogonal) is elementary: 

U---+ ~ [~-~]' 
; Pi r 

WI'-+~ [WI'(p;}- WII(r)]. 
(8) 

For actual calculations one must separate the angu­
lar and radial parts in Uao and wfl, With the use of 
approximation (7) this problem is not very difficult, 
since the expansion of expressions of the type (7) in 
spherical functions is well known. The final formulas 
for a are given in the Appendix. 

3. In Fig. 1, the cross sections for the excitation of 
the levels 41D and 4 1S from the ground state, calcu­
lated in first Born approximation ( ai) and in second 
order via the intermediate level 21 P (all) are com­
pared with the experimental data ( aexp ). Unfortun-

3lThe factor 2 arises from the use of Rydberg units for the energy. 
4lFor elastic scattering E1 = E0 <Ea. In (6) one must replace E1a 

by -Eao· 
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FIG I. Cross section for the transitions a-1 1 S-41 D and b-1 1 S-
41 S in.He. The curves were obtained l-in first Born approximation and 
2-with account of the transition via the level 21 Pin second order. Ex­
perimental points: 0-[8], e-[9], and +-[10]. 
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FIG. 2. Excitation rate as a func­
tion of energy; a-for the transition Ss'­
Sd' and b-for the transition Ss' -6d' in 
Ne. )-first Born approximation, 2-
with account of the transition via the 
level Sp' in second order. The experi­
menta data are from [ 11 ] with the in­
dicated errors for the measurement of 
(va) and Te. 

ately, the results of the experiments of the experiments 
of different authors differ considerably from each 
other. Nevertheless, qualitatively the situation is 
elear. For the excitation of the level 41S the value of 
cr exp is smaller than a I by a factor of about % (in the 
region of the maximum), which corresponds to the 
standard error of the Born method. As was to be ex­
pected, the inclusion of the second order does not here 
affect the result: aii Rj ai. This is connected with the 
fact that the probability for the transition -21P - 4 1S is 
small (the general rule for transitions with A L = -1 ). 

In the case of the excitation of the level 41D even 
the smallest of the crexp is noticeably larger than ai 
in the region of the maximum. 5 > On the other hand, the 
value of aii is larger than crexp, which at least quali­
tatively corresponds to the standard error of the Born 
method. The error is rather large: in the maximum 
aii exceeds a exp by a factor of about 4 as compared 
with the results of [aJ and by a factor of 2 to 3 as com­
pared with [9 ' 101. Since the cross sections in [9 •101 at 
large energies do not approach the Born cross section, 
one must apparently give preference to the results of [aJ. 
It is not surprising that the error in the second order 
is larger than the standard error of the usual Born 
method. Here we have a cumulation of errors in the 
two stages of the process, as it were. However, the 

SJThe calculation with account of the repulsion of the electrons by 
the method [1 ] yields a value of a which is considerably smaller than 
Uexp· In the case of the 41 S this method leads to good agreement with 
experiment. 

constancy of the sign of the error makes it possible to 
account for it qualitatively in applications. 

In Fig. 2 we compare the results of the calculation 
with the experimental data of Kha'ikin [uJ for transitions 
between excited states of Ne. Since the experiment was 
performed in a plasma, the excitation rates averaged 
over the Maxwell distribution are given. In this case 
crexp exceeds ai by considerably more than in the case 
of He. The inclusion of the transitions via the inter­
mediate level 5p' removes this discrepancy for the 
main part (within the experimental error). It is possi­
ble that other intermediate levels also give significant, 
although smaller contributions. To our knowledge, 
Khal:kin [111 was the first to measure the cross section 
for transitions between excited and not even neighbor­
ing levels (An* > 1, where n* = E is the effective 
principal quantum number). The above comparison 
shows that for such transitions the first Born approxi­
mation may be useless even for u = E/A E ~ 20. At 
the same time the cross sections for transitions be­
tween neighboring excited levels (An*< 1) are ap­
parently well described by the Born method with a 
correction for the normalization already for u ~ 5 
- 10. [12 1 The inclusion of an appropriately chosen 
intermediate level makes the error of the calculated 
cross section of the order of the standard error even 
for An* > 1. However, the question of the transitions 
with An >> 1 remains open. 

APPENDIX 

For the separation of the radial and angular vari-
ables in U and W we use the known formulas: 

1 1 4n r!: - . • -
-==-1--1 =~ 2'-+ 1 41 Y,"(r)Y"" (r1), 
p r-r1 ,.,; r> 

sin ap - • -
--=4na~ h(ar)h(art)Y,"(r)Y,"(rt), 

p "" 
where h. and nA. are the spherical Bessel and Neu­
mann functions, and r< and r> are the smaller and 
larger of the variables r and r1. For the atomic wave 
functions we use the one-electron approximation. Be­
low we give the formulas for the complete cross sec­
tion (including all terms) for the transition between two 
electron configurations l~ - l 0N -1l1 with account of the 
first and second orders of perturbation theory with one 
intermediate level l~ -1la: 

2Nko+k, oo [ i 
cr=2: -·- ~ qdq~~j,(qr) CxYto"+-k 2: C,,.,. 

ko2 a 
X hL-kl 0 ')..'},/ 

( 1 YEta . )] I' X _-Yta"+-Zta'-Wta). r'dr 
ka ka 

00 

z1a'(r) = 2(2A + 1) ~ Pt(r1 )Pa(rt)U~.(x<)n,(x>)- 6~.,no(x)]drt, 

00 

D1a'(r) = 2(2'- + 1)h(x) S Pl(rt)Pa(r.)[j,.(xt) -lho] dr1, 
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= ( 2lt + 1 )'" ('X Zo It) 
Cx 2x+ 1 0 0 0 

1 (x i. "-') ( i. Z, z.) ("-' l. lo) {x i. "-'} 
c.,.,..=(--1)•(21a+1l 0 0 0 . 0 0 0 0 0 0 z.z.z,. 
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