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Anomalies in static dielectric properties are studied on the basis of the Landau phenomenologieal 
theory of phase transitions for the ease when polarization is not a phase transition parameter. Exam­
ples with one or two transition parameters are eonsidered. In the case of two parameters ferroelec­
trie transitions are also possible in addition to transitions which are not accompanied by the appear­
anee of spontaneous polarization. The anomalies in sueh transitions differ essentially from the usual 
ferroelectrie anomalies deseribed by the Ginzburg-Devonshire theory. It is shown that dielectrie 
anomalies ean turn out to be quite pronouneed even in nonferroeleetrie transitions. The theory is 
compared with the experimental data for ammonium fluoroberyllate. 

1. It is well known that phase transitions ean be aeeom­
panied by anomalies in dieleetrie properties. These 
anomalies are partieularly great in the ease of ferro­
eleetrie transitionsY1 In the papers of Ginzburg[2 J, and 
later of Devonshire[3 J, the dieleetrie properties of 
ferroelectries were suecessfully explained on the basis 
of the general theory of phase transitions due to 
Landau( 4J. A eharaeteristie parameter in the Ginzburg­
Devonshire theory is the polarization. Such a choiee is 
quite natural sinee it is polarization in partieular that 
appears in a ferroeleetrie phase transition. However, 
it is by no means necessary that the quantity appearing 
in the transition should be at the same time a parameter 
of the transition. For example, in barium titanate spon­
taneous disloeation deformation also arises, but it is 
not a parameter of the transition, whereas the polariza­
tion is. Indeed, if one polarizes the cubic phase of 
barium titanate then one obtains a strueture with the 
symmetry of the low-temperature phase; but if the eubic 
phase is subjeeted to a dislocation deformation then sueh 
a strueture does not arise. One ean say that spontaneous 
deformation appears in barium titanate as a result of 
spontaneous polarization, and is essentially a seeondary 
effect. Similarly the appearanee of spontaneous polar­
ization may be a seeondary effeet of some other more 
eomplex restructuring of the lattice described by other 
parameters. 

In such ferroelectrie transitions (they were first 
pointed out by Indenbom [SJ) polarization is not a charac­
teristic parameter of the transition. For example, if a 
ferroeleetric transition oecurs involving a change in the 
number of atoms in an elementary eell (i.e., involving 
the appearance of a superstrueture), then the magnitude 
of the polarization cannot be a parameter of the transi­
tion, since it is not possible to produce a superstructure 
by polarizing the symmetric phase. An example of a 
substance in which a ferroelectric transition oeeurs in­
volving the doubling of the number of atoms in an ele­
mentary eell is ammonium fluoroberyllate. Possibly 
there exist also other ferroelectries in which polariza­
tion is not a transition parameter. It is appropriate to 
recall here that the properties and partieularly the 
structure of the majority of ferroeleetrics known at 
present have not as yet been extensively investigated. 

But such investigations are being earried out now, and, 
apparently, it is quite timely to diseuss the anomalies 
in dieleetrie properties aeeompanying ferroeleetrie 
transitions of whieh polarization is not the parameter 
and whieh, eonsequently, are not deseribed by the 
Ginzburg- Devonshire theory. Sueh an investigation will 
be earried out in the present paper on the basis of 
Landau's phenomenological theory. 

Dielectrie anomalies (even though they are not as 
strong as those in ferroelectries) are also observed in 
nonferroelectric phase transitions when no spontaneous 
polarization arises. Usually for the explanation of sueh 
anomalies model representations of one kind or another 
are utilized. However, the models utilized are, as a 
rule, far removed from real eases, and attempts to 
make them more preeise greatly eomplieate the theory. 
It is, therefore, useful to consider dielectric anomalies 
aceompanying nonferroelectrie transitions on the basis 
of Landau's phenomenologieal theory, and this will also 
be done in our paper. 

Thus, in the present paper we investigate on the 
basis of Landau's theory dieleetrie anomalies aeeom­
panying transitions for which polarization is not a ehar­
aeteristie parameter. In doing this we simultaneously 
investigate both ferroelectrie and nonferroeleetrie tran­
sitions. Landau's theory of phase transitions gives a 
correct deseription of the qualitative nature of the 
majority of the anomalies diseussed below, and only 
oceasionally does the need appear to take additionally 
into aceount eorrections to this theory associated with 
the fluetuations in the characteristic parameter of the 
transition (ef., for example,[6l). 

2. We restriet ourselves to a study of anomalies in 
static dielectrie properties. The nature of sueh anom­
alies is determined by the dependenee of the thermo­
dynamic potential on the parameters of the transition 
and on the polarization vector Pi. We eonsider first the 
case when the transition is charaeterized by a single 
parameter 1). The physieal meaning of this quantity is 
different for different transitions. For example, for the 
a = {3 transition in quartz the parameter 1) character­
izes the magnitude of a definite displacement of several 
sublattices (sueh a displacement is not aceompanied by 
the appearanee of polarization). For subsequent dis-
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cussion only the transformation properties of the 
parameter are essential. According to Landau's theory 
these properties are uniquely determined if we know 
the symmetry of the crystal in the high- and the low­
temperature phases. In the thermodynamic potential 
which is representated in the form of a series in terms 
of the variables TJ and Pi, terms are contained which 
include TJ and Pi simultaneously (we shall in future 
refer to them as cross terms). Cross terms could, 
generally speaking, have the form TJPi> TJ 2 Pi> TJPiPj, 

TJ 2 PiPj, etc. However, none of the terms of the thermo­
dynamic potential should be altered by any of the trans­
formations belonging to the symmetry group of the sym­
metric phase of the material. Therefore, taking into 
account the definite symmetry of a given crystal and the 
transformation properties of the variables TJ and Pi 
themselves, restricts in an essential manner in each 
specific case the possible choice of cross terms. 

Thus, terms of the type TJ Pi are admissible only in 
the case when TJ transforms like Pi· But then the 
parameter TJ can be interpreted as polarization, and the 
whole discussion reduces to the Ginzburg-Devonshire 
case. Terms of the type TJ 2 Pi are admissible only in the 
case when the symmetric phase of the material corre­
sponds to one of the pyroelectric classes, i.e., the ma­
terial is polarized spontaneously already in the sym­
metric phase. Terms of the type TJPiPj are admissible 
only when the parameter TJ has certain definite trans­
formation properties, viz., it is necessary that the 
parameter TJ transform like PiPj. Terms of the type 
TJ 2 PiPj appear in the thermodynamic potential in all 
cases since 17 2 is an invariant, and one can always con­
struct an invariant combination from quantities of the 
type PiPj: for example, in a uniaxial crystal the cross 
terms have the form a17 2 (:P~ + P~) and b77 2P~, in a cubic 
crystal the coefficients a and b are equal. There is no 
point in discussing cross terms of higher order in TJ 

and Pi. 
We discuss in greater detail the case when the cross 

terms in the thermodynamic potential have the form 
TJ 2 Pi Pj. If the symmetry of the crystal is such that 
terms of the type PxPy are absent, then we can restrict 
ourselves to one of the components of the polarization 
vector. Denoting it by P we represent the thermody­
namic potential <I> in the form 

Q> = $ 0 + ~lJ' + jl_lJ4 + }'_lJ, + __l(_p, + _ll_ l]2P2 - PE. (1) 
2 4 6 2 2 

From the very existence of a phase transition it fol­
lows that the coefficient a changes sign at a certain 
temperature. We assume, as is usually done, that in the 
neighborhood of the transition point a = a' (T- 6). The 
temperature dependence of the other coefficients of the 
thermodynamic potential (1) is not determined by the ex­
istence of a phase transition. We shall therefore, as is 
usually done, treat them as constant in the neighborhood 
of the transition point. For f3 > 0 a transition of the 
second kind occurs in the system, for f3 < 0 a transition 
of the first kind occurs. Conditions for a minimum in <I> 
yield equations for determining the equilibrium values 
of TJ and P: 

i.JQ> / dl] = '1 (a+ ~'12 + VlJ4 + aP2) = 0, 

i.JQ> / i.JP = (x ·f-0!)2)P- E = 0. 
(2) 

As follows from these equations, there exist no stable 
solutions with a spontaneous polarization (P ;>! 0 with 
E = 0). Consequently, the transition is not a ferroelec­
tric one. 

We consider first a first-order phase transition. In 
the case a> 0 the dependence of P on E, as is shown by 
an analysis of the system of equations (2), has the form 
of a double hysteresis loop in the nonsymmetric phase. 
The existence of a double hysteresis loop in the case of 
a nonferroelectric transition is usually associated with 
the appearance of a so- called antiferroelectric state [lJ • 

We note that in the case of such transitions an apprecia­
ble anomaly is observed in the temperature dependence 
of the dielectric permittivity ,-usually a maximum at the 
transition point. From the solutions of the system of 
equations (2) it follows that the dielectric susceptibility 
x = dP /dE in the nonsymmetric phase increases with 
increasing temperature and at the transition point under­
goes a discontinuity upwards. If one also assumes that 
the coefficient K in (1) increases with temperature, and, 
moreover, in such a manner that dK/dT < da1J 2/dT, then 
at the transition point x will have a maximum. In the 
case a < 0 the nature of the dielectric anomalies will be 
different: a double hysteresis loop must now be observed 
in the symmetric phase, while x must decrease with in­
creasing temperature undergoing a discontinuity down­
wards at transition point. 

We note that the double hysteresis loops discussed 
above have the property that as we go further away from 
the temperature of the phase transition they are dis­
placed in the direction of ever increasing electric fields, 
in accordance with the relation E - Kv'l al/la 1. The value 
of a can be approximately estimated on the basis of the 
following considerations. As can be seen from Eq. (2), 
an electric field shifts the transition temperature. It is 
clear in this case that fields which induce a polarization 
of the order of the atomic polarization Pat - Eat ~ e/d2 

displace the transition temperature by an amount of the 
order of magnitude of the temperature itself. From here 
it follows that a 'e ~ aE~t. Consequently, fields at which 
double hysteresis loops appear will be given by 
E - K.J IT - e I/6Eat· Thus, apparently, one can in fact 
observe double loops only for substances which have in 
the neighborhood of the transition temperature a small 
value of K, i.e., a large value of X· It is in just such sub­
stances that double hysteresis loops are observed[1J. 

In the case of a phase transition of the second kind 
there will be no double hysteresis loops, x is continuous 
at the transition point, and a discontinuity occurs in 
dx/dT and in the coefficient of E 3 in the expression for 
P(E). 

Anomalies of the type discussed above are charac­
teristic of quite a wide class of phase transitions deter­
mined only by the transformation properties of a single 
transition parameter, but not by its specific physical 
nature. Usually, however, definite dielectric anomalies 
(for example, double hysteresis loops) are associated 
with a definite "electric structure" of a substance 
(antipolar or antiferroelectric state)[ 11 . It was in just 
this manner that dielectric anomalies were explained in 
Kittel's paper[71 where the concept of antiferroelectrics 
was introduced. Breaking up the crystal into two sub­
lattices with polarizations P1 and P 2 , Kittel represents 
the thermodynamic potential in the form of a series in 
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powers of P 1 and P2: 

rD = f(P12 + P22) + gP1P2 + h (Pt' + P,') + i (Pt 6 + P,6 ) (3) 

and assumes that f depends linearly on the temperature. 
If we now introduce new variables P = P1 + P2 and 
11 = P 1- P 2, then (3) reduces to the form 

<D = _!_ (t- __!_ )TJ' + .!:_'1, + j_T], + _!_( f + _! \pz + 3h TJ'P', (4) 
2 2 8 32 2 2 I 4 

where terms involving higher powers of P have been 
discarded. A comparison of expressions (4) and (1) for 
the thermodynamic potential shows that under the condi­
tion a= f- g/2, {3 = h/2, y = 3j/16, K = f + g/2, a= 3h/4 
they coincide. Thus, Kittel's results can be obtained 
from the phenomenological discussion presented above. 
However, the thermodynamic potential (3) is introduced 
on the basis of a highly simplified model, which can 
turn out to be far removed from the actual situation in 
the crystal. Attempts to make this model more precise 
by the introduction of a larger number of sublattices 
and of three components of the polarization vector com­
plicate the theory greatly. At the same time the phenom­
enological discussion, in spite of all its simplicity, is 
free of any model representations. In particular, it 
shows that Kittel's results have a more general nature 
than his initial assumptions. In this connection we re­
call that, in general, it makes no sense to speak of the 
"electric structure" of a substance apart from its 
crystalline structure[BJ (in contrast to magnetic struc­
ture). And in the case of the phenomenological discus­
sion the concept of an antiferroelectric state turns out 
to be superfluous in general. 

3. We consider now the case when the phase transi­
tion is characterized by two transition parameters 11 
and ~. In the thermodynamic potential there will always 
be contained cross terms of the type (17 2 + e)PiPj. They 
are analogous to the terms 7J 2P 2 in expression (1), and 
the anomalies due to these terms will be similar to 
those that we have already discussed. However, it is 
essential that lower order cross terms will in this case, 
in contrast to the case of a single parameter transition, 
be of considerably greater interest. Indeed, terms 
linear in Pi, i.e., 17Pi or (17 2- e)Pi are now allowable 
not only in crystals of the pyroelectric classes, but also 
in all crystals under the condition that either 17~ or 
17 2 - C transforms like pi[ 51 • We restrict ourselves to 
a discussion of only the cross term 17~ P, where P is 
one of the components of the polarization vector. The 
case (17 2- ~ 2)P gives very similar results. We repre­
sent the thermodynamic potential <I> in the form 

w = ~(TJ' + s'l + ~(TJ'+s')' + 11:_(TJs)' + 1_1_('1' + s'l' (5) 
2 4 2 6 

+ .2':.('1' + s') (TJs)' + !:__p, + aTJGP- PE. 
2 2 

Cross terms of higher order have been discarded. Just 
as in the case of a one parameter transition we assume 
that only one coefficient a in (5) depends on the tem­
perature in accordance with a = a' (T - E> ), while the 
other coefficients are constant. Equilibrium values of 
rr, ~, and P are determined from the condition that <I> 
should be a minimum with respect to all these varia­
bles. It turns out that the following three types of stable 
solutions are possible: 

'1 = 1; = 0, aP = e; (6) 

~=±TJ, aP=e=F6t]2 ; (7) 

TJ'+~'= -~~+)'~,'- 4y'a, 11~=-~e, aP=(1+~)e. (8) 
2y, ~ ~ 

Here and in subsequent discussion we utilize the nota­
tion 

a a2 

e=-E, 6=-, ~=2~,+~,-6, ~=~,-6, y=4y,+3y,. 
X X 

(9) 
The solutions (8) for 11 and ~ are shown for the sake 

of brevity in implicit form. They are obtained on the 
assumption y 2 = 0. For y 2 .= 0 in order to determine 
17 2 + ~ 2 or 17~ it will be necessary to solve algebraic 
equations of the fourth degree, and the analysis of the 
results becomes essentially more complicated. 

In the case of second-order phase transitions of the 
second kind, when it is possible, generally speaking, to 
neglect in (5) terms of the sixth order, i.e., to set 
y 1 = y 2 = 0, the form of the solutions of (7) and (8), be­
comes greatly simplified and they respectively assume 
the form 

a±e 
TJ'=---~-, 1;=±1), aP= e=F 6~ 2 ; 

8 

'I'Js=-T· 

'1' = _1 ·[-a+ v a'- ( 2~, e \'] , 
2~1 - ~ I 

£2 = 21~J- a =F v a2 - e:~ e)'] , aP = ( 1 + ! ) e. 

(7') 

(8') 

From an analysis of the second derivatives of the 
thermodynamic potential (5) it follows that in the high 
temperature phase solutions (6) are stable, while in the 
low temperature phase with E = 0 solutions (7) are sta­
ble if A < 0, and solutions (8) are stable if A > 0. Since 
spontaneous polarization occurs only for solutions (7), 
then, consequently, for A < 0 the transition is ferro­
electric, while for A > 0 it is nonferroelectric. 

We first consider the ferroelectric transition (A < 0). 
It will be of second order if {3 > 0, and of first if {3 < 0. 
Figure 1 shows the temperature dependence of 11, ~ , P, 
and x for a second-order transition ({3 > 0). Dotted 
curves for the dielectric susceptibility x = dP /dE have 
been obtained taking into account the fluctuation correc­
tions calculated in the same manner as in[6 J. From 

~&~ZI ' pI - X L--=o4 
m . ~- ~ i,c=:t_ 

0 ..,, "' 0 cr;, "' 0 «-, "' 
FIG. 1. Temperature dependences for a ferroelectric phase transi­

tion of the second kind (t> > 0, {3 > 0) from solution ( 6) (high-tempera­
ture phase) to solutions (7) (low-temperature phase). ex= ex' (T-El), 
cx 1 =lei; X1 = 1/K, X2 =(I+ 6/{3)/K. 
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~+~<; " -­f 

FIG. 2. Temperature dependences for a nonferroelectric second­
order phase transition (.t:.> 0, {31 > 0) from solution (6) (high-tempera­
ture phase) to solutions (8) (low-temperature phase). 01. = 01.' (T-El), 
0/.1 = lei, Dl.z = -2{31 lel/.t:.; X1 = 1/K, X2 =(I + li/.t:.)/K, x3 = (1 + li/{3)/K, 
X4 = [I + li/({3 + 2 'Yiel/.t:.)] /K. 

Fig. 1 and relations (6), (7), or (7') it can be seen that 
the transition under consideration differs from the usual 
ferroelectric transition by the following special fea­
tures. The spontaneous polarization depends on the 
temperature not as VIT- e I' but linearly: ~ (T- E>). 
This circumstance has already been noted in[SJ. Fur­
ther the phase transition is not smeared out in an elec­
tric field, as in the usual case, but retains its sharpness 
shifting in the direction of greater temperatures 
(cl'l = lEI). The temperature anomaly in x is much 
weaker than in the usual case where x calculated with­
out fluctuation corrections varies according to the Curie 
law. In this case x varies with temperature in the same 
manner as, for example, heat capacity or compressibil­
ity, i.e., apparently as -ln IT- e I. However, fortran­
sitions close to the critical point of second-order phase 
transitions [4J, i.e., for small values of the coefficient 
{3, the magnitude of x in the nonsymmetric phase even 
without taking fluctuations into account will depend 
strongly on the temperature (cf., Fig. 1). We note that 
P for E = 0 has two equivalent solutions (7) which differ 
only by sign. Therefore the crystal can be broken up 
into domains, and the dependence of P on E for T < E> 
wUl have the form of a hysteresis loop. 

In the case of a first-order transition (.t:. < 0, f3 < 0), 
the results given above can be generalized in a natural 
manner. Spontaneous polarization appears at the tran­
sition point in a discontinuous manner, and also the so­
called temperature hysteresis appears associated with 
the existence of metastable states within a certain tem­
perature range. In the symmetric phase the dependence 
of P on E has the shape of a double hysteresis loop. In 
contrast to the usual case the double loop does not dis-

FIG. 3. Temperature dependences for a first-order ferroelectric 
phase transition (01. < 0) from solutions (8) (high-temperature phase) 
to solutions (7) (low-temperature phase) . .t:. = .t:.' (T-El); if {3 > 0, then 
.t:.1 = 2{31ei/IO!.I; aP1 = lil01.l/{3; X1 = 1/K, Xz =(I + li/{3)/K, X3 = ( 1 + 
lil01.1/2{31iei)/K. 

2 J u 

FIG. 4. Qualitative nature of the dependences P(E) for different 
temperatures for the first-order ferroelectric phase transition shown in 
Fig. 3, taking into account the coefficient 'Yz . .t:. = .t:.'(T -El); I, 2-.t:. <O, 
3-.t:. = 0, 4 - .t:. > 0. 

appear as the temperature is increased, but is shifted 
towards larger values of E. The dependence of P on E 
at different temperatures is here schematically the 
same as in Fig. 4 (cf., below). 

Thus, the ferroelectric phase transitions discussed 
above have a number of special features which differen­
tiate them from the usual ferroelectric transitions. 
This is essentially associated with the fact that the ap­
pearance of a spontaneous polarization P is here a 
secondary effect due to the reconstruction of the lattice. 
The reconstruction itself is determined by some other 
parameters TJ , ~ • The magnitude of the spontaneous 
polarization in such ferroelectrics, naturally, turns out 
to be small compared with usual ferroelectrics, where 
P ~ viT -E>I/E>. Also here P ~ TJ 2 while TJ ~ viT -E>I/E>. 

The ferroelectrics under discussion must also pos­
sess peculiarities in domain structure and in the dy­
namics of domain boundaries. We call attention only to 
the fact that for such ferroelectrics transition to a 
single-domain state is possible, in principle, even for 
an unshorted sample. We explain this in greater detail. 
We consider first a usual ferroelectric. For the sake of 
simplicity we assume that it has a single axis of spon­
taneous polarization and is cut in the form of a plate 
perpendicular to this axis. If the crystal is shorted, 
then, as is well known, a transition is possible into a 
homogeneously polarized (single domain) state at a tem­
perature corresponding to the vanishing of the coeffi­
cient Ql in the term % QIP2 in the thermodynamic poten­
tial. If the crystal is not shorted then a transition to the 
single domain state is impossible. Indeed, in this case, 
when spontaneous polarization arises an electrical field 
E appears and one must add to the thermodynamic po­
tential the term- %PE. In the case of homogeneous 
polarization the field in the plate is equal to - 41TP and, 
thus, the coefficient of P 2 will be not Ql, but Ql + 411'. 
This coefficient does not vanish, and a transition to the 
single domain state does not occur. As is well known, a 
transition to the multidomain state occurs. We now 
proceed to discuss our case. Here the term - %PE will 
lead to a change by 411' of the coefficient K in the term 
%KP 2 in (5). But the phase transition is determined by 
the vanishing of the coefficient Ql. Thus, also in an un­
shorted crystal a single domain state is possible 
(although it is energetically somewhat less favorable 
than a mult!domain state). Such a weakening of the ten­
dency towards the formation of domains can lead to a 
change in the processes associated with the formation 
and alteration of the domain structure. In particular, it 
might turn out that there exists a coercive field which is 
not present in the usual ferroelectrics . 

We now consider a nonferroelectric phase transition 
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(C. > 0). It will be of second order if {31 > 0, and of first 
if {31 < 0. The stable solutions determined from an 
analysis of the second derivatives of the thermodynamic 
potential (5) are shown for the case of a second-order 
transition ( {31 > 0) in Fig. 2. We call attention to the 
fact that although the transition is not accompanied by 
the appearance of a spontaneous polarization, neverthe­
less x experiences the same anomaly as in the preceding 
case. Moreover, the electric field exerts an essential 
influence on the transition. Specifically, two transitions 
arise-first from solution (6) to solution (7), and then 
from solution (7) to solution (8). The temperature range 
in which solution (7) is realized increases linearly with 
increasing E (a 1 - a 2 = f31Ei/t.). As should be expected, 
no hysteresis loops arise. 

In the case of a first-order transition ( {31 < 0) at the 
transition point 7] 2 or e originates in a discontinuous 
manner and temperature hysteresis appears. In the low­
temperature phase, just as in the case of the second 
order transition, no hysteresis loops are observed. In 
the presence of a field solution (7), as in the case of a 
second-order transition, wedges in between solutions (6) 
and (8), but now, starting with a certain finite value of 
E (for example, for f3 < 0 starting with E ~ {31/y). If 
f3 < 0, then in the high temperature phase double 
hysteresis loops appear for fields E ~ lf311t./y. If f3 > 0, 
then no double loops appear. 

As follows from the discussion given above in the 
case of two transition parameters two types of solutions 
(7), (8) are possible corresponding to different non­
symmetric phases of the substance. Correspondingly 
two types of phase transitions are possible from the 
symmetric phase into one of the nonsymmetric phases. 
Which of these two transitions will be realized depends 
on the sign of the coefficient c. in (9). Naturally on the 
basis of the thermodynamic potential (5) one can also 
discuss phase transitions from one nonsymmetric phase 
into the other one. This will be a first-order transition, 
since the symmetry group of one phase is not a sub­
:group of the symmetry of the other phase (but they are 
both subgroups of the symmetry of the symmetric phase 
of the substance). Well known examples of transitions 
between nonsymmetric phases of a substance are transi­
tions in barium titanate from the tetragonal phase into 
the rhombic phase and from the rhombic phase into the 
rhombohedral phase. 

Just as it was necessary to assume that the coeffi­
eient a changes its sign for the transition from the sym­
metric phase into one of the nonsymmetric phases, for 
the transition between nonsymmetric phases it is neces­
sary to assume that the coefficient c. passes through 
zero. Near the transition point one can assume that 
c. = c.' (T - 0), while the remaining coefficients (includ­
ing a < 0) do not depend on the temperature. Such a 
phase transition from solution (7), which is stable for 
L~ < 0, to solution (8), which is stable for c. > 0, is ac­
companied by anomalies in dielectric properties shown 
in Fig. 3. We call attention to the fact that although this 
is a transition of the first kind there is no temperature 
hysteresis and no double hysteresis loops in the symme­
tric phase. 

4. An example of a substance in which a ferroelectric 
phase transition is observed, but for which polarization 
can not be a transition parameter is, as has been noted 

earlier, ammonium fluoroberyllate. It is natural to 
attempt to compare the observations for ammonium 
fluoroberyllatel 9 J with the theoretical conclusions ob­
tained above. We note first of all that, as should have 
been expected, experimental data for ammonium fluoro­
beryllate do not fit within the framework of the 
Ginzburg- Devonshire theoryl9 J. We compare the ex­
perimental curves ofl91 with the curves of Figs. 2 and 3, 
since it is just in these diagrams that anomalies ac­
companying ferroelectric transitions are shown. In 
Fig. 2 the dependence of x on T in the high-temperature 
phase is very weak and is due to fluctuations, while the 
experimental dependence obeys the Curie- Weiss law, 
i.e., it is strong. Consequently, it remains only to com­
pare experiment with Fig. 3. Here we observe quite 
good agreement for the curves P(T) and x (T) for differ­
ent E. However, the theory does not give double hystere­
sis loops in the high-temperature phase which are 
observed experimentally. This lack of agreement is 
removed if we take into account the coefficient Y2 in 
solutions (8). 

Indeed, the absence of double loops is essentially a 
consequence of the absence of temperature hysteresis. 
As the example of barium titanate shows, temperature 
hysteresis in transitions between nonsymmetric phases 
appears only when we take into account several coeffi­
cients y of the sixth power of P in the thermodynamic 
potential l101 • It is therefore natural to take into account 
the coefficient y 2 which was neglected earlier in solu­
tions (8). As analysis shows, taking this into account 
leads to the appearance of temperature hysteresis for 
E ;>< 0 and of double hysteresis loops in the high-tem­
perature phase. The qualitative nature of the double 
loops, and also of transition loops from double to single 
ones is illustrated in Fig. 4. Now the agreement with 
experiment becomes quite complete. 

However, we note that the proposed explanation of 
the anomalies in ammonium fluoroberyllate is not yet 
indisputable. For a final decision it is necessary to 
know more reliably the structure of the high- and low­
temperature phases, since the nature of this structure 
determines both the form of the thermodynamic poten­
tial and the choice of solutions corresponding to a par­
ticular phase. One cannot regard the structure of 
ammonium fluoroberyllate as being reliably established, 
particularly in the neighborhood of the phase transition 
point. Therefore, it is apparently not useful for the 
time being to carry out a quantitative comparison of 
theory with experiment, particularly since this is as­
sociated with quite awkward calculations. 

Ammonium fluoroberyllate is not the only example in 
which anomalies are observed which differ from those 
that follow from the Ginzburg- Devonshire theory (cf. [11 ). 

However, even the dielectric properties of these sub­
stances, let alone their structure, have been, as a rule, 
investigated very incompletely, and this does not allow 
us to carry out a comparison of the corresponding ex­
periments with theory. 

We emphasize in conclusion that the discussion given 
above does not exhaust all possible cases of transitions 
(for example, three transition parameters etc.). But it 
demonstrates to a sufficient degree those peculiarities 
of dielectric anomalies which are characteristic of 
transitions when polarization is not a transition param-
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eter. More complete systematic investigations of differ­
ent phase transitions are now only beginning, and one 
can hope that the theory under discussion will turn out 
to be useful for the interpretation of experimental data 
which will appear as the result of such investigations. 

The authors are grateful to V. L. Ginzburg for advice 
and for discussions of the results of this work. 
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