
SOVIET PHYSICS JETP VOLUME 28, NUMBER 1 JANUARY, 1969 

TRANSPORT AND RELAXATION PHENOMENA IN POLY ATOMIC GAS MIXTURES 

M. Ya. ALIEVSKII and V. M. ZHDANOV 

Submitted December 15, 1967 

Zh. Eksp. Teor. Fiz. 55, 221-232 (July, 1968) 

A closed system of equations is derived for the diffusion velocities, heat fluxes, and viscous stress 
tensor by usinf a method in which the distribution function is expanded in a series in generalized 
polynomials [a • The equations differ from the familiar expressions [JJ in that the form of some of 
the kinetic coefficients is simpler and that consistent allowance is made for the effect of viscous 
momentum transfer on diffusion of the components. The structure of the kinetic coefficients are 
analyzed for the cases of "easy" and "hindered" energy exchange between the translational and 
internal degrees of freedom of the molecules. The equations of energy relaxation of the components 
and the conditions under which an expression for the volume viscosity of the mixture can be de­
rived are discussed. 

1. INTRODUCTION 

THE recently developed formal kinetic theory of poly­
atomic gases and gas mixtures [1- 3 ] is based as a rule 
on a generalization of the Chapman-Enskog method [4-Sl. 

A different approach to the theory of polyatomic gases, 
using the expansion of the distribution function in 
orthogonal polynomials and essentially a generalization 
of the Grad method [?], was proposed in E6 l. Besides 
obtaining equations that are of more general (relaxa­
tion) character, an advantage of this method is that 
even in the usual 17-moment approximation (or 13-
moment in the case of monatomic mixtures [a]) it is 
possible to obtain much simpler expressions for the 
kinetic coefficients in the diffusion equations and for 
the heat flow, corresponding to the complete second 
approximation in the expansion in Sonine polynomi-
als [sl. The influence of the viscous momentum trans­
port on the diffusion of the components is consistently 
accounted for here just as in [aJ. 

In the present paper we extend the method used in E6 l 

to include the case of polyatomic gas mixtures. It is 
possible to write down in the 17-moment approximation 
a closed system of transport equations for each of the 
mixture components. Linear relations for the diffusion 
rates, the heat fluxes, and the viscous-stress tensor 
follow from this system under the assumption that the 
macroscopic parameters of the gas change little within 
times and lengths on the order of the effective times 
and free paths of the molecules. The obtained relations 
are valid both in the case of an "easy" and "hindered" 
exchange of energy between the translational and in­
ternal degrees of freedom of the molecules under the 
condition that the deviations of the corresponding en­
ergies from their equilibrium values are small. The 
kinetic coefficients that enter in these relations can 
be simplified in many cases by linearization with re­
spect to the small parameter zc;13 , which character­
izes the degree of "hindrance" of the exchange E10l. In 
the conclusion we consider the equations of relaxation 
of the translational and internal energies of the com­
ponents, which lead in the case of ''easy'' exchange to 
linear relations for the scalar additions to the partial 
pressure tensors; these relations justify the introduc­
tion of the second (volume) viscosity of the mixture. 
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2. TRANSPORT RELATIONS 

The state of the a component of a polyatomic gas 
mixture is described by a distribution function fai 
=fa (v, Eab r, t), which depends on the velocity v 
and on the internal energy Eai of the molecules of 
species a. Just as in [a], we expand fai in terms of 
the irreducible Hermite tensor polynomials 
H~~1 ••• rm•n (v) and the polynomials P~q)(Eai) pro­
posed in E1 l. The expansion coefficients can be ex­
pressed with the aid of the orthogonality relations for 
polynomials in terms of the generalized moments of 
the distribution function. In the case of a polyatomic 
gas mixture, a physical meaning is possessed by the 
following 17 moments: 

Pa = mana=. m,.~ ~ /a;dc, 

na.Eain = ~ ~ Ea;/a;dc, 
i 

:rlars = ma~ ) (CrCs- 1/31!Jr,c2)/a;dc, 
i 

q,.tr= m,. ~ ~ c'cfa;dc, 
2 i 

qain = ~ ) Ea;C/a;dc. (2.1) 

here c = v - u, where u-average gas velocity of the 
mixture, m-mass of the molecules of species a, Pa 
and Wa = Ua - u-mass density and average diffusion 
velocity of the molecules of the a-component, .1Tars­
partial tensor of viscous stresses; E~, q~, E~n, ql~­
average energies and heat fluxes corresponding to the 
translational and internal degrees of freedom of mole­
cules of species a. 

For the distribution function we have in the 17-
moment approximation 
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where 

Here 

f~) = na('Va/2:n:)'i'Q .. - 1exp(- ;a2/2- fa;), 

Sa= y .. 'hc, Ba; = Ea;/kT, 'Va = ma/kT, 

Oa = ~ exp (- fa;). 

;';.Ea1' = Eatr- Eaolr, I:J.Eain = Eain - Eaoin, 
ha.tr = qo.tr - s/2[Ja.Wrx, hain, = qa,in._ <ea)Pa.Wa., 

Cain = (&Eaoin 1 &T)v = k((ea2)- (ea) 2), (2.3) 

where 

( ) denotes averaging with a Boltzmann factor 
Q-~ exp (- Eod ). 

When (2.2) is used, the parameters determining the 
state of the polyatomic gas mixture are p t:1, u, T, 
PaWa, 1Tars' na~Etr, na~Ein, h~, and h~. Out of 
these, 17N quantities are independent (N-number of 
mixture components), since the following conditions 
are satisfied 

~ pa.Wa. = 0, ~ n .. (M .. tr+ I:J.Ea.in) = 0, (2.4) 

which follow from the definition of the mean mass 
velocity of the mixture u and the temperature T. 

A closed system of differential equations for the 
quantities under consideration can be obtained by 
multiplying the kinetic equation for the polyatomic 
mixture [3 l by the corresponding polynomials with sub­
sequent integration with respect to velocity and sum­
mation with respect to i. Owing to the complexity of 
these equations, we shall not write them out here 
completely 1 >, since we are interested principally in the 
case when the following conditions are satisfied 

'tL ;;;,.'to, (2. 5) 

where L and TL are the characteristic linear and 
temporal scales of variation of the macroscopic quan­
tities, and A- 0 and To are the average free-path length 
and time of the molecules. 

We note that summation of the first three equations 
with respect to a leads to the equations for p, u, and 
T; these correspond to the ordinary equations of con­
tinuity, motion, and energy of a polyatomic gas mix­
ture (see, for example, [sJ ). The right sides of the 
equations for the remaining quantities contain the mo­
ments relative to the collision integrals, which can be 
expressed, in accordance with the approximation (2.2) 
used for fai' in terms of the same macroscopic 
parameters of the polyatomic gas. We confine our­
selves in their calculation, as usual, to the terms that 
are linear in the moments. An analysis of the obtained 
expressions shows that the order of magnitude of the 
coefficients at the moments in the right sides of the 
equations for PaW a, 1T ars, h~, and h~n is determined 
primarily by the values of T-;.;(3 and ( c~n/k)T~~ and 

the values of Z~(3 T-;.;(3, which are encountered simul­
taneously with them. Here T a(3- characteristic colli-

!)The corresponding equations for a monatomic gas mixture and for 
a simple polyatomic gas are given in [8 ] and [6 ]. 

sion time for the molecules a and (3, defined by the 
relation 

where JJ.a(3 is the reduced mass and [ Da(3 ] 1 corre­
sponds to the first approximation and to the coefficient 
of mutual diffusion in the mixture of molecules a and 
(3. Obviously Ta(3 ~ To. The parameter Za(3 charac­
terizes the ratio of the frequency of the elastic and 
inelastic collisions of the molecules a and (3. It is 
known that inelastic collisions accompanied by energy 
transfers between the translational and internal degrees 
of freedom occur as a rule less frequently than elastic 
collisions. In particular, if rotational degrees of free­
dom are excited, then Z ~ 5-20 (exception for light 
gases, when Z ~ 102 [ll] ). Upon excitation of the vi­
brational degrees of freedom, Z ~ 103-104• 

The foregoing considerations allow us to neglect, if 
conditions (2.5) are satisfied, the time derivatives of 
the quantities PaWa, 1Tars, h~ in the left parts of the 
equations for these quantities, compared with the cor­
responding terms in the right sides, as well as the 
nonlinear terms2 >, i.e., the fluxes and the energy devi­
ations multiplied by the gradients of n, u, and T. As a 
result we arrive at the following linear system of 
equations for the diffusion rates, heat fluxes, and 
viscous- stress tensors: 

"' nan~kT dyo. ( Po. ) ap LJ ---(War-W~r)=-p-~-- Yo.---
~ n [Do.~]i ox, p ax, 

2 (&nai:J.Eo.tr po. an!:J,Etr\ 
-3 IJx, --pa;;-; 

_ ( a:n:a.rs _ Pao &nrs ~ -~~ m~ no.n~kT 
, ax, p ox, , . ~ mo.+ m~ n [DaoB]i 

X (~cao~'-1)(h"'•tr_ mao h~,tr) 
5 Pao m~ p~ 

- ~ nanBkT t EaoB• __J<~rin__E~ .. • h~~in l 
13 n[DaoBh L na.Ca. mT n~c~ut T 

(2.6) 

(2. 7) 

(2.8) 

(2.9) 

Here y a = na/n-molar concentration of the a-com­
ponent in the mixture, and the mixture parameters p, 
n, p, n~Etr, and 1Trs are determined by summing the 
corresponding partial quantities over 0'. In writing 

2lThe time derivatives of n, u, and Tare first eliminated from these 
equations with the aid of the first three conservation equations. 
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down (2.7), we used the symbols 

{L,M,} = 1/2(L,M, + M,L,) - 1/al5r,MtLt, ers = (au, I ax,}". 

The coefficients aaf3• baf3• b~{3• gaf3• and g~{3 are 
defined by the following expressions: 

aaa=£+ .2; 2YaYy (1+~ my Aa/) (2.10) 
biaah Y*o. (ma + my)n[Dayh 5 ma ' 

[l]aa]t = 5kT /8Q0022, [Da~]t = 3kT I 16nfla~Qa~11, 
Aa~· = Q0~22 /2Qa~11 , Ba~· = (5Qa~11 -Qa~13 ) /3Qa~11, (2.14) 

Ca~· = Qa~12 I 3Qa~11 • 

The quantities n~13 , which are a generalization of the 
known Chapman-Cowling integrals [4l, are written in 
the form 

Qa~11 = < 62- 66' cos X) a~. Qa~12 = < 62(62 - 66' cos x) )a~. 
Q~.~·3 = < 62(6'- 66'' cos x) )a~. Q.~22 = (62(62- 6'2 cos2 x) - '/sl1ea~2)a~. 

where (F) aJ3 corresponds to an abberation of the form 
oo 2n n 

(F).~= (kTI2:n:f!a~)'I•Qa- 1Q~-· .2; ~ d6 ~ d<p ~ sinzdx 
ijkl 0 0 

X [F63 exp(- 62 - ea;- e~t;)la~(g, x, <p; i, j-+ k,l) ]. 

Here 

!; =' (!la~ /2kT) 't.g, 

and IaJ3 is the differential cross section for the 
scattering the molecules of types a and {3, accom­
panied by the transition of these molecules from the 
states i and j into the states k and l; ga {3 = I v a 
- Vj31-relative velocity of the colliding particles; x 
and rp-polar and azimuthal angles describing the 
orientation of g' relative to g (the primes denote 
quantities after the collision; the index 1 is introduced 
to distinguish the colliding molecules when a = J3 ). 

The still undetermined quantities in (2.11)- (2.13) 
are essentially connected with the contribution of the 
inelastic collisions. The expressions for them are 

-1 5 k (L'lea~2)a~ 
Aa~'Za~ = -· . 

8 ca:m Qa~" 

La~' = (.L\ea2 >a~ I (L'lea~2 )"~' M a~' = <L'>eaL\e~l >a~ I <L'leo.~2 >a~, 
Ea~· = ( (ea;- (eo)) (62 - 66' cos x)>a~IQ.~". 

Fa~·= ( (ea;-(ea)) [! (6'-66'3 cosx)-(62 -61;'cos;<:)]) .~/QaB11 , 

GaB' = { ( (eai- (ea)) [62(eai- (ea)) - 66' (e.ak- (ea)) cos xJ>aB 

c •in } I ---1,- (62 - 66' cos x>·~ I Q"~". 

HaB. = <(e~lj- <e~>)[62 (eai- (ea>) -I;~' (eak- (ea>) cos xl>adQaB 11 • 

(2.15) 

We note that by virtue of the condition L~J3 + 2M~J3 
+ L~a = 1 we get: 0 5 L~J3 5 1 and 0 5 M~J3 5 1. The 
coefficients E~a and F~a by replacing the indices a 
and J3 by ai and J31j. 

3. DIFFUSION, VISCOSITY, AND HEAT TRANSPORT 
IN A POLYATOMIC GAS MIXTURE 

Equations (2.6)- (2. 9) describe the diffusion, viscos­
ity, and heat transport in a poly atomic mixture, and 
also the relations between them. They should qe sup­
plemented by equations for naD.E~J. and naD.E~n, in 
which it is possible to neglect the nonlinear terms, in 
accord with the condition (2.5). In the general case, 
however, it is necessary to leave in these expressions 
the derivatives dD.E~ /dt and dD.E~/dt, since the or­
der of magnitude of the right sides of the equations is 
determined essentially by the values of Ti/aJ3 
~ z-;;13T-;J3 and when ZaJ3 » 1 (hindered energy ex­
change) it may turn out to be that TEaJ3 ~ TL· The 
energy relaxation equations, and the ensuing expres­
sions for the volume viscosity, are discussed in the 
next section. We shall neglect here the contribution of 
the derivatives BnaD.E~ /Bxr and BnaD.Ehn;axr, and 
also aq~r/Bxr and aq~r/Bxr in the left sides of (2.6)-­
(2.9). 

. Solving (2.7)-(2.9) with respect to 1Tars• h~, and 
h~n and substituting the obtained expressions in (2. 6), 
we obtain a system of diffusion equations for a poly­
atomic mixture: 

(3.1) 

For simplicity, we have left out of (3.1) the cumber­
some terms that give the second-approximation cor­
rections of the diffusion coefficient and the coefficient 
ofthederivative BErs/Bxs. 

For the viscous-stress tensor and the heat flux in 
the mixture we have 

1trs = -2'Yj€rs, (3.2) 

(3.3) 

Here 
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and n;I-coefficients of viscosity, thermal conductivity, 
and thermal diffusion of the mixture, defined by the 
expressions: 

ba~ b~3 Ya 
cin I ba~ b~~ ,-1 A.=- ga~ ga) Y•T 

' ' 
cin 

ga) ga~ 

6 0 y~ y~k 

(3.4) 

(D~ is obtained from n;i by interchanging the indices). 
To simplify the notation, and aaf3, baf3, b~.B' ga.B' and 
g~.B in (3.4) stand for square "blocks" of order M, 
made up 9f the corresponding elements. The quantities 
Ya, Ya(c~/k) and Yf3, Yf3(c~n/k) denote columns and 
rows containing N elements. 

The partial kinetic coefficients TJ a and At~ are ob­
tained from (3.4) by replacing the determinants in the 
numerators of the expressions for TJ and A by the 
products of the elemeiit common to the last row and 
the column number a by its co-factor. The expres­
sion for A}r is obtained from A by replacing the 
numerator of (3.4) by the product of the element com­
mon to the last row and column number a + N by its 
co-factor. 

The expressions obtained above for TJ and A agree 
with the corresponding results in [31 , obtained by the 
Chapman-Enskog method. The thermal-conductivity 
coefficient A turns out to be equal to the value ob­
tained by successively using the second approximation 
in the expansion in Sonine polynomials, in accordance 
with the scheme developed in t 9 l. Monchick, Yun, and 
Mason [3 l state that the use of such a scheme for the 
calculation of the diffusion contribution to the influx 
(the last term on the right in (3.3)) leads only to a com­
plication of the results compared with the rather cum­
bersome expression presented in their paper. This 
does not agree with the expression obtained here, 
which, just as in the case of monoatomic mixtures [aJ, 

has a much simpler form3 > (the order of the determin­
ants in the expression for DT is lowered). 

Equations (3.1) differ fro£ the ordinary diffusion 
equations [3 , 51 in the presence of an additional term that 
takes into account the viscous momentum transfer in 
the mixture, and also in the presence of simpler ex­
pressions for the thermal diffusion coefficients n;i 
and n'§, the order of magnitude of the determinants in 
which is lowered from 3N + 1 and 3N to 2N + 1 and 
2N. As shown in [a], for a stationary viscous flow of a 
gas mixture, allowance for the additional term leads 
to a different value of the barodiffusion constant in 
viscous flow than in the case of nonviscous flow. The 
diffusion equation (3.1) is transformed in this case into 

na.n~kT ay. ( '11• ) ap 
~ · --(wa.,-W~r)=-p---, Ya.-- --

n [Da.~], ax, ' '11 ax, 

-· ~ na.n~kT (__!!i!_- D~T) aln1' (3.5) 
1, n[Da.~h ma.na. m~n~ ax, · 

3)There is a misprint in [8 ]: the corresponding term should have 
a minus sign. 

We note that for the calculation of TJ a and TJ it is 
necessary to know, besides the quantities [TJaa J1 and 
[Daf3 ]h only A~.B· An analysis shows that inelastic 
collisions have little influence on A~.B [3 1, so that it is 
possible to use the values calculated for this coefficient 
on the basis of the ordinary interaction potentials for 
monatomic gases. Consequently, the barodiffusion 
constant [ ap h, as well as the viscosity coefficient of 
the mixture TJ = 'E'Tia, can be calculated with good ap-

a 
proximation from the same expressions as in the case 
of monatomic mixtures [a] using the experimental 
values of the viscosity coefficient TJaa and mutual dif­
fusion Daf3 for a real monatomic gas. The calculation 
of the coefficients of thermal conductivity and thermal 
diffusion turns out to be more complicated therefore. 
F9r small values of Z~f3' the expressions for A~, 
A~, and A can be greatly simplified by linearization 
in terms of a small parameter. In [ 1o] are advanced 
certain considerations which make it possible to regard 
also the coefficients introduced above 4> E~f3, F~f3, 
G~f3, and H~f3 as small. At least their contribution 
decreases with decreasing role of the inelastic colli­
sions, i.e., when Zaf3 >> 1. In this case ("hindered" 
energy exchange), neglecting also terms proportional 
to z(i.B, we can put 

ba.rx.1 = baB1 = garx = gBa = ga,f31 .= 0, 

g I- _:i~ r -~:____-+ ~ ... Ya.Y_v_] 
a.a. - k 'L!m [Daah "*" kn [D""]t ' 

where [ Daf3 J1 and all the quantities retained in baa 
and baf3 coincide, accurate to negligibly small contri­
butions of the inelastic collisions, with the values cal­
culated on the basis of the theory of monatomic gases. 
The correction to the thermal conductivity A, con­
nected with g~a' justifies the expression proposed by 
Hirschfelder for the generalized Euken correction in 
the case of a polyatomic mixture [121. 

The possibility of lowering the order of the deter­
minants in the expressions for D~ and D~ using the 
consecutive second approximation in the expansion in 
the Sonine polynomials was recently noted in [131 • How­
ever, account is taken here of the contribution made to 
these coefficients only by the translational part of the 
thermal conductivity ..\ ~. Although the coefficients 
E~f3 and E~a are small and can vanish for certain 
particular models of the ~olecule. interaction, neglect 
of the terms containing A~ and A {f can lead to notice­
able errors in the general case (particularly at values 
of the coefficient (%) C~ f3 - 1 close to zero). On the 
other hand, if C6tf3 is determined from the experimental 
temperature dependence of Daf3, then, in accordance 
with the relation 

"fsCa.p•- 1 = 2/0[2- (a In [Da.~]•/ 8 In T )p- Ea.p•- Epa.•], 

knowledge of E~f3 and E~a turns out to be important 
also for the calculation of the "translational" part of 
the thermal diffusion coefficients. These two circum­
stances (besides the others mentioned in [131 ) possibly 

4)The coefficients E&p, F&p, and H&13 vanish for the case when the 
relative velocity before and after the collisions do not depend on the 
initial states of the colliding particles (identical differential cross sections 
for all the scattering channels)[ 10 j. 
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explain the noticeable discrepancies between the ex­
perimental and calculated values of the thermal diffu­
sion coefficients for Ar- HCl and Ar- C02 mixtures, 
for which calculations by means of the formulas of the 
theory of monatomic gases give values close to zero. 

4. ENERGY RELAXATION AND VOLUME VISCOSITY 

The relaxation equation of the translational and in­
ternal energies of the mixture components are obtained 
from the kinetic equations by multiplying it by mac2 /2 
and Eai with subsequent integration over the velocities 
and summation over i. The right sides of these equa­
tions, in accordance with the approximation (2.2) 
assumed for fab contain only terms that are propor­
tional to small deviations of the translational and 
internal energies of the components from their equili­
brium values. After eliminating from their left sides 
the derivatives dna/dt, du/dt, and dT/dt and neglect­
ing the nonlinear terms (including the divergences of 
the diffusion and thermal fluxes), the relaxation equa­
tions can be represented in the form 

d!J.Ea.tl cin ou1 2 ~ np!J.Epti ~ k ,npl:!.Epin 
na. ---j- --pa.- = -- £.J Ca.p --+ £.J -.- Ca.p --- t 

dt Cv OXz 3 p YP p Cp 1n YP 

dl:!.Ea.in ca.in oU:z 2 ~ npl:!.Epti ~ k ppl:!.Epin 
lla.- ---·-pa.--=-£.J da.p--- £.J-.-da.p --, 

dt Cy OXz 3 p yp p cpm Yp 

(4.1) 

where 

Here 

-r;!p = 2np(k/ca.in') (4Ea.p2)a.p 

is the characteristic frequency of collisions with ex­
change of energy between the translational and internal 
degrees of freedom. If the energy exchange is easily 
effected (TEa/3 ~ Ta{3), then, in accordance with (2.5), 
it is .Possible to neglect the derivatives dAE~ /dt and 
~E~n/dt in the left sides of (4.1). As a result, wear­
rive at a system of linear algebraic equations, from 
which we determine naAE~ and naAE~n. By defini­
tion, the total stress tensor of the mixture equals 

al\d in our case 
2/ 3n!!.Etr= 2/ 3 ~ na.I!Ea.tr=- ~divu, (4.3) 

a. 

where l; - coefficient of volume viscosity of the mix­
ture, defined by the expression 

; ::: Yyu ::· I C::/J c~ ~-t 
«;3 afi a. a 10 11 • 

Cup Cup 
y~ 0 0 

(4.4) 

Here, as before, cfx~ are used to denote the square 
"blocks" of order N, made. up of the corresponding . m 
elements, while Yacm, YaCa, and Y{3 denote the 
columns and rows containing N elements. 

The elements of the determinants c~~ are expressed 
in terms of Caf3• c~/3• daf3• and d~f3 (4.2), apart from 
arbitrary terms that vanish when the determinants are 
calculated: 

2 cpin 
Ca.p01 = Ca.p' + 3 YP -k-Ka.<•>, 

2 cpin 
c .. p" = da.p'-ayp-k-Ka.(l>. 

The form of these relations follows from the fact that 
the system of equations for n{3AE~r and nf3AE~n should 
be supplemented by the condition (2.4). In particular, 
the results given in [3 J correspond to the choice of the 
following expressions for K:;> and K~> 

• .{a.o) = ~ 2my> [ ca. in -t . 3 ma. ·] 
11.; £.J lma.+mv)• -k-TEa.v(1+6a.v)+2 my Ta.v-1(1-ba.v) ' 

y 

...w ;-• ~ .-• ll.i< = 3 .-r_,.+ £J, I-. -r,.,.,. 

It must be emphasized that a linear relation between 
nAEtr and div u obtains only in the case of "easy" 
exchange of energy. More accurately, when the condi­
tion T a 13 :S TEa 13 « TL is satisfied. When Za {3 » 1, 
this condition can be violated, and it is necessary to 
retain the time derivatives in Eqs. (4.1). We note that 
the coefficients c~/3• daf3• and d~f3 in the right sides 
of the e~uations are of the order of z-;;13 T-;;[j, whereas 
Caf3 = Caf3 + c~/3• where cf;13 no longer contains z-;;13, 
corresponding to an intense exchange of energy between 
the translational degrees of freedom of the individual 
components. Since, however, ?t cf? {3 = 0, only the terms 

~z~13T~f3 remain in the right side of the equation for 

AEtr =~YaAE~, and ensure in the case when z-;;13 
0! 

<< 1 a very slow exchange of energy between the 
translational degrees of freedom of the mixture as a 
whole and the internal degrees of freedom of the indi­
vidual components. Therefore, by combining with the 
equation for AEtr and neglecting terms ~z~/3• the 
equations for AE~ are conveniently written in the form 

d 2 
na.dt(Ea.tr-EU) =-:J 21 nca.pn(Eptt-Ett). (4.5) 

p 

Consequently, after a time on the order of the 
mean-free-path time To the translational energies of the 
components E~ relax to a common Etr. Therefore 
for states satisfying the condition (2.5) we can assume 
that E!f = Etr for all a, whereas the relaxation of 
Etr to Etr = 3kT /2 and the relaxation of all the in­
ternal energies of the components E~n to E~0 is de­
scribed by a system of equations in the form 
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where 

and we used the additional assumption, according to 
which the ''complicated'' collisions accompanied by 
the transitions of both colliding particles are much 
less frequent than collisions with transition of one 
particle ( M~{3 « 1 ). We note that there are no 
grounds whatever for splitting the system (4.6), as 

(4.6) 

was done in [1oJ as a result of the vanishing of t..Etr, 
and consequently the TEa cannot be regarded exactly 
as the partial relaxation times. This casts doubts on 
the method proposed in [1oJ for determining TEa{3 from 
experiments on the absorption of ultrasound developed 
on the basis of the customarily employed phenomeno­
logical relaxation equations for a polyatomic mixture[ 14 J. 

The authors are grateful to Yu. Kagan for a discus­
sion of individual aspects of the present work. 
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