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The possibility of calculating the critical temperature of a superconducting alloy with a nonuniform 
distribution c ( r) of paramagnetic impurities is investigated by means of a generalization of the 
Abrikosov-Gor'kov theory (the characteristic inhomogeneity dimension Oo and coherence length ~o 
are assumed to be large compared to the mean distance between the impurities). By analogy with 
the problem of determining the spectrum of disordered systems, the concepts of a "renormalized" 
critical temperature Tc (the same as introduced in the Abrikosov-Gor'kov theory) and of a "true" 
critical temperature Tc (T~ > Tc) due to fluctuations, are introduced. When T > Tc the super­
conductivity picture is that of "islets" of the superconducting phase separated by normal regions. 
The generalized Ginzburg-Landau equation is used to study localized states when T > Tc (super­
conducting "nuclei"). It is shown that when c ( r) is not constant and the concentration is small 
the equation contains a "potential energy" term that is a linear functional of the impurity concen­
tration. 

1. INTRODUCTION 

THE study of the properties of superconducting alloys, 
i.e., superconductors with admixtures of other ele­
ments, is one of the urgent problems of modern theory 
of superconductivity. The theory of superconducting 
alloys (homogeneous solid solutions) containing both 
nonmagnetic and paramagnetic impurities was con­
structed in the well known papers of Abrikosov and 
Gor'kov [1, 21. The most important result of this theory 
is the explanation of the dependence of the critical 
magnetic field ( Hc2) on the concentration of the non­
magnetic impurities (in particular, the transition to 
superconductivity of the second kind, occurring at a 
definite concentration) and the critical temperature 
( T c) on the concentration of the paramagnetic impuri­
ties (accompanied by a vanishing in the superconduc­
tivity at a certain critical concentration). 

In the Abrikosov-Gor'kov theory, the impurities are 
assumed to be distributed over the volume of the super­
conductor uniformly with a certain average concentra­
tion c. As noted in [31 , the results of Abrikosov and 
Gor'kov can be obtained on the basis of a simplified 
equivalent Hamiltonian of the interaction between the 
electrons and the impurities; this Hamiltonian does not 
contain summation over the random positions of the 
impurities (and its spins), and takes the form 

(1.1) 
P+P' 

where aiJQ~ -operators of creation of an electron in the 
state p, a ( p --momentum, a -spin index), and r a{3 -­
a certain interaction matrix: 

fap=gn.Sap+gsGap, .Sap=(~ ~), Gap=(~ -~) (1.2) 

( gn and gs--constants expressed in terms of the proba­
bilities of the non-exchange and exchange scattering by 
the impurities T~1 and T81). This means that within the 
framework of the model used in r1 , 21 the real distribu-
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tion of the impurities is replaced by a simplified uni­
form (in the mean) distribution, i.e., effects of concen­
tration fluctuations are disregarded. At the same time 
it is obvious that for certain problems allowance for 
the inhomogeneity of the impurities is of decisive sig­
nificance. For example, such problems include the 
problem of calculating the critical currents in the 
mixed state of superconductors of the second kind when 
j 1 H (see [4 ] ). Clusters of impurities, produced by 
fluctuations of their concentration, can play the role of 
blocking centers for the Abrikosov vortex filaments, 
leading to a finite value of the critical current krit in 
the mixed state. 

The purpose of the present paper is to study the 
influence of the inhomogeneities of the concentration on 
the properties of superconductors containing paramag­
netic impurities, in the absence of an external magnetic 
field 1 >. We consider here the case when the distribution 
of the impurities in a crystal can be characterized by 
their average concentration as a function of a point, 
c ( r ). This can be done provided the characteristic 
distance over which the function c ( r) varies, and also 
the distance over which the average superconducting 
parameters change ( ~o ~ vo /Tc ) , are large compared 
with their "statistical" dimensions characterizing the 
microinhomogeneities of the concentration, i.e., actually 
compared with the average distances between the im­
purities2>. At the concentrations of interest, on the 
order of 1% (see l2l), the latter quantity amounts to 
several interatomic distances, i.e., it is small com-

llThe influence of the fluctuations of the impurity concentration 
on the magnetic properties of superconductors, and particularly the 
problem of the critical currents in the mixed state, are not considered 
by us in this paper. These questions will be dealt with in a separate ar­
ticle. 

2lThe opposite limiting case, when the distance between the impuri­
ties is large compared with ~0 , and therefore the individual impurities 
can be regarded as isolated defects, were investigated by Suhl eta!. [5 ) 

and by Fetter [6 ) (in the case of nonmagnetic impurities). 
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pared with the correlation length ~ 0 ~ 10--'~ em. We 
shall assume it also to be small compared with the 
dimensions of the macroscopic inhomogeneities of the 
concentration 00 (the characteristic distances over 
which a change of the function c ( r) takes place), but 
we shall make no assumption concerning any relation 
between the parameters ~o and 00 • 

Thus, the term "fluctuation" will mean in the 
present paper inhomogeneities of the average impurity 
concentration. Typical examples of systems to which 
the developed theory applies are, for example, the 
widely used inhomogeneous alloys produced in the de­
cay of a solid solution quenched from high tempera­
tures, or alloys produced by condensation from a gas 
mixture on a low-temperature substrate [?J (in particu­
lar, "alloys" of mutually insoluble components can be 
obtained in this manner). As will be shown below, the 
critical temperature of such systems is essentially de­
termined by the character of the distribution of the 
impurity concentration over the volume of the sample. 
Moreover, the very concept of critical temperature 
calls for a refinement. 

Inasmuch as the critical temperature is a function 
of the concentration, which decreases with increasing 
c (see [21 ), the sections of the alloy in which the con­
centration exceeds the average value will have de­
creased values of Tc, and the sections with the lower 
concentrations will have higher Tc. It is therefore 
clear that the true critical temperature will be higher 
than the value corresponding to the average concentra­
tion. As was noted in an earlier paper [3 J, considera­
tion of similar questions leads to a problem analogous 
to that of calculating the spectrum of disordered 
systems [8 ' 91 , (see also [to] etc.). In the latter case, as 
shown by I. Lifshitz [8 ' 91 , it is possible to introduce in 
the calculation of the state -density function p (E) a 
"renormalized" end point Eg of the spectrum and a 
true end point Eg of the spectrum, which can lie much 
higher than Eg even at low concentrations. This situa­
tion is qualitatively illustrated in Fig. la, where the 
solid curve shows the density of states of a regular 
crystal ( Eg0 --end point of the band), and the dashed 
line represents the function of the spectral density of 
the impurity -containing disordered system. 

Figure lb shows the qualitative dependence of the 
averaged ordering parameter ~ of the superconductor 
on the temperature T. The solid curve pertains to the 
pure superconductor, and the dashed line to a super­
conducting alloy containing paramagnetic impurities. 
Without taking the impurity-concentration fluctuations 
into account (if these impurities have a distribution that 
is homogeneous in the mean), ~ vanishes at a certain 
"renormalized" critical temperature Tc, which differs 
from the transition temperature Teo of the pure super­
conductor. This is precis ely the quantity introduced in 
the theory of Abrikosov and Gor'kov [21 • In fact, owing 
to the fluctuations, the superconductivity is conserved 
up to a certain temperature T~, exceeding Tc ( T~ 
> Tc ), which plays the role of the "true" critical 
temperature (in principle T~ may also coincide with 
Tc 0 ). When T > Tc, the picture of the superconductiv­
ity will consist of "islands" of the superconducting 
phase, separated by regions of the normal phase l3 l. 
Such a superconductivity cannot be revealed by the 
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vanishing of the resistance, which will be finite, but it 
can be observed, for example, in experiments on the 
tunnel effece>. 

In the present paper (in Sec. 2) we obtain a generali­
zation of the Abrikosov-Gor'kov equations [2 J to include 
the case of an arbitrary inhomogeneous distribution of 
the concentration of the paramagnetic impurities c ( r) 
(satisfying the properties indicated above). These 
equations are solved in Sec. 3 by perturbation theory 
with the aid of an expansion in powers of the concen­
tration. We obtain for the "renormalized" critical 
temperature Tc, an expression that coincides with the 
corresponding expression in the Abrikosov-Gor'kov 
theory. Finally, in Sec. 4 we investigate the question 
of calculating the "true" critical temperature Tc 
caused by the localized states near regions with de­
creased concentration of the paramagnetic impurities. 
T~ turns out to be here higher than the critical tern­
perature defined in the homogeneous model [21 . To in­
vestigate the localized states, we used the modified 
Ginzburg-Landau equation, which contains a "potential 
energy" term that is a linear functional of the impurity 
concentration. 

2. CHOICE OF MODEL. ABRIKOSOV -GOR'KOV 
EQUATIONS IN THE INHOMOGENEOUS CASE 

Proceeding to solve our problem, let us discuss 
first the question of the maximum simplification of the 
calculation scheme, retaining at the same time the 
main physical premises which we shall assume to coin­
cide with those on which the Abrikosov-Gor'kov 
theory [2 J is based. 

The Hamiltonian of the interaction between the 
electrons and the impurities is 

H, = ~ ~ dr'¢a +(r) [I;IlaB V n (r- Ri) + (S;aaB) V, (r- R;)] tiJB (r), ( 2 .1) 
i 

where V n and V s are the non -exchange and exchange 
parts of the interaction potential, Ri are the coordi­
nates of the impurities, Si is the spin of the impurity 
located at the point Ri, a af3 are the spin matrices of 
the electron: 

ax= (0 1) 
1 0 ' 

( 0 -i\ 
a"= l 

i 0 I' 
cr'=(1 0) 

0 -1 ' 
(2.2) 

and Ii are quantities whose meaning will be explained 
later. 

Following [31 , we assume o -function interactions 
between the electrons and the impurities, and we put 
accordingly 

3)Similar considerations can be developed also for the magnetic 
properties of superconductors with nomagnetic impurities, but we shall 
confine ourselves henceforth to superconducting alloys with paramag­
netic impurities. 
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Vn(r-R,) = Vn6(r-R,), V,(r-R,) = V,l>(r-R,). (2.3) 

The possibility of such a substitution is connected with 
the fact that although the real interaction has a finite 
radius of action (on the order of the lattice constant a), 
nonetheless its magnitude is small compared with the 
characteristic distances over which the gap in the 
superconductor varies, i.e., the correlation length ~o· 

The final formulas therefore do not contain detailed 
features of the interaction potential, but only the scat­
tering amplitudes expressed in terms of the free-path 
time Tn and Ts. Here, as is known from the work of 
Abrikosov and Gor'kov [2 J, the change of Tc in a 
spatially-homogeneous system is expressed (in the 
Born approximation) only in terms of the spin free path 
time Ts. The latter quantity is connected with Vs by 
the relation [3 l 

1 I -r, = 2nS(S + 1)N(O)cl?, (2.4) 

where S -spin of the impurity, c -average concentra­
tion of the impurities, and N ( 0) = mpo /21T2 --density of 
the electron states on the Fermi surface. 

The Hamiltonian (2.1), with allowance for (2.3), takes 
the form 

Further simplification consists in the following. Using 
perturbation theory with respect to the Hamiltonian 
(2.5), we obtain in first order expressions of the form 

p 

\ d-c1 ~ G~v'(r- R,, -r --r1)[1;6voVn + (S;<rvo) V,]Gop0(R,- r', Tt- -r') 

0 { (2.6) 
Terms of this type should yield zero when averaged 
over the positions of the impurities [21 • For the second 
term in the square brackets this is obvious, since the 
mean value of the spin of the impurity at each side is 
equal to zero: Si = 0 (the diagrams of higher order 
containing the product of an odd number of factors Si 
vanish in similar fashion). As to the first term in the 
square brackets of (2.6), in the spatially-homogeneous 
case it vanishes as a result of renormalization of a 
chemical potential J.l[2 ' 111 . In a spatially-inhomogen­
eous system, an analogous effect should also take place: 
in the presence of uncompensated charge of the purities, 
the electron density is adjusted in such a way that at 
each point the electroneutrality condition is satisfied, 
so that the diagrams of odd order vanish. However, 
this is quite difficult to obtain in a model with a 
a-function potential. For this reason we shall consider 
a model according to which each point at which the 
impurity atom is located we ascribe a random factor 
Ii = ± 1 in such a way, that Ii = 0 at each point. As a 
result of this, diagrams of odd order vanish when 
averaged over the configurations of the impurities, for 
both the exchange and non-exchange parts of the scat­
tering. 

We now proceed to determine the critical tempera­
ture of the superconducting transition Tc. According 
to [2 J, the critical temperature of a superconductor is 
defined as the largest eigenvalue of the equation 

11~p' (r) = P·l T ~~~ ds G_"v"(s, r) G"Ap(s, r)11vA' (s), (2. 7) 

where Gwaf3 ( r, s) --thermodynamic Green's functions 

of the electron in the normal metal in the coordinate­
frequency representation, w = ( 2n + 1) rrT-discrete 
frequencies, 

11 .. p• (r) = IA.IF~p+(rr'; T- -r') I r• .... r, , ..... , 

-average values of the ordering parameter of the 
superconductor, .\-Cooper constant of the interaction. 
The bar in (2. 7) denotes averaging over the random 
values of the coordinates of the impurities and their 
spins. It is assumed that there is no correlation be­
tween the values of the spins of the impurity at differ­
ent points. 

Just as in the homogeneous case, the matrix struc­
ture of the quantities is of the form [2 J 

11ap'(r)=11'(r)gap, gap=(_~ ~), (2.8} 

so that Eq. (2. 7) can be rewritten in the form 

11"(r)=lt.IT~ ~ dsK"(s,r)L1'(s), (2.9) 

where 

(2.10) 

(summation over repeated indices). 
As seen from the form of (2.7) and (2.9), we neglect, 

following Abrikosov and Gor'kov, the variation of the 
ordering parameter near the individual impurities, 
considering only smooth variations of A, due to the 
inhomogeneities of the average concentration4 >. The 
dependence of the quantity G-w ( s, r) Gw ( s, r) A* ( s ) 
on the coordinates consists of a rapid change at dis­
tances on the order of the mean distance between the 
impurities, and a smooth variation at large distances, 
over which the average impurity concentration changes 
(li 0 ). Smooth changesof A can occur only at distances 
on the order of ~ 0 ~ v0/Tc. Therefore, the indicated 
quantity can be averaged near each point r over a 
region with characteristic dimensions L, satisfying 
the condition L >> ac-113 , but at the same time 
L <<. 15 0 and L « ~0 • After such an averaging, the 
distribution of the impurities will be described by 
their concentration c ( r ) , and the summation over 
the impurities reduces to integration over space with 
a weight function c ( r ) . In complete analogy with the 
procedure used in [2], at distances exceeding the mean 
distance between impurities, A can be regarded as a 
constant and taken outside the averaging sign. The 
averaged quantity G-w (s, r)G-w (s, r)G(s, r) will 
be a function having a characteristic radius I s - r I 
~ ~0· 

To calculate the kernel Kw ( s, r ), we shall use the 
diagram technique developed in [1 ' 2 ' 111• As a.lready dis­
cussed, diagrams of odd order after averagmg over 
the impurities yield zero, and for diagrams of even 
order, by virtue of the equalities 

!;/; = 6,;, S;PS;q = 1/JS(S + 1)11;3llpq (2.11) 

(i j-numbers of points, p, q-Cartesian projections) 
w~ find that after averaging there remain only diagrams 
on which the crosses pertain pairwise to identical im­
purities (Fig. 2). As a result, for example, the contri-

4lThe change of A near individual impurities was accounted for in [12 ), 

where a small correction to the A brikosov-Gor'kov expression for T c was 
obtained. This effect is not considered in the present article. 
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FIG. 2 

bution of a diagram shown in Fig. 2c turns out to be 
( G~-Green's function of zeroth approximation) 

fVn2 -S(S + 1) V;] 

~ dRc(R)G..,0(s- R)G-..,0 (s- R)G..,0 (R-r)G_..,0 (R-r), 
where 

c(R)=.~Il(R-R;) 

(2.12) 

(2.13) 

is the average concentration of the impurities at the 
point R. 

In approximations of order higher than the second, 
it is necessary to discard all the diagrams with in­
tersecting dashed lines. This follows from the fact 
that in expressions analogous to (2.12) we should as­
sume that c ( r) is a slowly varying function (at dis­
tances on the order of p01 ~ a), as a result of which 
the estimate of these diagrams is carried out in the 
same manner as when c = const [t, 2' 11 l, and shows that 
their contribution is small compared with the contri­
bution of diagrams with non-tntersecting lines. The 
calculation of Kw ( s, r ) then reduces to summation 
of diagrams of the "ladder" approximation [11 J. 

A graphic equation for Kw ( s, r) is shown in Fig. 3, 
where the shaded square corresponds to the exact 
function Kw. Writing this equation analytically, we get 

K..,(s, r) = G..,(s, r)G_.,(s, r) 
(2.14) 

+[Vnz_ S(S + 1)V,2]" dRc(R)G.,(s,R)G_..,(s,R)K..,(R, r). 
The Green's function Gw ( s, r) itself is obtained 

from an equation summing the "ladder" diagrams 
shown in Fig. 4 (the thin lines correspond to the un­
perturbed Green's function, and the heavy ones to 
Green's functions in the presence of impurities). In 
accordance with Fig. 4, we have 

G..,(s, r) = G..,0 (s, r) 

+[Vn2 + S(S + 1) V,2] ~ dRc(R)G.,•(s- R)G.,(R,R)G.,(R,r). (2· 15) 

In the case of constant concentration ( c ( R) 
= const), Eqs. (2.14) and (2.15) go over into the corre­
sponding equations of Abrikosov and Gor'kov [2] 51 • In 
this case the averaged Green's functions Gw ( s, r) and 
Kw ( s, r) depend only on the difference of the argu­
ments s - r, making it possible to obtain them in 
explicit form (in the Fourier representation): 

p2 1 
G..,(p)=(iull']m-6p)-•, sp= 2m-!', Tjco=1+ 2Tiwl '(2.16) 

nlV(O) 
K..,(p) I p~o = lwl + 1/T,' (2.17) 

where 

1 I,;= 2ncN(O) [Vn2 + S(S + 1) V,Z], (2.18) 

and Ts is determined by formula (2.4). Since in this 
case A= const, substitution of (2.17) in (2.9) leads to 

SJThe function Kw(s, 1') introduced by us is connected in this case 
with the Abrikosov and Gor'kov kernel Kw(P1 , P2) by the relation 

K.(s, r) = ~ Ko(Ph p,)exp [i(P• + p,) (s- r)]. 

p,p, 

ss (s)s .s K ---- K 

+ 

r r r 

FIG. 3 
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the well known equation for the critical temperature [2 ] : 

Teo ( 1 1 \ ( 1) ln-='i' -+-. --1-ljl-, 
Tc 2 2n't:sTc I 2 

d 
'i'(z)=-lnf(z). (2.19) 

dz 

In the case considered in the present paper, that of 
variable concentration, the situation turns out to be 
much more complicated, and Eqs. (2.9), (2.14), and 
(2.15) cannot be solved in general form. We consider 
approximate methods for their solution in the following 
sections. 

In order not to interrupt the subsequent exposition, 
we introduce here certain functions which will be use­
ful in what follows. We define besides G~ ( R1 - R2) 
also the functions S~ ( R1 - R2) and L~ \ R1 - R2) in 
accordance with the formulas 

S..,0 (R,-Rz)= )drG..,0 (R,-r)G_..,0 (r-Rz), (2.20) 

L..,0 (R,- R2) = ~ drdsG..,•(R1 - r)G-..,0(r- s)Go,0(s- R2). (2.21) 
Using the zeroth-approximation Green's function 
G~ ( p) (formula (2.16) at T = ""), we obtain the values 
of S~ ( R1 - R2) and L~ ( R1 - R2) in the coinciding 
points: 

nN(O) niN(O) 
8..,0 (0)= -~w-1-, £..,0 (0)= -~signw. (2.22) 

The values of the same functions in the case when the 
difference of the arguments is large compared with the 
interatomic distance ( R = I R1 - R2l » Po1) are de­
termined by the asymptotic expressions 

G..,0 (R) >::: - ~ exp (ipoR sign w) exp (-~) , 
2nR v0 

m . 1 ( lwiR) S.,0 (R)>:::-smpoR·-exp ---
2nR lwl v0 . ' 

0 m l isign(J) R J L.., (R)>::: --· --sinpoR+--exp(ipoRsignw) · 
4nR w2 lwlvo . 

Xexp(-~\. 
vo I 

(2.23) 

(2.24) 

(2.25) 

The derivation of (2.23) can be found in the book of 
Abrikosov, Gor'kov and Dzyaloshinski1 (ul. There­
maining two expressions are obtained in analogy with 
(2.23). 

3. CALCULATION OF THE RENORMALIZED 
CRITICAL TEMPERATURE (CASE OF LOW 
CONCENTRATION) 

It is obvious that the eigenvalue of Eq. (2.9) with 
kernel Kw(s, r) defined by (2.14) and (2.15) can be 
represented at small concentrations by a series in the 
form 

(3.1) 
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and from considerations of homogeneity of space it 
follows that the function f1 ( R) should be a constant 
independent of R, f2 ( R1, R2 ) should be a function of 
the difference R1 - R2 , etc. The expansion (3.1) is ob­
tained if it is assumed that Ll* ( r) can be represented 
in the form of a series in powers of the concentration 

L\ • (r) = L'1o + i\,(r) + !l, (r) + ... , (3.3) 

where Lli ( r) - 0 as c - 0. This means that we seek 
the upper bound of the unlocalized solutions for the 
ordering parameter, i.e., the quantity called "renor­
malized" critical temperature Tc. 

Writing the kernel of (2.6) in the form of a series in 
powers of the concentration: 

Kw(s,r) =Kw0 (s-r) -f-Ew1 (s, r) -j-... (3.4) 

and substituting (3.3) and (3.4) in (2.9), we get the 
successive approximations 

do- I A I T,o ~· ~ ds Kw0 (s- r) i\o = 0, 

Llt(r)-['A[T,o,~ ~ dsKw0 (s-r)i\1 (s) 

(3.5) 

(3.6) 

etc. We took account here of the fact that in the sums 
over the frequencies T is Teo + 61 T + . . . The first 
equation of (3.5) defines the critical temperature of the 
pure superconductor Teo· Rewriting K~ on the basis 
of (2.23) in the form 

Kw0 (R)= Gw0 (R)G-w0 (R)= (-"'-)'exp(- Z[w[R ), (3. 7) 
2nR u0 

cancelling Ll0 out of (3.5), integrating over space, and 
summing over the frequencies, we obtain (with allow­
ance for the fact that the summation should be termin­
ated at the Debye frequency wn) the well known ex­
pression 

T,o = 2y WD exp( - --1-- \ In y = c = 0.577. 
n N(O) ['A[!' 

To find the correction to the critical temperature 
61T = Tc -Teo, we turn to Eq. (3.6). The right side of 
this equation should be orthogonal to the solution of the 
corresponding homogeneous equation, i.e., D-0 • This 
leads to a relation 

,. l'l!T " (' '' (0)~ =Teo ,LJ J Kw1 (s, r)ds dr. 
Teo w 

(3.8) 

The quantity K~ ( s, r) is obtained with the aid of Eqs. 
(2.14) and (2.15). It is represented in the form of a 
sum of the three diagrams shown in Fig. 2, and accord­
ingly we have 

Kw1 (s, r) = S(S + 1) v,z ~ dR c(R). 

· {Gw0(R- s) G~w(s- r)Gw0(r- R)Gwo(R- R) 

+ G~w(R- s)G,0(s- r)G~w(r- R)G~w(R- R) 

- Gw0(s- R)G_",(s- R) G,0 (R- r)G-~(R- r) }. (3. 9) 

We note that the non-exchange part of the scatterin~ 
has dropped out of this expression (compare with [2 ). 

Recognizing that we are interested in the sum 
T i:K~, we can replace w by -w in one of the first two 

w 

terms of (3.9), after which the corresponding contribu­
tions coincide. Integrating with respect to s and r, we 
obtain, with allowance for (2.20) and (2.21) 

61T = S (S + 1) V," ~ dR c(R) T,~ ~ [2G,0 (0)L,0 (0)- (S,,O(O) )2J.(3 .10) 

"' 
Finally, using (2.22) and summing over the frequencies, 
we get 

nz \ nz 
6,T = - 2 s(S + 1)V,2N(O) J c(R)dR = --S(S + 1)N(O)cV,'. 

2 (3.11) 
The obtained expression coincides with the result of 
Abrikosov and Gor'kov [2 1. Introducing the spin free 
path time Ts in accordance with formula (2.4) we 
represent (3.11) in the form 

(3.12) 

Thus, the "renormalized" critical temperature in­
troduced by us coincides (in first order in the cone en­
tration) with the critical temperature of Abrikosov and 
Gor'kov. In this sense, the foregoing analysis yields 
nothing new compared with the "homogeneous" 
model [2 J, if we are interested in the "average" transi­
tion temperature Tc. However, as will be shown in the 
next section, for the "true" critical temperature Tc, 
significant corrections appear even in first order in 
the concentration, and are connected with possible 
existence of localized solutions for D.* ( r), which 
cannot be represented in the form D-0 + D-1 ( r) with 
small D-1 (even if c - 0). The quantity Tc is the 
limit separating the regions of existence of nonlocalized 
and localized solutions for the ordering parameter 
Ll*(r). 

It is not difficult to calculate the next higher terms 
of expansions such as (3.1) and (3.2). It must be re­
membered, however, that Tc is an effective quantity 
determining the limit of the existence of the nonlocal­
ized solutions for D.* of the type (3.3). In the next 
higher approximations in the concentration there ap­
pears not only a shift but also a smearing of this 
boundary, i.e., an expansion of the type (3.3) becomes 
incorrect, strictly speaking. A similar situation, as 
shown by I. Lifshitz rs,g), occurs also for spectra of 
disordered systems: in the higher approximation, the 
"renormalized" boundary of the spectrum, which 
separates the region of the existence of nonlocalized 
states, can, generally speaking, not be determined 
exactly. Only the concept of the "true" boundary of 
the spectrum has a rigorously strict meaning, and in 
our case this holds for the analogous concept of "true" 
critical temperature. 

4. THE GINZBURG-LANDAU EQUATION AND LOCAL 
STATES 

The purpose of this section is to investigate localized 
solutions for the ordering parameter (2. 9) near the 
"true" critical temperature T(:. We confine ourselves 
to the case of first order in the concentration, i.e., we 
put c ( r) - 0. The critical temperature differs little 
in this case from Tc 0 --the critical temperature of a 
true superconductor. Because of this, it becomes pos­
sible to reduce the integral equation (2.9) to a differ­
ential equation of the Ginzburg-Landau type [13 •14 1. The 
localized states which occur near the minima of the 
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function c ( r) will have a larger radius ~ 1/...f Teo - T, 
which becomes much larger than the BCS parameter 
~o when T- Teo. In this case the kernel of (2.9) is a 
rapidly varying function compared with the ordering 
parameter A* ( s), so that we can write the expansion 

81!'· 1 {)2().' 
a'(s)= !:>.'(r)+-(s;- r;)+---(s;- r;) (sk- rn)+ .. . (4.1) or, 2. or i ar, 
The rest of the derivation essentially duplicates the 
derivation of the Ginzburg-Landau equation from the 
microtheory presented by Gor'kov [141 • Writing 
Kw ( s, r ) in the form 

Kw(s, r) = Kw0 (s, r) + K,.'(s, r), (4.2) 

where KZ,(s, r) = GZ,(s- r)G~w(s- r), and 
Kt,(s, r) is determined by formula (3.9), and substi­
tuting (4.1), (4.2), and (2.9), we obtain 

[ J 1 {)2/).. 

a'(r) 1-lt.IT :3 ~dRKro0 (R) - 61t.ITco~ ~ dRWKro0 (R)a;:; 
(J) / (t) 

-lt.IS(S+1)V,2T,o :3fdRc(R)Qro0 (R-r)t..'(r)=O. (4.3) .. 
The quantity Q~ ( R) is defined by the relation (see 
(2.20)) 

Qro0 (R) = 2Gw0 (0)Gw0 (R)Sro0(R)- S,,,(O)G.,O(R}G-ro0 (R). (4.4) 

The asymptotic form of Q~ ( R) at R « p01 takes, on 
the basis of (2.23) and (2.24), the form 

( m ) 2 exp(-2lwiR/vo) 
Qw0(R);:;;-2nN(O)- I I [1- 1/2exp(2ipoRsignw)] 

2nR w (4.5) 
(we note that the oscillating term in the square bracket 
can be immediately discarded, since we shall be in­
terested in what follows in integrals of QZ, ( R) in 
which this term yields terms of the order of Tco!fl 
relative to the first). 

The expression in the square brackets in (4.3)) 
vanishes when T = Teo, and is therefore proportional 
to the difference T - Tc0 : 

1-lt.IT:3 ~Kw0 (R)dR=N(O)IA.I T-T,o. 
Teo 

"' 

(4.6) 

The coefficient of 8 2A*/8r2 (in 4.3) is calculated in the 
R-representation and turns out to be [11 •141 

~ (" 3po 7\;(3)r.t ( 4 •7 ) 
TcoLJ J Kw"(R)R2dR= 4n2'1'], '11 = 6(nT,o)2" 

"' 
Finally, the coefficient of A* ( r) can be calculated with 
the aid of the asymptotic expression (4.5). As a net 
result we obtain the following equation for A* ( r ) : 

- _1_ {)2().' + S(S + 1) Vs' (" dr'Q(r- r')c(r')!:>.' (r') = T,o- T !:>.' (r), 
4m ar2 'I'] J 'l']Tco ( ) 

where Q ( R) is given by 
4.8 

Q(R)=~T ~exp(-2lwiR/vo) (4 .9) 
2nR2 co LJ I w I . 

"' 
Summing over the frequencies, we get 

m2 nT,oR (4 10) Q(R)= --lncth--. · 
2n2W Vo 

Relation (4.8) is the Schrodinger equation for a particle 
(Cooper pair) with mass 2m situated in the field of the 
"potential" 

V(r)= S(S+1)V,2 ~Q(r-r')c(r')dr'. 
'11 

(4.11) 

The problem of determining the critical temperature 

T~ reduces to a determination of the smallest energy 
eigenvalue 

E = (T c0- T) I TJT,o (4.12) 

of this equation 

Tc' = Td)- ytTroErnin• (4.13) 

Supplementing (4.8) with a term proportional to A\ we 
obtain the Ginzburg-Landau equation [1 3 ' 141 , generalized 
to include the case of an inhomogeneous impurity con­
centration c ( r ). It is clear here that in the case of 
small concentrations the cubic term can be taken in 
the same form as when c = 0. 

Let us consider some particular cases of (4.8). 
If the impurity concentration changes slowly from 

point to point, so that the characteristic distances over 
which this change takes place are large compared with 
the "radius" of the nucleus Q ( r), i.e., with the 
parameter ~ 0 , we can take c ( r) in (4.11) outside the 
integral sign. Integrating then the expression (4.9), we 
arrive at the relation 

n2 
V(r) = --N(O)S(S+ 1) V,2c(r), 

2'l']Tco 
(4.14) 

which shows that in the case of slow variation of c ( r) 
the role of the "potential" in (4.8),is played directly 
(accurate to a constant factor) by the impurity con­
centration c ( r ). We note that at constant c ( r) Eq. 
(4. 8) again leads to formula (3.11) for the decrease of 
the critical temperature in first order in the concen­
tration6l. In the case when the impurity concentra­
tion depends only on one coordinate ( x), the potential 
V in (4.8) is likewise one-dimensional, and in this 
case it can be represented in the form 

V(x) = ~N(O)S(S + 1) V,2 c'(x), (4.15) 
2'1']Tco 

where c* ( x) is the effective concentration, defined by 
00 

c'(x)=~ q(x-x')c(x')dx', (4.16) 

with a kernel q ( x) normalized in accordance with the 
condition 

00 

~ q(x) dx = 1. (4.17) 

As can be readily shown on the basis of (4.9) and (4.11), 
the function q ( x - x') is given by 

8T,0 ~ 1 I ( 2nT,o \ \ q(x-x')=·-LJ -- Ei -(2n+1)--lx-x'li , (4.18) 
1Wo n- 2n + 1 Vo 1 

where Ei ( x ) is the integral exponential function. The 
characteristic radius q ( x - x') is I x - x' I ~ Vo /Teo 
~ ~o. 

The local states near the minima of the function 
c* ( x), corresponding to T ~, result from the one­
dimensional nature of the problem at arbitrarily small 
depth of the ''potential well'' c* ( x). Writing c* ( x) 
near the minimum in the form 

c'(x) =co--t- 'i.l<:x', (4.19) 
where k is conveniently represented in the form ( 0o--

6)Actually the region of applicability of Eq. ( 4.8) is not limited to 
various concentrations. Thus, for example, according to [15 ], at con­
centrations up to 0.8 ccr> the deviation from the linear dependence of 
T con the concentration is< I 0% (for a homogeneous distribution of 
the impurity). 
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effective width of the well, ccr --critical concentration 
introduced in the Abrikosov-Gor'kov theory [2 J) 

Ccr Teo 
k=~, Ccr=4yN(O)S(S+1)V,2 ' 

(4.20) 

we see that the condition for the smallness of the con­
centration signifies c 0 << Ccr and Xo << <'io, where Xo-­
radius of local state. 

Solving the Schrodinger equation 

_ ~ d2L'1' +~1V(O)S(S + 1)VN(x) L'>'(x) =EL'>'(x), (4.21) 
4m dx2 21']Tco 

we obtain for the minimum value of E 

L'>'(x)=const·exp( -,x2
2 \, \ LXt, J 

vuo 
~ 0 = -:r 2 Tru ' 

( 4. 22) 

n2 1 v n(3) Vo 
T/=T,0 --N(O)S(S+1)V,2co-~ -9-~· (4.23) 

:?. ~'> .JY vo 

Consequently, the radius of the local state Xo ~ ~ 
will be small compared with Oo when Oo » ~o (the 
condition x 0 » ~ 0 is then satisfied automatically). In 
this case the value of T~ is determined by the charac­
ter of the behavior of the concentration near the mini­
mum of (4.19), and not by the value of c(x) far from 
the minimum point. 

In order for a local state to occur in the three­
dimensional case, it is necessary that the value of the 
perturbation exceed a certain critical value. If the 
radius of the concentration "well" Oo is small com­
pared with ~ 0 , we can assume that the addition to the 
concentration c 1 ( r) in ( 4.11) is proportional to a o­
function, so that the variable part of V ( r ) assumes 
the form 

( 4.24) 

Such a potential corresponds to the "incidence" of a 
particle on a scattering center [' 61 (if f c 1 ( r) dr < 0), 
since V 1 ( R) has a singularity stronger than R-2 - 0. 
It should be remembered, however, that actually 
formula (4.10), together with expression (4.24), is 
valid only when R >> v0 lwD, when the summation over 
the frequencies in ( 4. 9) can be extended to infinity. 

If the fluctuation radius 6 0 is large compared with 
~ 0 , then we can use formula ( 4.14). As can be readily 
shown in this case the condition for the existence of 
the lo~al state assumes the form (we omit all the 
dimensionless factors of order of unity) 

/c'/ ;;::;ccrGo2/6o2, 
(4.25) 

where c 1 -characteristic value of the deviation of the 
concentration from the mean value (in the region with 
characteristic dimensions ~o0 ). Naturally, C 1 must 
be negative in order for a local state to occur. 

The foregoing analysis pertained to the case of 
small concentration ( T >> D-01 ). The non-exchange part 
of the scattering has then dropped out from the final 
expressions. In the case when the concentration is not 

small, the parameters of the generalized Ginzburg­
Landau equation will depend on the total free path 
l = v0 Tr14 l. The radius of the local state will then be 
determined also by the length of the free path relative 
to scattering without spin flip, and thus, a mechanism 
arises whereby the nonmagnetic impurities influence 
the critical temperature of superconductors containing 
paramagnetic impurities [31 . However, this more com­
plicated case, an analysis of which can also be carried 
out with the aid of Eqs. (2.14) and (2.15), is beyond the 
framework of the present article. 

In conclusion, we take the opportunity to thank A. A. 
Abrikosov for interest in the work and useful remarks, 
and to I. M. Lifshitz for a discussion of the work of 
valuable advice. 
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