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We consider a hydrodynamic mechanism of the electric conductivity of metals in the presence of a 
strong magnetic field, parallel to the surface of the sample. The coefficient of electric conductivity 
and its variation with the magnetic field intensity and on the temperature depend significantly on the 
ratio of the radius of the Larmor orbit of the electron to the phonon mean free path. 

1. It was shown by one of the authors[1J that the elec­
tric conductivity of certain metals has a hydrodynamic 
character at low temperatures. Such an electric con­
ductivity mechanism arises under conditions when the 
normal collisions of the electrons with the phonons are 
much more frequent than the collisions in which the 
total quasimomentum is not conserved, and is possible 
if certain conditions are satisfied with respect to the 
Fermi surface of the metal. (For example, it is suffi­
cient that the Fermi surface be closed and the number 
of electrons be unequal to the number of holes; for 
more details see [l] .) 

We denote by Zep' Zpe' and Zpp the free paths charac­
terizing respectively the normal collisions of the elec­
tron with the phonons, of the phonon with the electrons, 
and of the phonon with phonons. It is important that the 
inequalities Zep » Zpe and Zpp » Zpe are satisfied with 
a large margin at low temperatures 1 >. The electrons in 
sufficiently bulky and perfect metallic samples there­
fore behave like an ordinary gas of particles that collide 
with one another. The interaction between the electrons 
is via exchange of temperature phonons, and is charac­
terized in first approximation by the free path Zep· 

Obviously, normal collisions by themselves do not 
lead to electric resistance, but can greatly change the 
result of the action of other scattering mechanisms. In 
relatively thin samples, the resistance of which is de­
termined by the scattering of the electrons by the boun­
daries, the electric conductivity has the character of 
Poiseuille flow of a viscous gas. The state of the elec­
tron system is characterized in first approximation by 
a Fermi distribution function with drift: fa(E - p · u). 
The ordered-motion velocity u, as a function of the co­
ordinates, satisfies a hydrodynamic equation of the 
Navier-Stokes type[lJ. The results obtained thereby 
find a ready intuitive interpretation. The electric con­
ductivity coefficient is proportional to the mean path zeff 
traversed by the electron between two collisions with 
the boundaries of the sample: 

ez 
a~ -sFzerr 

3h3 

(1) 

where SF is the area of the Fermi surface. (It is as­
sumed that the scattering of the electrons by the boun­

llAs is well known, lep -v (8/T)5 , lpe "-' 8/T, and lpp "-' (8/T)5 

(8-Debye temperature), and the coefficients in these ratios have the 
same order of magnitude, for typical metals, (see, for example [2 ] ). 

daries is nearly diffuse.) Inasmuch as the thickness of 
the sample d >> lep' the electron inside the metal ex­
periences many normal collisions with other electrons 
before reaching the boundary. The length of the co rre­
sponding Brownian trajectory is zeff i'::l d 2/ Zep· 

2. The present paper is devoted to the theory of a 
similar mechanism of electric conductivity in a magnetic 
field. We consider for simplicity a metallic plate and 
assume that the electric and magnetic fields are parallel 
to its surface, but in general are not parallel to each 
other. Intuitive qualitative results are obtained in a 
sufficiently strong magnetic field, when the Larmor 
radius r is small compared with the free path of the 
electron and with the thickness of the sample: r « Zep' 
r << d. The relation between lep and d can be arbitrary 
in this case. 

Under such conditions, the normal collisions lead to 
diffusion of the centers of the electron orbits in a plane 
perpendicular to the magnetic field. This occurs in the 
following manner. During a time Tep = Zep/vF, the elec­
tron revolves on a closed orbit, after which it emits a 
phonon. The phonon traverses a path lpe and is absorbed 
by another electron. 

According to the Brownian-motion formulas, Teff 
= zeff/vF ~ T(d/1) 2 , where T is the time consumed in one 
step and l is the length of the step. It is clear that 
T i'::l T ep' where the distance l over which the momentum 
is transferred as a result of one step is determined by 
the smaller of the lengths, r or Zpe· Thus 

The dependence of the electric conductivity on the 
characteristic parameters has in the first case the form 
a~ T-5d2H~, and in the second case a~ T-3d2 (see form­
ula (1) and footnote 1 >). 

It is also clear that if the electric and magnetic fields 
are not parallel, a transverse hole field, proportional to 
the electric current and to the magnetic field, is pro­
duced in the plate. 

3. Proceeding to the calculations, we write down the 
system of kinetic equations for the distribution functions 
of the electrons f and of the phonons N. Choosing the 
z axis perpendicular to the surface of the plate and the 
x axis along the magnetic field, we get 
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u, _<I{+ e (Ev + E,v,) iJfo + Q [ !!_ p] = l,p {/, N} + JU, 
i)z . iJE iJp X 

(2)* 

aN s,az = !p, {f,N}. 

Here n = eH/mc, E-external electric field, Ez-Hall 
field, fo(.::) -Fermi distribution function, v = a.::/ap, 
s = a(h w)/aq, E(p) and 1J. w -energies and p and q -mo­
menta of the electrons and phonons respectively, Jep­
operator of normal collisions of electrons with phonons, 
and Jpe-for collisions of phonons with electrons; the 
term JU describes collisions with loss of quasimomen­
tum (Umklapp processes, scattering by lattice defects, 
etc.). For simplicity, the laws of dispersion of the elec­
trons and phonons are assumed isotropic. 

The system (2), naturally, can be solved only approxi­
mat ely. Since we are interested in the hydrodynamic 
situation, we make use of the fact that at least one of 
the parameters, r/d or Zep/d, is much smaller than 
unity, and we also take into account the fact that JU is 
small compared with Jep· 

The method of successive approximations leads to 
the chain of equations (see [1J): 

eE,v, 8fo + Q [ iJfOl PJ = J,p {f<"l, JV(Ol}' 
ae ap X 

/p,{j<Ol, JVIOl} = 0. 

af0> [ ap> J u,-+ Q -p = fep {f<'l 1\i(ll} az ap X 0 0 

iJJV(O) 
s, ~ = J pe {j<'l, 1\i(ll}, 

iJj<il [ 8f<'l ] 
v,- + Q -p · = J,p {f'l Nl'l} + JU az ap X ' 0 

aN<'> 
s, (}-;- = J pe {j<2l, J\'(2)}. 

The solution of the first pair of equations is 

f1°l = /o(E- pu), /\'IOJ = No(hw- qu), 

(3) 

(3') 

(4) 

(4') 

(5) 

(5') 

where No is the Bose distribution function and the drift 
velocity u(z) is parallel to the surface of the plate. 
From (2) it also follows that 

E, = !!__ uy. (6) 
c 

Going over to the solution of the second pair of equa­
tions, we note that the operator Jpe does not contain 
integrations with respect to the phonon momenta. It is 
therefore convenient to solve (4') with respect to 
N< 1 >(q, z) and substitute the result in (4). We seek a 
solution of the obtained equation in the form 

f< 'l ( T ) 3 8/o { iJuy =-To -- Bp- [nyn,q> 1 -(ny2 -n,2)'1jlt]-
8 ae az (7) 

Here rpi, l/li -sought functions of the dimensionless var­
iable~= [.::(p)- EF]/T, n = p/p, and To coincides in order 
of magnitude with the electron-phonon path time at the 
Debye temperature. 

The angular dependence of f< 1 > is determined by the 
form of the term 

* [afl ar 
LapPj = diJ x P 

v, iJj<O) = -2e 8fo(n,ny. au~+ n,nx OUx ). 
az ae . az az 

and also by the fact that the application of the operator 
lP x a/ap]x causes the expressions nynz and nxnz to go 
over respectively into ny - n~ and nzny, and vice versa. 
It is also important that the operators Jep and Jpe do 
not change the form of the angular dependences in the 
case of isotropic dispersion laws. 

Substituting (7) in (4) and equating terms with iden­
tical angular dependence, we obtain four equations for 
the functions rp and <J;. Rather cumbersome calculations, 
in which we use the explicit form of the collision inte­
grals, lead to the result 

Here 
( 8 )3 d 

Y = RTo T , /0' (£) = d£ [e< + 1]-1• 

The indices of the functions cp and <j; have been omitted, 
since the equations for cp1, </!1 and cpz, </Jz coincide, apart 
from numerical coefficients of the order of unity. 
K and Q are complicated linear integral operators 
(see[1J), the explicit form of which is of no significance 
in what follows. We note only that 

~ 

Kw = K,,,, ~ K<i' d£' = 0, Qw ~ 0. 

Excluding <j; from (8) and (8'), we get 

[ ~ ( T )' ~ l 1 [ ~ I T )' ~ J ( T )' ~ K- 8 Q Jfo' K-\e Q q>+y2/ 0'q>= e Q·1. 

Let us obtain the solution of this equation in the 
limiting cases y « 1 and y » 1. 

(9) 

(10) 

When y << 1, it is natural to seek cp in the form of an 
expansion in powers of the small parameters (T/e) 2 

and y 2 • The method of successive approximations 
yields2 > 

~ 1 ~ 
K-KmiOl=O /o' "' , 

~1~ (T)'/~1~ .~1~) K- [(mill = - 1 K- Q + Q--'- K m(Ol 
/o' "' 8 \ /o' /o' "' ' 

(11) 

( 11') 

(11") 

As shown in the appendix, the equation Krp = 0 has a 
unique solution rp = const. It is seen from (11) that 
Krp <OJ = f6C. Inasmuch as the kernel K~ ~' is symmetri­
cal, this equation has a solution only when C = 0. Thus, 
Krp<o> = 0 and consequently cp 10> = const. 

Now ( 11') takes the form 

~1[~ (T)' ~ ]· [( /o' Kq><'l- .8 q>(OlQ-1 = 0 

meaning that 
~ f T )' ~ Kq><'l =,- q><0>Q·1 + fo'C. 

\8 

Determining the constant C from the condition that this 
equation have a solution, and substituting Kcp 11> in (11"), 

2)Jfwe inclue the terms (T/E>)2 Q•I and 'Y 2 f~.p(0 ) in (II'), then it 
can be readily shown that (II") cannot be solved when 'Y;S(T /6)2 . 
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we get 
,1, (T)2 1 (T)' 
K fo'KqP> = 6 K fo' Q<p<t> + 8 Q-1 (12) 

+ ( ~ y rp(O) (Q·1)- y'/o'rp(OJ, 

The angle brackets denote here integration with respect 
to ~ from -co to 00 • The condition for the solvability of 
(12) yields ((fa) =-1) 

(T /6) 2 (Q-1) 
rp(O) = - --'-'---'--c-'_:___:,__ 

(T/6) 4 (Q·1) 2 +y'. 
(13) 

When y >> 1, the quantity cp<o> can already be obtained 
from the zeroth-approximation equation and is given by 

rp(O)= -~(!_)'Q·i. 
y' 8 fo' 

(14) 

Thus, we have found the function f< 1>, and the function 
N< 1> can be simply expressed in its terms from Eq. (4'). 

Let us multiply, finally, (5) by p and (5') by q, inte­
grate, and add. The terms containing f< 2> and N< 2> then 
drop out, by virtue of the conservation of the total mo­
mentum in normal collisions and by virtue of the fact 
that the current component perpendicular to the surface 
vanishes. The result can be represented in the form 

e iJ2u u 
-;;E=-vOz'+ '"Cc-• (15) 

(16) 

(T/8) 4 (Q-1) 2 

!']= ' ' y~ 1, (17) 
(T/8) 4 (Q-1)'+Y' 

I']=(!_)'(Q- 1)' +(!.\ 8 (Q-1)1;;(2), y~i. (17') e ,., e 
Here T U is the effective free path time of the electron 
relative to collisions with loss of quasimomentum, v has 
the meaning of the kinematic viscosity of the electron­
phonon gas, and v is the Riemann ~ function. We note 
that the second term in (17') is the result of the term 
SzBN°>/az and is connected with the finite free path 
length of the phonons. The solution of (15) should satisfy 
the condition u = 0 on the boundaries of the sample, 
corresponding to diffuse scattering of the electrons. 

It is easy to verify that the density of the electron 
current is j = neu, where n = (8/3)7T(pF/h) 3 is the elec­
tron density. In calculating the resistance, this expres­
sion should be averaged over the cross section of the 
sample. Representing the coefficient of electric conduc­
tivity a in the usual form (see ( 1)), we obtain for zeff 
the following expression: 

(18) 

where w = (1/2)d(vTU)-112 ' zU = TUVF· 
The case w >> 1 corresponds to a bulky sample 

(Zeff ~ ZU). On the other hand, in the case when w << 1, 
we have 

zeff ~ lc:: [ 1 + ( ~P_) '], r ~ lep, 

zerr ~ (d I r)'lep, lep ~ r ~ lpe, 

l eff ~ ( d / lpe) 2lep, r ~ lpe-

(19) 

(19') 

(19") 

Here Zep = Zo(Q ·1) -1(e/T) 5 coincides with the electron 

I 

phonon free path which enters in the Bloch theory of 
electric conductivity, and Zpe = l0 [(Q · 1) ~(2)t112e/T, 
Zo = ToVF· We note that these are precisely the results 
predicted earlier on the basis of intuitive physical con­
siderations (with the exception, of course, of the correc­
tion term in (19)). 

Using relation (6), we can also easily find the Hall 
emf 

r Hr derr 
<D = .\ E,dz =--;; ~ uydz = ---;:-1 Ey. (20) 

0 0 

We note that 4.> is proportional to the cube of the sample 
thickness. 

4. We have assumed earlier for simplicity that the 
dispersion laws of the electrons and phonons are iso­
tropic. However, it is clear from physical considera­
tions (see Sec. 2) that the results (19) -(19 ") are valid in 
order of magnitude for arbitrary closed Fermi surfaces 
and for an arbitrary phonon dispersion. 

In the case of open Fermi surfaces the situation be­
comes more complicated. It is necessary first to take 
into account the Umklapp processes in electron-phonon 
collisions. As can be readily verified from (3) and (3'), 
the drift arises only in directions that are perpendicular 
to all the Umklapp processes and parallel to the surface 
of the sample. If such directions exist and the vector E 
is not orthogonal to them, then the hydrodynamic mech­
anism is possible. 

On the other hand, in the presence of trajectories 
that are open or strongly elongated in the direction 
towards the boundaries, there is a momentum diffusion 
mechanism. It is easy to understand that in this case 
the magnetic field has no influence at all on the qualita­
tive results, and zeff ~ d when d :S Zep or zeff "" d2/Zep 
when d >> Zep (of course, if the contribution of the open 
or strongly elongated trajectories is not small). To 
illustrate the obtained results, the figure shows a plot 
of p(H). We see from the figure that p decreases with 
increasing H in the region r << d, whereas in the case 
of the ordinary electric conductivity mechanism p is 
either constant in this region, or increases with the 
field (see, for example,C3 J). Notice should also be taken 
of the strong dependence of the coefficients A on the 
temperature. Using formulas ( 19), we readily see that 
A1 ~ T--5, A2 ~ T-15, A3 ~ T\ and A4 ~ T 3 , all the coeffi­
cients being proportional to d-2. 

Let us write out, finally, the limitations on the thick­
ness of the sample in the cases (19), (19'), and (19"), 
respectively: 

In,~ d ~ lep (ZU I lep) '1', 
r~ d~ r(IU I lep) •;,, lpe ~ d ~ lpe(ZU I lep) •;,_ 

It is seen from these inequalities that in order for the 
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hydrodynamic mechanism of electric conductivity to ex­
ist the condition zU » Zep is necessary to an equal 
degree in all cases, and therefore the requirements 
with respect to the purity of the sample and the tern­
perature do not change in the magnetic field. The possi­
bility of performing the measurements on very thin 
samples, however, offers certain advantages, since in 
a sufficiently strong magnetic field the cases (19) and 
(19") are possible even when d « lep· We note also the 
possibility of directly determining the free path of the 
phonons on the electrons lpe (cf. ( 19')). To be sure, it is 
not clear whether the condition r « Zpe is realized for 
typical metals in experimentally attainable magnetic 
fields. 

We shall prove that the equation 

K<p=O 

has a unique .,olution cp = const. 

APPENDIX 

Apart from inessential numerical coefficients of the 
order of unity, the operator K is given by[1J 

.. 
K«· = 6(£- £') S Rw d£"- R"' + s"" 

where 

00 

s«·=exp(£+£'Jfo(Wo(£'J 5 izlfo(s+z) 

X [e'!o(s' + z)- fo' (s'- z)] dz. 

We note that the kernels R and S are symmetrical and 
00 

Rg· ;;?! 0, S Sw d£' = 0 

Let us consider the expression ( cpKcp). It is easy to 
show that it can be reduced to the form 

00 

(rpKrp) = S S K<;·fJJ (s) fJJ (£') d£ d£' 

00 

+ Ldz[T(z)- T(- z))2 }, 

where 

00 

T(z),=jzj'f,e-'12 ~ <p(x)exf0 (x)f0 (x+z)dx. 

It follows therefore that ( cpKcp) vanishes only when 
cp = const. This proves the statement made above. 

1 R. N. Gurzhi, Zh. Eksp. Teor. Fiz. 47, 1415 (1964) 
[Sov. Phys.-JETP 20, 953 (1965)]. 

2 R. E. Peierls, Quantum Theory of Solids, Oxford, 
1955. 

3 M. Ya. Azbel', Zh. Eksp. Teor. Fiz. 44, 1262 (1963) 
[Sov. Phys.-JETP 17, 851 (1963)]. 

Translated by J. G. Adashko 
219 


