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The topic treated is the change of the magnetic properties of a metallic film, placed in a magnetic 
field perpendicular to it, when the film thickness is so small that the quantization of the motion of 
the electrons in the direction of its smallest dimension becomes important. The magnetic proper
ties of the film are then determined by five characteristic energies: the temperature, the Fermi 
energy, the distance between Landau levels, their spin splitting, and the distance between dimen
sional-quantization levels. Cases are considered in which these energies have various ratios. The 
entire investigation is carried out under the assumption of an isotropic quadratic electron spectrum. 

where 

{4) 
THE magnetic properties of an electron gas in a metal 
change significantly if the specimen under considera
tion is a film whose thickness is so small that the mo
tion of the electrons in the direction of its smallest di
mension becomes quantized. We consider the case in 
which the magnetic field H is perpendicular to the sur
face of the film. (The case of a magnetic field lying in 
the plane of the film was considered by Kosevich and 
Lifshitz [lJ. The general formula for the quasiclassical 
case was obtained by them in [2 J .) We further restrict 
ourselves to consideration of a quadratic isotropic elec
tron spectrum. In this case, the energy of an electron 
has the form 

C ( 1 - Xl] - l]±- }?l2 ) 
In =) In\ 1 + exp T cos (2nnx) dx (n = 0, 1, 2 ... ). 

:rrNi2l' 
En!= (2n + 1)f!H ± f!Jl + Zmdi {1) 

( ~ is the Bohr magneton, JJ. = JJ.omo/ m, m is the ef
fective mass of the electron, n and l are integers, and 
the signs ± correspond to the two orientations of the 
spin). 

The thermodynamic potential n can be written in the 
form 

where 

~ ~ [ 1-nl]-1]±-!_212.] 
Q± = L.i .LJ In 1 + exp . 

'T 
l=in=O 

(2) 

(3) 

The characteristic energies of the problem are: the 
distance 2J-LH between Landau levels, the energy JJ.oH 
of the spin in the magnetic field, the temperature T, 
and the energy E 0 = JT 2n2/2md2 that determines the dis
tance between dimensional-quantization levels. These 
are here written in dimensionless form, in units of the 
chemical potential !;: 

1J = 2f!H I~. flo= 2f!Jl I~. 'rl± = 1/,(IJ ±flo), 
-r = T I \;, J.' = rr.'li2 I 2m\;d2• 

The values of 1], 1Jo, f)±, and T will be supposed small. 
The following additional symbols will .be used hereaf
ter: !;0 = ( n2/2m )( 3JT 2n) 213 , the level of the chemical 
potential for a large specimen in the absence of a mag
netic field, and A~ = JT 21i2/2m?; 0d2 • 

On designating by nj = n!d nn1 the expression un

der the sign of summation over l in (3) and on applying 
the Poisson summation formula, we get 

0 

For n f 0 we have L: 3 J 
_ 1'J {[ 1-'ZZ+IJ±-1]-1 

In - -- 1 + exp ---'---
4n2n2't T 

( . 1 _I]±- 1_212) f e'e?.ninn/n , } 
- He exp 2mn · J - ·-· az . 

I] (A'!'+n±-111' ( e' + 1) 2 

When T >> 1], the integral is equal to zero because of 
the rapid oscillations of the integrand. When f) >> T, 

we get 

( 5) 

Various ratios are possible between the character
istic energies mentioned above. We shall consider 
three cases: 

'Ao2 < l], l] < Ao2 < i, Ao > 1. 

In each of these, consideration will be given to the 
high-temperature ( T » 1J) and low-temperature 
( 1J » T) regions. 

1. THE CASE A~< fJ 

In this case Ao << 1, and we shall, first, neglect the 
dependence of ?." on H and d and set A = Ao; and, 
second, expand all the expressions obtained in powers 
of A0 , keeping only terms of the two lowest orders. We 
shall hereafter denote by l~ the value of l for which 
TJ± +A~ l 2 = 1. Since l~ » 1, we shall not commit a 
great error by treating it as an integer. 

The first term in .a± we calculate as follows: 
lo± 

1 ~ ( 1 - l]±- A.o2l2 ) 1 { ( 1 - l]±- 'Ao2l2 

- ~ In 1 + exp :::::< - ~ 
2 1~1 '( 2 1~1 '( 

The sums of exponentials can be neglected; for the 
largest terms in them, corresponding to l = l~, are 

(6) 

1006 



MAGNETIC PROPERTIES OF THIN METALLIC FILMS 1007 

equal to unity and the terms decrease rapidly with 
separation of l from l~, whereas the first term, con
taining a power of "-a, has the order 1/ T >> 1. The 
expression (6) then becomes equal to 

~-( 1-]_1]±)-_1__(1-11±). 
3<Ao ' 2 4,; 

Here and later (with the exception of the oscillating 
terms), we shall keep only the lowest powers of 1}, IJa, 
and rr; these lead in n to terms of not higher than 
the second order in H. 

We have further 

(7) 

~ )--{~( _!)_- ~1']± + 1]±2 )- ~(1-1']±)2}. 
2T1'] Ao 15 3 2 

It can be shown that to the accuracy with which we 
have calculated (6), we may, in summing the first terms 
in (5) over l, neglect the exponentials in the denomina
tors for l < l~. Then the contribution to n± from the 
nonoscillatory parts of In is equal to 

1'] ~ 1 1'] 
2n'1: lo± L.J--;;;.; ~ 12TAo · 

n=i 

We have finally for the case T » 1J 

eH V { 1 [ 8 1 1 ( 1]o2 1 ) ] 
Q = -T 2nnc d TAo 15;+41'1 -:;j'-3 

-~[.!.._+~1J(1Jo' -1 )]}. 
T 21'] 8 1]2 (8) 

On going over to ordinary notation and differentiating 
with respect to H, we get the magnetic susceptibility 

'l = yZ m'I'J.L'~o'h 1 m' _ _!._) _ .!.._ mJ.L'( m2 _ 1 ). (9) 
· · n' n3 \ m02 3 2rr n2d m02 

In the case I) >> T, it is necessary also to sum the 
oscillatory parts of In: 

Rt'sc = 2] (R!c)n. (10) 
n=l 

where 
± 1] { [ 2rrin J (Rosc)n= ----Re exp ~-(1-1]±) 

4n2n'1: 11 

lo± 

'V [ 2ninAo2l2 ]} X,.L.J cxp ----
I~t 1] - (11) 

s 2 

As a preliminary step, we shall calculate 2.: e-O!k ' 
k=l 

where I a I < 1. In the calculation, we shall keep terms 
of the two lowest orders in a: 

8 8 2 s 

]e-<>k'=-<-a ~k'+ ;, ~k4 - ••• 

k=1 k=i k=1 

(12) 

In each sum, we shall keep the two highest powers of s: 

(13) 

Retention of additional terms leads, as can be shown, 
to terms of higher order in a in the answer. On sub
stituting (13) into (12), we get 

1. . = s'mam 1 l/-;- - 1 ' 
+-c ~ (-i)m--:-_ =- --!D(sya)+- (e-"' -1), 

2 · m! 2 a 2 
tn=i 

(14) 

where <P ( x) is the probability integral. 
By using ( 14), we get 

I~ [ 2ninJ.02l2l 1 v--.;j 1 ( [ 2nin l'/,) £..Jexp ---- =-;- -.--!D --(1-1]±) 
i~t 1'] 2 2m An 1] . 

++(exp[- 2~in(1-1]±)]-1). (15) 

Since I) « 1, we may set <P ( ••• ) = 1. As a result we 
get 

± 1]'1> { 2nin :rti } 
(R,osc)n=- . Reexp --(1-1]±)---

, 81'2 :rt2n'/'"tAo 1] 4 

- _1J_Re( 1- exp [ 2:Itin (1-1]±) ]'). (16) 
8:rt2n'1: 1] 

We have finally for I) » T 

Q = _ eH ~ ( ~'l·dl'Zm'l•[-~~+ J.LH ( m' _ _1_ \] 
rrnc d l 2rrli 15 J.LH 2~0 \ m02 3 

[ ~o 1 J.Lli • .. i m' 1 'J J.L'I•JFI•m'f,d 
-~u -+--•---)----

J.Lil 4 ~o ·mo2 3 • '}'2wn 

; ,, ( rrn~o :rt \ ( m) 
X .LJ n- '2 cos -- - Jtn - - 1 cos 1 :rrn-

~H 4 / \ mo 
po=cf 

J.LH~ (ltn~ ) ( m)} + z L.J n-2 cos\--- nn cos :rtn- , 
2n n~t J.LH r.:o (17) 

_ _1t,_, n ' ~n-'sin("n~o -nn\cos(nn~)}. (18) 
2y2 (mJ.LH) f,d n~t J.LH I m0 

From this expression, as also from (9), it is seen 
that the result in the usual expression for the magneti
zation of an electron gas (see, for example,l 3J), with 
additional terms due to the dimensional quantization. 
The correction to the constant part of the magnetiza
tion has the order li/ ( mi:0 ) 112 d. For "-~ < 1), this quan
tity is very small. Considerably more interesting is 
the change of the oscillatory part. It has the form of 
additional oscillations of the same frequencies, but 
shifted in phase by % 1f and having a relative amplitude 
of order n/(mJ.LH) 1/ 2 d. 

2. THE CASE I) < "-~ < 1 

By virtue of the right-hand inequality, we may first 
set A ="-a· In the present case the high-temperature 
limit is not of interest, since it leads to results ob
tained in the preceding section. This is due to the fact 
that their derivation was based only on the suppositions 
that T >> I) and that A = "-o and did not depend on the 
ratio between I) and "-o· 

Therefore we deal only with the oscillatory part of 
the thermodynamic potential for 1J >> T. We have 

eJ.LH'V ~ ~ 1 ( 1 - }.o2l2 - 1]/2 ) I 1]o ) 
Q = ,.,shed L.J L.J--;;;.; cos 2nn · cos\ nn _ , 

l=tn=i 11 '11 

( 19) 

Here 

lo = [V2m~/ nl!], (20) 
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the square brackets denote the integer part of the num
ber. 

The magnetization can be written in the form 

M = _ 2mfl ~ {( ~0 _ rrHt2 l') . 
rr.'ft2d 2md' 

l=1 

~ 1 ( ~. - ri?N/2 /2md' 1 ) ( m ' } x L; ---sin 2rrn 1 , ---;-- cos nn ~) . 
nc=t n \ 2f1H 2 m0 

(21) 

For semimetals-where, as a rule, m << mo--, the 
cosine can be replaced by unity, and the series in n is 
easily summed: 

lo 

M = - _mfl_ ~ (~0 - n2h2l2/2md') · 
nh2d 

l=l 

( _ ( ~.- rr2h212/2md~ 1 )} X , 1 - 2 Rem -------·- --
\ 211H 2 · ' (22) 

where Rem x = x - [x]. It is seen that the oscillatory 
part of M is formed by superposition of la functions of 
saw-tooth form, periodic in 1/H with frequencies 
( !."o- JT 2 11 2 l 2/2md2 )/2J..I.( l = 1, 2, ... , l 0 ). The picture of 
the oscillations for la = 3 is shown in the figure. 

If the inequality m « rna does not hold, then by 
transforming the expression under the sign of summa
tion over n, in (21), to a sum of sines, we see that 
there occurs an additional splitting of the oscillations, 
connected with the spin of the electron. 

3. THE CASE A0 > 1 

In the circumstance it is necessary to take into ac
count the dependence of /; on H and d. At not too high 
temperatures ( T < E0 ), the energy levels described 
by quantum numbers l :o-. 2 are practically empty. 
Therefore we omit the summation over l in the formula 
for Q. For T » TJ we get 

Q = -T _ef!_!__( _!__{ :rJ \;- e0 - [tH- 11ofl_) 
2rihc d \2JlH \ T 

(~-so-flH+ftoH)} 1 { ( \;-so-JlH-f!oH) + Fti. _____ T___ + 2 In 1 + exp T 

Here 

( t- Eo - ftH + JloH )}' +In 1 +est- ---y---~ ) 

f ydy 
5"t(X)= J 

0 1 + exp(x- y) 

(23) 

is the Fermi integral. In the lowest order with respect 
to flH/T and 1-LoH/T, we get 

X= __ efi~_ ')l'__ -~) 1-i- exp eo+~J- ~ \)-'· 
2rrJzcrl :1. . T 

This expression contains the unknown quantity 
!." ( H, d). To eliminate it, we use the equation 

(24) 

n = - v-' ( anja!,") T H ( n = electron concentration). In 
the lowest order i~ J.LH/ T, we get 

e ( \;-eo- 11H ) 
n=T---ln\ 1+exp---- . 

2nhcJld ' T 
(2 5) 

On comparing (24) and (25), we have finally 

m~-t2 ( m' 1 ){ 1 nn'nd )I (2 6) 
X = -;hid m02 - 3 1 - exp \- --;,T f · 

If in this formula we let T - 00, we get the known ex
pression for the susceptibility of a nondegenerate elec
tron gas. 

In the low-temperature limit, when T is less than 
the distance between any energy levels of the spectrum, 

One division of the axis corresponds to ' period of the oscillation in 
a bulk specimen. 

the thermodynamic characteristics of the system are 
most simply derived by a simple calculation of the 
energy of the Ground state. 

Each energy level is degenerate, with multiplicity 
eH V 
--~=pH. 
2~/tc d 

The number of completely filled levels will be 

_,. = [ ;: ] = [ 2n:;dn J (27) 

The energy of the system is 

E= \

Ns0 + ftH {N(s + 1)- pH ;'_-pHs}- lloH(N- pHs). 
s-even, 

r s2 s } Ne0 +pH \_''Vs- pli 2: +pH z - ftoH {(s + 1)pH- N}, 
s- odd 

(28) 
Since we are considering the case T - 0, we may set 
the free energy F equal to E. We have 

- Jl {n(s+1) -p'li(s+1) 2+p'Ii} -fto(2p'Hs-n), 

1 ( oF) s-even 
M = --v aH N = -r[ {ns- p'Hs2 + p'Ii} + [lo{2(s + 1)p'H -n }, 

s- odd 
(29) 

Here p' = p/V. 
It is seen that the expression for M, along with 

terms proportional to H, contains terms independent 
of H (of course only in the range J..i.H > T), propor
tional to the electron concentration. The value of M 
undergoes a jump corresponding to a change of s by 
unity, every time that n/p'H = 2JTncdn/eH assumes an 
integral value. These jumps cease when H :o-. Hmax 
= 2JTncdn/ e, after which M = ( J..l.o - J..l.)n. For Bi with 
d ~ 10- 6 em and n ~ 2 X 10 17 cm- 3 , this value is 
Hmax ~ 7 X 104 Oe. 

In the case J..l.oH < T < 1-LH, which can occur for 
semimetals, the last terms in (29), connected with 
electron spin, disappear. 

4. OTHER CASES 

Besides the cases considered above, in semimetals 
there can arise a situation in which the energy of the 
Landau quantization exceeds the Fermi energy, calcu
lated in the absence of a magnetic field. 

At the lowest temperature, less than all the charac
teristic energies, two cases must be distinguished: 
E:o < 1-LoH and E:o > J..l.oH. In the first of these, the energy 
of the system is 

s(s+1)(2s+1) 
E = N(ll-llo)H+ pH---6-. --eo+(N- pHs) (s+ 1) 2 eo(30) 

and therefore the magnetic moment is 

M = (llo -- 11)n + p'(2/as3 + 3/21? + 5/ss). (31) 
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It is seen that M is independent of H and undergoes a 
jump upon change of s by unity; this is similar to the 
case described by the expression (29). 

When Eo> !loR, the spin sublevels may be con
sidered degenerate, the multiplicity p of the degeneracy 
is doubled, and in (31) the term /J.on must be dropped. 
If JJ.oH < T < Eo, then we get the same situation. 
Finally, if E0 < T < iJ.H, then the dimensional quantiza
tion ceases to have an effect, and the magnetization is 
described by the usual formulas, with allowance for the 
dependence of i;; on H (see, for example,l4 J). 

Until now it has always been assumed that T << {;; 
but for semimetals the degeneracy temperature is very 
low, and the nondegenerate state is also of interest. It 
is easy to show, however, that in a film perpendicular 
to the magnetic field, the dimensional quantization will 
not change the magnetic properties of a nondegenerate 
electron gas. In fact, in the classical statistics the 
free energy consists of two terms, of which one is de
termined by the energy of the electrons on the Landau 

levels, and the second by the translational motion along 
the field. The dimensional quantization changes only 
the second term; but it is independent of H, and upon 
differentiation it drops out. 
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