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A number of problems related to the so-called "hidden" symmetry of the hydrogen atom are con­
sidered. The wave functions of the discrete spectrum are written as polynomials of the two complex 
variables z1 and Z2 in analogy to the Fock-Bargmann representation for the harmonic oscillator. 
It is shown that the wave functions of the continuous spectrum of the hydrogen atom can be used to 
set up generalized "representations" of the rotation group corresponding to complex values of the 
angular momentum j = - Y2 + ip(- oo < p < 00 ). The expansion of the direct product of these repre­
sentations is considered, and it is shown that this expansion involves the usual (integer) values of 
the angular momentum. The corresponding Clebsch-Gordan coefficients are given in terms of the 
Coulomb scattering phase. 

THE nonrelativistic hydrogen atom has a specific de­
generacy (independence of the energy Enl = -1/2ri2 on 
the orbital angular momentum l) which has received 
the name "accidental degeneracy." This feature was 
explained in a known paper of Fock [1J (cf. also C2J) who 
showed that the Hamiltonian of the hydrogen atom is 
invariant with respect to the group 0 ( 4) (higher sym­
metry group). Subsequently, this symmetry has been 
studied more closely, [3 - a] in particular, for the states 
of the continuous spectrum Cs,s and in the n-dimensional 
case.[3,4,s,aJ 

In the present paper we consider a number of prob­
lems related to the ''accidental'' degeneracy in a 
Coulomb field. In Sec. 1 we construct the simplest 
realization of the bound states of the hydrogen atom in 
analogy to the known Fock-Bargmann representation 
for the harmonic oscillator. lg, wJ The transition to the 
case of positive energies allows one to consider the 
coupling of two complex angular momenta (of the 
special form j 1 = h = - Y2 + ip) and to find the corre­
sponding Clebsch-Gordan coefficient. It turns out that 
it can be expressed through the Coulomb scattering 
phase (Sec. 2). 

1. WAVE FUNCTIONS OF THE DISCRETE SPECTRUM 
IN THE z REPRESENTATION 

Evidently, the simplest of the possible realizations of 
the operators a and a+ for the harmonic oscillator is 
the so-called Fock-Bargmann representation;l9 ' 10J it 
has proved convenient for the solution of a number of 
problems,LuJ in particular those related to the account 
of the "hidden" symmetry of the harmonic oscillator. 
Below we construct an analogous realization for the 
wave functions of the hydrogen atom. 

As is known,l 2'4J the symmetry group of the Coulomb 
potential V ( r) = -a/ r is generated by the integrals of 
motion-the angular momentum L and the Runge-Lenz 
vector A: 1 

A=n+ 2ma{[Lp]-[pL]}, n=r/r. (1)* 

Going over to the operators 
J1,2 = 1/2(L ± M), M = (-2H)-'f,A, (2) 

*[Lp] =LX p. 

we obtain 

J,' = J•• = '/,(L2+ M') = -'/.(1 + 'j,H-'), (4) 

where H = p2/2 - 1/ r (in atomic units). A representa­
tion in which J 1z and J 2z are diagonal is realized by 
wave functions in parabolic coordinates.l2' 6J Indeed, 

Lz¢nlnzm = m1.Vn1n2m, Az'¢n 1n 2m = nt- nz ¢n 1n 2m, (5) 

liz'¢n 1n::m =· f.ti'lJnln.,m, 
n 

J.lt = 1/, (m + n, - nz), ~lz = 1/z (m - n1 + n,). (6) 

Here n1 and n2 are the parabolic quantum numbers, 
cf. L12J; n1 + n2 + I m I = n - 1 (our definition of the 
vector A differs from that of [ 12~ by a sign). 

We recall how the irreducible representation with 
weight j of the group SU ( 2) is constructed in the 
z plane. C13J The transformation of the wave functions 
under spatial rotations is given by the formula 

l'uf(z)=(~z+6) 2ij( az+y ), (7) 
1 ~z+ 6 

where 
a= 6' = e-i(w+<P)/2 cos (8/2) u=(a~) 

\y 6 ~ = -v' = -ie-i<•t-")12 sin(8/2) 

(if, 8, <P are the Euler angles). The scalar product 
which is invariant under (7) has the form 

(f, g)=~ dJ.I; (z)f'(z)g(z), 

where 

(8) 

(9) 

2j + 1 dz I ( 1 O) 
dJ.I;(z) = ~ (T.f-Tz"l')'iH; J dJ.I;(z) = 1 

lthe integration in (10) goes over the whole z plane: 
dz = dxdy, - oo < x, y < ""]. Going over to the case 
u - 1 in (7), we find the generators 

d d d 
h = - z2 dz + 2jz, ! 0 = z dz- j, ]_ = dz ( 11) 

( J± = Jx ± iJy, Jo = Jz). The operators J + and Jo of 
this realization depend on the value of the angular mo­
mentum j. The states I jm) are represented by the 
terms 

( 12) 

967 
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The functions fjm ( z) are orthogonal and normalized 
in the sense ( 10), and the generators J fl act on them 
according to the usual formulas of quantum mechanics: 

hlim> = [ (j + m) (j + 1 ± m)] 'f,[j, m ± 1), loljm) = m[jm). (13) 

Let us now introduce the two complex variables Z1 
and z2 corresponding to the operators J1 and J 2 of 
( 3). Then, in accordance with ( 6) and (12), the state 
I n1n2m ) of the hydrogen atom is written 

I n1n2m) = f;", (zi)f;", (zz) 

(n- 1)! n,+{m+lml}/2 n,+{m+lmll/2 
-lndn2!(ni+lml)!(n2+1ml)!]'/2 Zt z2 

(14) 

where j = ( n - 1)/2. Let us determine the wave func­
tions of the states I nlm ) with definite orbital angular 
momentum. Since L = J1 + Jz and lJ1, Jz] = 0, this 
problem is equivalent to the coupling of two angular 
momenta. The basis in the space of the reducible 
representation Dj 1 <~ Dj 2 is provided by the set of 
terms fjfl / Z1) fjJJ. 2( zz). 

The expansion into irreducible representations can 
be found by the following consideration. In the space of 
each irreducible representation Dj there is a lowest 
vector I j, -j) for which L-1 j, - j) = 0. Since L-
= ojoz1 + o/8~ 2 l cf: ( 11) ], then fj, -j ( z1, z2) 
= N ( Zt - zz)lt•Jz-J, where N is a normalization con­
stant. Acting on fj, -j with the operators L., one can 
find all remaining vectors fjm· These calculations are 
easily carried out for arbitrary values of j1 and h; 
we give the answer for the special case of interest to 
us, jt = jz = (n- 1)/2: 

where 

(n-1)! [ (21+ 1)! ]'/, 
Anl = --'---:-:---'-- -:-~-:--C---'c---:-c--

1! (n+l)!(n-1-1)! ' 

[ (l + m)! J'r, ( a a \1-m 
lllm(z,,z,)= (21)!(1-m)! az~+ az, I (z,z,)l 

[ (l + m)! (I- m)! ]'/, 1~ k-m l+m-k 
- L.J c •c z "z - (21)! kooiO l l 1 2 • 

(16) 

Thus 1/!nlm ( Zt, zz) is a homogeneous polynomial of 
degree n + m - 1. The summation in (16) is actually 
restricted by the condition 

min (1, l + m) ::? k:;:? max(O, m), ( 17) 

so that the polynomial IItm ( z 1, zz) consists of 
(l + 1 - I m I) terms. In particular, 

ll l 
n ___ ·_ "(Ck)' • 1-·k. (18) 

lO - [ (21) !]'h k::"o l z, z, , 

IIzm and ITt. -m are related by 

( 19) 

Compared with the usual formulas for the wave 
functions of the hydrogen atom in the x or p repre­
sentation, the expressions (14) and (15) have a very 
simple form. The scalar product is given by 

n 2 r dz, dz, ·• ( 
(f,g)=~.l[(1+lz1[')( 1 +lz2 l')]"+' f (z,,z,)g(zi,Zz), 20) 

which contains n explicitly. This explains the circum­
stance that the states I nlm) and I n'l'm') for n f n' 

can be represented by one and the same function. For 
example, 

In, l, -1) =Anl(z,-z,)n-l-1. (21) 

In particular, for l = lmax = n- 1, j n, l, -l) = 1 for 
all n. Of particularly simple form are the wave func­
tions for s states: 

(22) 

Expanding 1/Jnlm ( z1, zz) in terms of the functions 
( 14) , we obtain 

(23) 

where j = (n- 1)/2, flt and JJ.z are defined by (6), 
lm 

and Cjfl 1;jflz is a Clebsch-Gordan coefficient [for 
which an expression in the Van der Waerden form is 
obtained from (15) [l4J ]. Once this formula is estab­
lished in the z representation, it remains true in any 
other representation. One must, however, make sure 
that the functions j n1n2m ) form a canonical basis 
l i.e., that the relations ( 13) are fulfilled]. To this end 

one may be forced to introduce phase factors. Thus, 
in the x representation, t> 

ln1n2m) = (-)nrHm-lml}/2'1'n,n,m(~, 1'], q>), 
lnlm) = (-)~nlm(r) = (-) 1Rnl(r)Ylm(n), (24) 

where the functions l/!n1n2m ( ~, 1], cp) and Rnl ( r) are 
defined in [12J. 

2. CONNECTION BETWEEN THE COULOMB 
SCATTERING PHASE AND THE CLEBSCH­
GORDAN COEFFICIENT 

When we go to the region E > 0, we encounter the 
cut 0 < E < 00 , on whose upper edge 

1 i 
n=-o==-. (2 5) 

l'- 2E k 

In x space this choice of sign corresponds to an out­
going wave. Introducing the hermitian operator N, we 
have 

N = - iM = (2H)-'f,A, 
1 

11,2 = 2'(1 ±iN), 

J,2 = J,2 = - 1/.(1 + 1/k2) = j(j + 1), (26) 
where 

n-1 1( i) 
j=-2--=2 - 1+k . (27) 

Setting m = 0 in (23) and using (24), we find 
n-1 

"¢n,n,o(£,T])=(-)n, ~ c~"..",.;","¢nzo(r), (28) 
l=O 

where flt = ( n1 - nz)/2. We obtain the analog of this 
expansion for the continuous spectrum; in this way we 
shall find the Clebsch-Gordan coefficients for the 
generalized "representations" of the group SU ( 2) 

1lWe note that the expansion (23) was first obtained by Park; [ 15 ] 

however, the phase factors entering in (24) were not taken into account 
by him. A formula which is practically equivalent to (23) for the wave 
functions in p space is contained in the work of Stone [1 6 ] (cf. also (6 ]). 

This formula has proved convenient for the parametrization of the 
relativistic scattering amplitude for particles with spin. [ 17] 
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corresponding to complex values (27) of the angular 
momentum. 

Let us consider the function 1/Jk for an attractive 
Coulomb field:LrzJ 

where 

s = r+z, 11 =r-z, 

(29) 

f,(s) = eu''1', /2('1) = e-1kni2F(i/k, 1, ik11 ). (30) 

In (29), the momentum k of the incident particles is 
directed along the z axis, so that m = 0, ni = - Y2 

+ nJ:.li (i = 1, 2; tli are separation constants). The 
constant j3, enters in the equation for f, ( ~): 

d~ ( S %i ) + ( ~ S + ~I) ft = 0 

[an analogous equation holds for f2 ( 1]) ]. Then 

ik 
~' = 1 + z, n, = 0, 

i 
nz=-;:-1 = 2j, 

(31) 

llt = -112 = -j. (32) 

Using these equalities, we find for the expansion (28) 

(33) 

where l/!n 1n2o and IJ!nlm are the analytic continuations 
of the corresponding functions of the discrete spectrum 
on the upper rim of the cut 0 < E < 00 • 

Using the explicit expressions lr 2J for the functions 
i/ln 1n2m ( ~. '7, <p) and il'nlm ( r), we find 

;p,/0 = B¢klo, *On,O = A¢k+, 
A = -2k'i,e-i6o[n (1 - e-2"-") J\ B = -k[i(1- e-2'ik))'h. (34) 

On the other hand, we have 

oo • ( 21 + 1 )';, e161 
tj:k+= ~~~~-4- --tj:,10 (r). 

1=o \ n k 
(35) 

Comparison of (33) to (35) yields 

10 ( 21 + 1 \'f, ei6, A . 
C · ·. ·_ · = i1 --- ---- = [- ik (21 + 1) ]'i•i1e•(6,-6,) 

JJ,J .1 \ 4n J k B ' (36) 

where oz is the Coulomb scattering phase: 

1)1 = argf(/ + 1- i/k) = argf(l- 2j). 

Let us now make more precise to which representa­
tions of the group SU ( 2) the calculated Clebsch­
Gordan coefficient refers. As is known, the usual 
(finite -dimensional) representations are characterized 
by a single number, the weight j (j = 0, Y2, 1, ... ). The 
problem of the generalization of the concept of a 
representation to complex values of j was posed by 
the development of reggeism and has been considered 
in many papers .era- 22 J As shown in [rgJ, a new invariant 
J-L appears in going over to the complex plane, so that 
the generalized "representation" of the group SU ( 2) 
is given by the pair of numbers ( j, J-L). These numbers 
determine the spectrum of the operators J 2 and Jz: 

J21jl;m = j(j+ 1)¢;m; J,ljl;m = (11 + s)ljl;m, (37) 

where s = 0, ± 1, ± 2, . . . For the usual representations 
J-L = j - [ j ] and is thus not independent of j (here l x] 
is the integer part of the number x). As is seen from 
(32), the representations realized on the hydrogen func­
tions do not belong to the most general type either. In 

these representations there exists the vector 1/Jjm with 
m = - j or m = j. In the first case, setting m = -j + n, 
1/Jjm = fjn• we have from (13) 

hf;, = [ (n + 1) (2j- n) J'h/;, n+!, 

L/;n = f n (2j + 1 - n) ]'!.J;, ,_,, lof;n = (n- j)j,,, (38) 

i.e., the set of vectors fjn with n = 0, 1, 2, ... forms 
an invariant space. Although this representation is 
infinite-dimensional, there exists a lowest vector fjo 
for which Jfj 0 = 0. We shall denote this representation 
by Dr. Analo~ously, in the second case the v~ctor~ 
1/Jjm w1th m = J - n ( n = 0, 1, 2, ... ) form an mvanant 
space having a highest vector with n = 0. This repre­
sentation is denoted by Dr). 

The representations Dr> and Dr are, as it were, 

in the transition region between the degenerate case of 
finite-dimensional representations (when the spectrum 
of the operator Jz is bounded from below and above) 
and the general case2 >, as has been pointed out in '-' 9]. 

Subsequently these representations have been studied 
in detail by Sannikov. l. 22J 

The wave functions of the hydrogen atom in para­
bolic coordinates form the representation Dr) ' Df>, 

where j lies on the straight line Re j = - Y2 [cf. (27)]. 
The transition from parabolic to spherical coordinates 
corresponds to the expansion of this representation into 
irreducible ones. It is interesting to note that this ex­
pansion involves only the usual values of the angular 
momentum l = 0, 1, 2, ... 

The Clebsch-Gordan coefficient CJj;j -j for the 

usual values of j has the form (cf.C 14J)-

c1" . . ={ (21--1-- 1) [(2j) ll' ·}''' (39) 
JJ,J-J ' (2j+1+1)!(2j-l)! . 

Changing the factorials to r functions and substituting 
formally the value j from (27), we arrive at (36). Thus 
in the given special case, the value of the Clebsch­
Gordan coefficient for complex j agrees with its ana­
lytic continuation from integer and half -integer values 
of the angular momentum. 

The example considered shows that the problem of 
the coupling of complex angular momenta is practically 
already encountered in ordinary quantum mechanics 
(at least for some values of j). This confirms the pos­
sibility of a group-theoretical interpretation of the 
complex angular momentum. Thus a number of prob­
lems whose mathematical solution meets with difficul­
ties, can be considered on the example of the hydrogen 
atom. 3 > 

2) As is seen from (38), the representations Dtl and D/-) are, 
strictly speaking, irreducible representations of the Lie algebra. The 
problem of their extension to representations of the rotation group 
as a whole is not trivial and requires a separate investigation. 

3) For example, the problem of the expansion of the direct product 
of two "representations" of the group SU (2) corresponding to arbi­
trary complex values j 1 and j 2 has not yet been solved in general form. 
It is therefore impossible to tell whether the Clebsch-Gordan coef­
ficient for complex j is the analytic continuation of the usual coef­
ficients, as is frequently assumed. The answer obtained above for the 
special case j 1 = j 2 = ( -1 + i/k)/2 is of interest in the sense that it shows 
that the usual values (integer or half-integer) may appear in the coup­
ling of two complex angular momenta. It may be that there is a con­
nection with the problem of constructing the usual particles from the 
unobserved "quarks" with complex spins (this remark is due to I. S. 
Shapiro). 
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