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We consider the effect of a plane monochromatic wave (a particle beam in quantum mechanics, an 
acoustic or electromagnetic wave) incident on a half -space filled with a scattering medium having 
large-scale fluctuations of the effective scattering potential. The investigation is based on general 
equations of the Dyson type for the mean field and an equation of the Be the -Sal peter type for the field 
correlation function. Simplified, purely differential equations for the mean field and field correlation 
function are derived in the approximation of weak nonlocality of the mass-operator and intensity­
operator kernels. The equation for the field correlation function thus obtained is solved by the Rytov 
smooth-perturbation method. A connection is established between the obtained solution and the results 
of application of the smooth-perturbation theory and the Kalashnikov-Ryazanov method to the nonaver­
aged wave equation, and also its relation to the radiation-transfer equation in the small-angle approxi­
mation. The conditions of applicability of the smooth-perturbation method are formulated on the basis 
of a calculation of the complex phase of the second approximation. Restrictions on the parameters of 
the problem, which ensure that the method is applicable at distances on the order of or larger than 
the extinction length, are indicated. 

A number of recent papers devoted to the theory of 
multiple scattering of waves employ the Dyson and 
Be the -Sal peter equations for the solution of general 
and concrete problems. The name of these equations 
and the method of their derivation are borrowed from 
quantum field theory. In the theory of multiple wave 
scattering, these equations were introduced in the papers 
of Foldy[IJ, Bouret[2J, Tatarskii' and Gertsenshtei'n I3 ~, 
Furutsu [4J, Tatarskii' [sJ, Frisch [s-a:, and Finkel' berg [9J. 

These papers contain, besides an investigation of the 
main problem of the asymptotic form of the kernels of 
the equations, also the solution of the Dyson equation for 
a statistically homogeneous unbounded and isotropic 
scattering medium. Ryzhov, Tamo'lkin, and Tatarski1[1o]. 
using the results of Finkel'berg'-11J, employed Dyson's · 
equation to calculate the tensor of the effective dielec­
tric polarization of a statistically homogeneous and iso­
tropic medium. Ryzhov [12] considered an analo~ous 
problem for an anisotropic medium. Tatarskii' L13' 14J 
used the Bethe-Salpeter equation in the so-called ladder 
approximation for the calculation of the correlation 
function of the field in a statistically homogeneous un­
bounded medium with small-scale fluctuations of the re­
fractive index. In our paper [1sJ, and also in a paper 
written jointly with Finkel'bergll6J, the Dyson and 
Be the -Sal peter equations are the basis of a statistical 
derivation of a radiation transport equation. 

In the present paper we use equations of the Dyson 
and Bethe-Salpeter type to consider the problem of the 
incidence of waves on a scattering medium occupying a 
bounded or unbounded region of space. The paper con­
sists of two parts. In the first we derive equations that 
are much simpler than the initial ones and are valid in 
the case of weak nonlocality of the mass operator and of 
the intensity operator. The second part of the paper is 
devoted to an approximate solution of the obtained equa­
tions by Ryzhov method of smooth perturbations. 

1. Let the scattering medium occupy the right half­
space z > 0 in a coordinate frame (x, y, z) the z axis of 
which is perpendicular to the separation boundary, which 
coincides with the xy plane. The incident field 1/Jo(r) is 
chosen in the form of a plane monochromatic wave, 
1/Jo(z) = exp(ikoz), incident on the medium from the left 
half-space z < 0 normally to the separation boundary. 
This may be a de Broglie wave describing the mono­
energetic flux of particles in quantum mechanics, a 
monochromatic acoustic wave, or an electromagnetic 
waveu. We are interested in the average field (~(r)) 
and its correlation function (l/l(r1)if(r2)). Here r, r1, 
and r 2 are points in three-dimensional space, the super­
ior bar indicates the complex conjugate, and the angle 
brackets denote averaging over the ensemble of realiza­
tions of the scattering medium. 

The non-averaged field l/l(r) satisfies the wave equa­
tion 

[:l + k 02 - V(r)l¢(r) = 0, ( 1) 

where k0 is the wave number of the free space and V(r) 
is the effective potential of the scattering medium. For 
a continuous medium, the effective potential is V(r) = 
-k~JJ.(r), where JJ.(r) is the fluctuating part of the square 
of the refractive index. If the medium is discrete, then 
the effective potential is equal to the sum of the poten­
tials of the individual scatterers, the position of which 
is random. In order to satisfy the radiation condition, 
we shall assume that the wave number ko of free space 
has a small positive imaginary part E > 0 (k0 - k0 -1- iE). 

Our solution of the problem is based on the general 
equations for the average field and its correlation func­
tion. The equations are of the form 

1) As is well known (see, for example, [5]) in the case of large scale 
fluctuations of the scattering medium the system of Maxwell's equation 
reduces to three independent scalar equations. 
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(¢(r)) = ¢o(r)+ ~ Go(r- p)d3pM(p,r')d3r' (¢(r')), (2) 

('ljl(rt)~(rz)) =; (¢(rt)) (~(rz)) + ~. (G(rt, p1)) 

X (G (rz, p2)) d3 p,d3 p.J{ ( p,, rt'; p2, r2') d3rt' d3rz' ('ljl (rt')~ (r,')). ( 3) 

Here 

Gu(r- r') = exp(ikolr- r'l) I ( -4.n I r- r' I) 

is the retarded Green's function of free space, and 
(G(r, r')) is the average Green's function of the scatter­
ing medium, satisfying Eq. (2) in the presence in space 
at the point r' of a pointlike source, producing the inci­
dent field <J;o(r) = G0(r'r'). In this case Eqs. (2) and (3) 
go over into the Dyson and Bethe-Salpeter equations. 
The kernels M and K of the equations are customarily 
called the mass operator and the intensity operator. 

In the literature there are three known approxima­
tions for the mass operator M and for the intensity 
operator K. These are: 1) the Foldy approximation, 
the Bourret approximation and the ladder approximation, 
and 3) the Finkel'berg approximation. 

In the Foldy approximation, which pertains to a dis­
crete medium consisting of uncorrelated scatterers, 
the kernels M and K are expressed in terms of the 
scattering operator of an isolated scatterer and its 
bilinear combination. 

In the Bourret approximation (for the mass operator) 
and the ladder approximation (for the intensity operator) 
pertain to a continuous medium the square of the re­
fractive index of which fluctuates in accordance with a 
normal law. In this approximation 

M(r, r') = B(r, r')Go(r- r'), (4) 

where B(rl, r2) = (V(rl)V(r2)) is the correlation func­
tion of the fluctuations of the effective potential 
((V)=O). 

The Finkel'berg approximation generalizes the 
aforementioned approximations to the case when the 
correlation between the scatterers or the deviations of 
the fluctuations of the square of the refractive index 
from the normal law are significant. 

A characteristic feature of the foregoing approxima­
tions is that the corresponding kernels M and K have 
finite nonlocality radii lM and ZK· In order to explain 
this circumstance, we introduce the following definition. 

We represent the kernels M and K in the form 
M(r, r') = .. :c,;(r, r- r') and K(rl, r{; r 2, r~) 
= .Jr(rl, r1 - rf; r2, r 2 - r2), separating explicitly the 
dependence on the argument differences r- r', r 1 - r{, 
and r2- r~. We shall say that the kernels M and K have 
finite effective nonlocality radii ZM and ZK if the func­
tions .li and .11 tend sufficiently rapidly to zero when the 
foregoing differences of the argument exceed ZM and ZK 
in absolute value, i.e., lr- r'l » lM and lr1- rfl, 
lr2- r21 » ZK· 

We can conclude from the foregoing qualitative defi­
nition that in the Foldy approximation the nonlocality 
radii of the kernels M and K are of the order of the 
radius of the scatterers. Analogously, in the Bourret 
approximation the nonloca.lity radius of the kernel M is 

of the order of the correlation radius of the potential 
fluctuations. In the ladder approximation the kernel K 
has a zero nonlocality radius. In the Finkel'berg ap­
proximation, both nonlocality radii are of the order of 
the correlation radius of the group of scatterers or the 
aggregate of values of the potential in a number of 
points. 

Our definition of the nonlocality radii calls for a re­
finement. In this connection we propose that the mass 
operator and the intensity operator have the following 
Fourier transforms with respect to the difference argu­
ments: 

;l(r,k)= ~ .Jft(r,r')exp(-ikr')d3r', (6) 

.Jr (rt, k; r,, k') = ~ X (r1, rt'; r,, r,') exp ( -ikrt') exp (ik'r,')d'r1'd'r,', (7) 

which can be differentiated a sufficient number of times 
with respect to the wave vectors k and k'. The non­
locality radii lM and lK can now naturally be defined 
with the aid of a logarithmic differentiation of the 
Fourier transforms (6) and (7) with respect to the wave 
vectors k and k' on the "energy" shell k = k' = k0 • 

The intensity operator of a statistically homogeneous 
medium depends on three differences of the arguments. 
Two of them were already mentioned. The third is the 
difference of the first arguments r1- r 2. It also corre­
sponds to a certain spatial scale, which we denote by z. 
In the ladder approximation, it coincides with the corre­
lation radius of the potential fluctuations. 

Let us return to the initial equations (2) and (3) for 
the average field and its correlation function. We shall 
solve these equations, making with respect to the ker­
nels M and K only the general assumption that they have 
finite effective nonlocality radii lM and lK· In the inves­
tigation of the equations for the purpose of reducing the 
number of manipulations, it is frequently convenient to 
use the symbolic operator language, and also the con­
cept of the tensor or direct product [l7J of functions and 
operators, which we denote by the symbol ®. 

We turn first to the equation for the average field (2). 
We apply to it the operator .:l + kg, going over into an 
integro-differential equation 

(1'1 + ko2 - Al) (¢) = 0. 

We seek the average field in the form of the product 

(¢(r)) = exp {ik0z}(u(r)), 

(8) 

(9) 

separating the factor equal to the incident field. This 
manner of expressing the field corresponds to the notion 
of a wave beam propagating in the direction of the z 
axis. The function u(r) is called the ray amplitude. 

Substituting the sought solution (9) in (8), we arrive 
on the basis of (6) formally to a differential equation of 
infinitely large order 

(10) 

Here .. ;r(r, ko) is the Fourier transform of the mass 
operator with respect to the difference argument, calcu­
lated on the energy shell k = ko. In the right side of the 
equation are the nonlocal terms due to the nonlocality 
of the mass operator. We denoted them by O(Z). They 
are equal to 
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O(l) = exp (ikoz)[~xp (-:fVk,V) -1]./t(r, ko)(u(r)) (11) 
= exp (!koz){-![Vk.« (r, k) h~ko' V(u (r))- ... }. 

The exponential operator exp(-iVk0V) calls for some 
explanation. As usual, it is represented by a Taylor 
series. In the space of the wave vectors, the gradient 
operator Vk0 , a~ only on the Fourier transform of the 
mass operator A. The gradient operator in the coor­
dinate space, V, to the contrary, acts only on the aver­
age ray amplitude (u). The index k0 labeling the grad­
ient operator in the wave-vector space denotes that the 
corresponding derivatives calculated on the energy 
shell k = ko. 

It is easy to see that the nonlocal terms ( 11) consti­
tute an expansion in powers of the ratio of the nonlocal­
ity radius of the mass operator to the inhomogeneity 
scale of the average ray amplitude. Assuming this ratio 
to be small and omitting from ( 10) all the nonlocal 
terms, we arrive at the simplified equation for the 
average field 

(A+ k02 - .ii)(ljl) = 0. (12) 
It has the form of a Helmholtz wave equation with effec­
tive wave numb~ keff, which is determined by the rela­
tion k~ff = kg- .,t(r, ko). 

Let us analyze the conditions for the applicability of 
the simplified equation (12). It is natural to require, by 
the way of such a condition, that the nonlocal terms 
O(l) be small compared with Jl(lj!). Retaining in (11) 
only the first-order spatial derivatives, we arrive at 
the inequality 

Vk,.i· V(u) ~ .ii(u). (13) 
Just as all the succeeding inequalities, this inequality 
should be taken to mean that the modulus of the left hand 
side is small compared with the modulus of the right 
hand side. 

Let us specify more concretely the condition (13) as 
applied to the statistically homogeneous and isotropic 
scattering half space z > 0. In this case the Fourier 
~ansform with respect to the difference argument 
.. ;z(r, k) is constant inside the medium, with the excep­
tion of a narrow boundary strip, and equals . ;f(r k) 
= Mo(k, k) = Mo(k2 ), where Mo(k, k') is the Fourier 
transform of the specific mass operator[16J character­
izing the scattering properties of the individual inhomo­
geneity of the medium. We call attention to the fact that 
by virtue of the mass statistical isotropy of the med- ' 
ium, the Fourier transform of the mass operator with 
respect to the different arguments depends only on the 
square of the wave vector. 

The simplified equation ( 12) is easy to solve [2J for a 
homogeneous scattering half-space. The average field 
inside the medium has the form of a plane wave (lj!(z)) 
= T exp (ikeffZ) with effective wave number keff· By 
T we denote the amplitude refraction coefficient, which 
is determined from the boundary condition of the con­
tinuity of the average field and its normal derivative. 
Separating the average ray amplitude from the average 
field, in accordance with (9), and substituting it in (13), 
we get 

d.M o I dko2 ~ 1. ( 14) 
The physical meaning of the inequality ( 14) is discussed 
in the cited papers [g, 16J. Together with the inequality 

2lThe same can be said with respect to the initial equation (8). 

~ 2 • 
Mo/ko « 1, 1t denotes neglect of the spatial dispersion 
of the wave. 

Let us formulate the condition (14) in terms of the 
nonlocality radius of the mass operator and the inhomo­
geneity scale of the average ray amplitude. To this end, 
the mass operator is taken in the Bourret approxima­
tion ( 4), and the correlation function of the fluctuations 
of the effective potential is taken in the form of the ex­
ponential B( lr I) = k~a2 exp (-lr 1/l). We confine ourselves 
to the most interesting case of large -scale fluctuations 
of the potential, when kol » 1. In this case the inequality 
(14) takes the form 

I I d~ 1, (15) 

where d is the extinction length, the reciprocal of which 
is 1/ d = 21m keff ~ a~g l. The nonlocality scale of the 
mass operator ZM = d ln Mo/ dk0 turns out to be of the 
order of the correlation radius of the fluctuations of the 
potential, lM ~ l. On the other hand, the role of the in­
homogeneity scale of the average ray amplitude is 
played by the extinction length d. 

We proceed now to the equation for the field correla­
tion function (3), from which we can also derive the 
corresponding simplified equation. The reasoning is 
similar to that used in the consideration of the average 
field. We first operate on the equation with the tensor 
product of the operators (Ll +kg- M) ® (Ll +kg- M), 
transforming it into an integra-differential equation 

(Ll+ko2 -A1) 0 (il+ko2 -.M)(Ijl0\jJ)=K(Ijl0\IJ>. (16) 

The correlation function of the field is sought in the 
form of a product 

(ljl(r,):;J)(r2)> = exp [iko(z1-z2)](u(rt)u(r2)), (17) 

separating the factor equal to the correlation function 
of the ray amplitude of the field. Substituting the sought 
solution (17) in (16), we arrive, on the basis of (6) and 
(7), at a differential equation of infinitely high order 
with nonlocal terms that are due to the nonlocality of 
both the mass operator and the intensity operator . 
Leaving out the nonlocal terms, we arrive at a simpli­
fied equation for the correlation function of the field 

(il + ko'- .ii) 0 (A +kc?-.1{}<¢ 0 ij)> = .YC(¢ 0-ij;>, (18) 

where .7:·, in analogy with Jf, is the Fourier transform, 
calculated on the energy shell, of the intensity operator 
with respect to the difference arguments. The remainder 
of the problem is to investigate the conditions of appli­
cability of the obtained equation. 

In the case of a continuous scattering medium, the 
square of the refractive index of which fluctuates in ac­
cordance with a normal law, the most significant are 
the nonlocal terms due to the nonlocality of the mass 
operator. This can be understood at least from the fact 
that in this case the nonlocality of the intensity operator 
becomes manifest only in the second order in the corre­
lation function of the fluctuations of the effective poten­
tial of the medium. 

Let us consider the characteristic. aggregate of the 
nonlocal terms due to the nonlocality of the mass opera­
tor 

[ (l'l + ko2 ) 0 l]{exp [iko(Z.c_- z2) ][I 0 (exp iV ko V ( 19) 
-1)] (I 0 Ji)<u 0 u)}, 
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where I denotes the unit operator. By way of the condi­
tion under which the given aggregate of nonlocal terms 
can be neglected, we stipulate that the expression in the 
curly bracket of (19) be small compared with 

(I 0 .lt)(u 0 u). Thus 

[I 0 (exp i\1 ko V - 1)] (I Q9 Jl)(u Q9 u) <{ (I Q9 Jt) (u Q9 u). (20) 

We rewrite the condition (20) again specifically for 
the case of a statistically homogeneous and isotropic 
scattering half-space, confining ourselves to an exam­
ination of large-scale fluctuations of the effective poten­
tial. Getting ahead of ourselves, we note that in the case 
of large-scale fluctuations of the potential the correla­
tion of the field is characterized by two correlation 
radii 31 : one longitudinal with respect to the direction of 
the incidence of the external field, and one transverse 
radius. The longitudinal correlation radius is of the 
order of ko l 2 , and is perhaps larger than the correlation 
radius l of the effective potential. The transverse radius 
is of the order of l. On the other hand we know that the 
non-locality radius of the mass operator is also of the 
order of l. From this it may appear, at first glance, 
that the nonlocal terms due to the nonlocality of the 
mass operator are appreciable and cannot be neglected. 
However, a more careful analysis shows that this is not 
the case. The reason for this circumstance is connec­
ted with the isotropy of the scattering medium. 

Let us turn to inequality (20). We expand in it the 
exponential operator and retain the spatial derivatives 
of first and second order. We differentiate the Fourier 
transform of the mass operator with respect to the 
components of the wave vector 

rUt I a~c,, = 2k"dAlo I cli£2, (21) 

o'. rr / ok,,8k, = 2o.vdJ10 I dk' + 4k1,kvt12Ji'lo I d(k2 ) 2• (22) 

It follows from (21) that there are no transverse first­
order spatial derivatives in the left side of (20). As re­
gards the transverse spatial derivatives of second 
order. by virtue of (22) they appear only in the form of 
the combination 

(23) 

where ll.;i- denotes the transverse Laplacian acting on the 
second argument r2. In order of magnitude, the term 

(23) equals (1/koZ) .'ft (u 0 u), and is consequently small 
compared with the right side of the inequality (20). 

In order to obtain more detailed conditions that make 
it possible to neglect the nonlocal terms, it is necessary 
to specify more concretely the correlation function of 
the field. We shall calculate it below, solving the sim­
plified equation (18) by the method of smooth perturba­
tions. Substituting the field correlation function calcula­
ted in this manner in the inequality (20), we can verify 
that at coinciding observation points it reduces to the 
condition 

(11 kol) (z, /d) <{ 1. (24) 

It includes besides the known parameter k 0Z also the 

31We determine the correlation radii by logarithmic differentiation 
of the correlation function of the ray amplitude of the field in coincid­
ing observation points. 

ratio of the distance Z1 traversed by the wave to the ex­
tinction length. 

2. Having analyzed the conditions for the applicabil­
ity of the approximate equation (18) for the correlation 
function of the field, we proceed to the question of 
methods of its solution. Unlike the initial equation, this 
equation is purely differential. It admits, in particular, 
of the use of the well known method of smooth perturba­
tions (Ritov[laJ, see alsoC14' 19' 20J). We shall construct 
the solution of Eq. (18) by this method and indicate inci­
dentally a number of interesting consequences. 

First, we combine k~ and .1r in (18) to form the square 
of the effective number k~ff· Further, we use as the 
small expansion parameter the Fourier transform .Yc of 
the intensity operator with respect to the difference 
argument. As usual, we seek the solution in exponential 
form (l)!(rJi/Xr2)) = exp S(rlo r2), expanding the complex 
phaseS in a series in the small parameter, S =So+ S1 
+ S2 + .... The zeroth-approximation phase So is as­
sumed to equal So = ikeffZl - ikeffZ2, and is expressed 
in terms of the effective wave number. Substituting the 
sought solution in (18), we obtain a closed equation for 
the first-approximation phase S1 and a chain of equa­
tions for the phases of the higher approximations S2, 
These equations are of the form 

(R Q9 R)S1 = Yr, 
(R Q9 R)S2 = O(St2), •••• 

(25) 

(26) 

In the left side of these equations we introduce the 
operator R = ll. + 2ikeff&/oz. If we replace in it the 
effective wave number keff by the wave number of free 
space, we get the characteristic operator that appears 
when the non-averaged equation (1) is investigated by 
the method of smooth perturbations. O(Sf) in the right 
side of (26) denotes the aggregate of terms that depend 
on the first-approximation phase sl. 

In the first approximation, the field correlation func­
tion turns out to be 

(ljJ(r,)ljl(rz)> = (ljl(z,j)(ljl(zz)> expS,(rt, rz), (27) 

where the amplitude coefficient of refraction T should 
be set equal to unity in the expression for the average 
field. The differential equation (25) for the first­
approximation phase can be easily solved by represent­
ing the solution in the form of an integral. The integral 
is calculated approximately by the well known method, 
in which the effect of the reflected radiation is neglec­
ted, and the effect of the scattered radiation is calcula­
ted in the Fresnel approximation. As a result, the first­
approximation phase turns out to be 

S1 (r1,r2) = (4:rt)-2k0-2z 1 ~ d2a1_exp[iaj_(r1j__ rzj_)] (28) 
X oxp[-i(aj_212ko(z,--zz)]R'o(ko+aj_, ko; ko+aj_, ko), 

where for concreteness we put z1 ~ z2. By Ko we denote 
the Fourier transform of the specific intensity opera­
tor[16J that characterizes the scattering properties of 
the individual inhomogeneity and which coincides in this 
case with the Fourier transform of .;{(rl, ko; r2, ko) with 
respect to the difference of the first arguments r1- r2. 

Let us analyze the obtained expression (28). In the 
ladder approximation, when the Fourier transform of a 
specific intensity operator Ko coincides with the Fourier 
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transform of the correlation function of the effective 
potential, the first-approximation phase (28) goes over 
into the mean value of the bilinear combination 
.p 1(r1 )rp l(r2) of the complex phase .p l(r), obtained by 
applying the method of smooth perturbations to the non­
averaged wave equation (1). For a discrete medium in 
the Foldy approximation, when the Fourier transform of 
the specific intensity operator K0 is equal to the product 
of the density of the scatterers by the bilinear combina­
tion of the Fourier transform of the scattering operator 
of the isolated scatterer, the correlation function of the 
field (27), calculated with the aid of the complex phase 
(28), coincides with the result of the averaging of the 
bilinear combination ¢(r1) · 1J!(r2) of the field 1/l(r), ob­
tained by applying the method of Kalashnikov and 
Ryazanov[21 -' to the non-averaged equation (1). 

It is very important to consider the expression (28) 
from the point of view of the law of energy conserva­
tion. In the theory of multiple scattering of waves, the 
law of energy conservation is formulated in the form of 
an optical theorem l:22J , which establishes the connection 
between the imaginary part of the mass operator and 
the intensity operator. On the basis of the optical 
theorem, we obtain immediately from (27) and (28) that 
the mean square of the modulus of the field has a con­
stant quantity, (JI/Ji 2) = 1. 

Connected with the energy conservation law and with 
the optical theorem is another important property of 
the complex phase (2 8). In order to formulate this law, 
it is necessary to introduce the transverse spectrum 
(the Wigner function fw(z, p 1) of the field, defining it as 
the Fourier transform with respect to the difference of 
the transverse coordinates rr - d of the correlation 
function of the field (¢(r1)¢(r2)) in the plane z1 = z2 = z. 
With the aid of (27), (28), and the optical theorem it is 
easy to verify that the transverse spectrum satisfies 
the radiation -transport equation in the small-angle ap­
proximation [23 , 24J . 

Let us discuss the important question of the condi­
tions of applicability of the first approximation of the 
method of smooth perturbations to the simplified equa­
tion ( 18). To answer this question it is necessary to 
calculate the complex second-approximation phase 
S2(r1, r2). Such a calculation was carried out in the 
ladder approximation for coinciding observation points. 
The condition for the applicability of the first approxi­
mation of the method of smooth perturbations is the re­
quirement that the modulus of the complex phase of the 
second approximation be small compared with unity, 
IS2l « 1. As a result of the calculations, this condition 
reduces to the inequality 

z1/d<'f, (k0l2 /d)'i,(k0l)'lo. (29) 

In the right side of the inequality (29) there appear 
two dimensionless parameters, k 0 l 2/d and k 0 l. The first 
is equal to the ratio of a quantity on the order of the 
longitudinal correlation radius of the field to the extinc­
tion length. This parameter should be small, k 0 l 2/d 
<< 1, in view of the fact in calculating the integral for 
the first-approximation phase S1 we neglected the effect 
of the reflected radiation. The second parameter, to the 
contrary, is large, kol >> 1, since the fluctuations of the 
effective potential are assumed to be large-scale. In 
order for the right side of the inequality (29) be never-

the less of the order of or larger than unity, it is neces­
sary to impose the additional requirement 

kol2 / d '.;2; 1 / kol . (30) 

When (30) is satisfied, the permissible values of the 
distance v1 covered by the wave are comparable with the 
extinction length, or even exceed it. However, in this 
case very stringent limitations are imposed on the 
parameters of the problem. Thus, for example, the 
double inequalities 1/kol ;5 kol 2/d « 1 or 1/(k0 l) 4 ::; a2 

« 1/ (kol) 3 are obtained. 
It is of interest to compare the condition for the ap­

plicability of the method of smooth perturbations (29) 
with the condition of applicability (24) of the simplified 
equation for the correlation function of the field. Re­
writing the inequality (29) in the form (1/koZ)(zJd) 
« (Z/d) 112 and taking (15) into account, we conclude 
immediately that with respect to the distance covered 
by the wave the condition for the applicability of the 
simplified equation is much broader than the condition 
for the applicability of the method of smooth perturba­
tions. 

In conclusion, we turn once more to the simplified 
equations for the average field ( 12) and its correlation 
function ( 18). We have analyzed the conditions of appli­
cability of these equations to the case of large -scale 
fluctuations of the effective potential of the medium. It 
is easy to perform a similar analysis in the opposite 
limit of small-scale fluctuations, when k 0l « 1. In this 
case the condition of applicability of the simplified equa­
tion for the average field has as before the form of the 
inequality (15). The reason lies in the fact that for 
small-scale fluctuations the nonlocality radius of the 
mass operator is of the order of ZM ~ ko ! 2 , and the in­
homogeneity scale of the average amplitude (u(z)) is of 
the order of kold. To the contrary, the condition for the 
applicability of the simplified equation for the correla­
tion function of the field undergoes an appreciable 
change. It can be obtained again from the inequality 
(20), by substituting in it the correlation function of the 
field, corresponding this time to the small-scale flue­
tuations of the potential. On the basis of the Foldy model 
of isotropic pointlike scatterers, investigated in [15:, it 
is easy to conclude that in the case of interest to us the 
correlation radius of the field correlation function is of 
the order of the wavelength 2JT/ko at large optical depth 
z » d. It follows therefore that at a large optical depth 
the inequality (20) reduces simply to the requirement 
kol « 1, and is thus satisfied automatically. 

The author thanks V. M. Komissarov and V. M. 
Finkel'berg for discussions 'contributing to a clarifica­
tion of the number of problems. 
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