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A microscopic derivation is given for a set of equations describing the propagation of heat and the
motion of an elastic medium for pure crystals at low temperatures. Nonlinear effects in thermal

conductivity are discussed.
1. INTRODUCTION

IN very pure crystalline dielectrics at temperatures
well below the Debye temperature, the relaxation time
of the total quasimomentum of the phonon system is
shown to be much greater than the characteristic inter-
action time of the phonons with one another. Thus the
friction between the gas of excitations (phonons) and the
lattice is seen to be weak and one can speak of a state of
incomplete thermodynamic equilibrium, which is char-
acterized not only by a temperature and volume
(deformation tensor), but also by the total quasimomen-
tum (or drift velocity) of the excitations.

It is clear that in this case the equations of elasticity
theory should be altered. Such equations were simul-
taneously described in the work of Guyer and Krum-
hans1™} and in the work of Gurevich and the author.®
However, the equations given in-*% differ from one
another.

The basic difficulty arising in the phenomenological
derivation lies in the description of the equation for the
phonons in the accelerated (inhomogeneously deformed)
region of the crystal. The equations obtained intJ
and® differ at precisely this point. In this connection,
a microscopic derivation of these equations is carried
out in the present paper. In contrast with®’? | we have
not limited ourselves here to the linear approximation
and to the lowest order in the anharmonicity. However,
we have not taken dissipative terms into account. As
expected, the obtained set of equations is completely
analogous to the hydrodynamics of a superfluid. The
principal difference is that there is a shear modulus in
the crystal. In the linear approximation and with the
lowest anharmonic terms, the equations obtained there
are identical with the equations of?) and differ from the
equations of 2.

2. MICROSCOPIC EQUATIONS

We shall assume that the Hamiltonian density of the
crystal has the following form:

S‘l
H(r)= £ 4+ 9 Ga), (2.1)
where
_ 1 ds; A ds; \
Sin = (sin -&- sni +susw), S = g = ( Btl ) - (2.2)

*h
Here sj is the displacement from equilibrium, xj the
Lagrangian coordinate of the body, po the density of the

crystal at the equilibrium position, and z,b(Eik) an arbi-
trary function of the deformation tensor. We shall as-
sume here that the perturbations are long-wave phonons
interacting with one another and we shall neglect trans-
port processes completely.

The Lagrangian density has the form

A= PoS; — (). (2.3)

Following the usual procedure of quantum field theory,
we easily obtain the equations of motion and the conser-
vation laws corresponding to (2.3):

. 4 H\p
PoSi = aik 03111 (2.4)
5 6f'ik . A Po o
T+ 9z, = 0, Ti=— T[Sk. Skil,,
5o s (0o A
T1h—5m<»2 1p>+suaSI : (2.5)
. B 17, 0y
fl+d1vq—0 ql‘=_3[5‘k, (—9_8;]+. (2-6)
Here (A, B). = AB + BA.
In addition, we average the Egs. (2.4) —(2.6) over a

time that is small in comparison with the times of
change in the macroscopic quantities, but large in com-
parison with the microscopic relaxation times of the
phonons. We introduce the displacement u; and velocity
4; averaged in such fashion:

<Si> = uy,

S = uy,

si = ui + Qi
$i = i + Qs

Q> =0
Q) =0. (2.7)
Here the operators Qj describe the thermal oscillations
superimposed on the microscopic displacements uj.
Like the sj, they satisfy the commutation rule

00[Q:(x), Qn(r)] = —ihd(r — ') bir. (2.8)

We shall average by means of the Gibbs density ma-
trix. By the mean at the point r, we shall understand
the mean over all states of an (imaginary) homogene -
ously deformed crystal, where the deformation ujy is
numerically equal to ulk(r) while the temperature is
homogeneous over all points and is equal to T(r). In
such a method of averaging, we lose the higher order
derivatives, i.e., the dissipation terms.

Thus the problem is reduced to the expression of the
mean values of the operators 8y/8sj), Tl, le, H and q
in terms of the thermodynamic functions of a homogene-
ously deformed crystal. In order to obtain the averaged
Hamiltonian, it suffices to substitute (2.7) in (2.1) and
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integrate over the volume, assuming uji to be homogene-
ous. Here we can expand Qj in the normal coordinates,
omitting in this expansion the terms with a wave vector
equal to zero (taken into account by the presence of uj).
Then the conditions (Q;) =0, (Q;) =0 are automatic-
ally satisfied. Since there are no terms in this Hamil-
tonian with the product u; - Q;, which vanishes on inte-
gration, it is easy to obtain the dependence of all quanti-
ties on uj:

pou:

H)=——+E,

7, =(T)= —Polirlr; + 7,

Pout (0)

T ={Tin) = ban

+ T

@i = (@) = — i+ ¢, (2.9)
where 7 = (8y/dsy;) does not depend on u;. Equations
(2.9) are actually the consequence of the principle of
Galilean relativity.

3. THE THERMODYNAMICS OF A HOMOGENEOUS
DEFORMED CRYSTAL

In this section, we introduce the thermodynamic func-
tions of a homogeneously deformed crystal with a drift
of excitations, and obtain some identities which allow
us to carry out averaging of the equation.

It is easy to establish the fact that the operator

S i(o) dr = -——-po S [Q'h, %];11‘

commutes with the averaged Hamiltonian. For this pur-
pose, it suffices to expand Qy in the normal coordinates
of the harmonic approximation and establish the fact
that (3.1) is

(3.1)

1
o S i (it + bibics*],
Kj
where k is the wave vector, j the index of the phonon
branch, and bf(j and bkj are the creation and annihilation

operators. Since we have neglected Umklapp processes
and have considered the macroscopic deformations to
be homogeneous, the total quasi-momentum is conserved
(with account of the anharmonicity).

It will be more convenient for us, however, to trans-
form in (3.1) from the Lagrangian coordinate xj to the
Eulerian a; by the formula

a; = z; + u;i(zn, t). (3.2)
Then
Sﬁ‘-o’dr _ SPhdr 6ah- _ f‘ﬁh 6ah
1 . 00
Pk'—'—'2_90 [Ql, -('E:]+' (3'3)

The operator *'ﬁk is an integral of the motion and we
shall call it the quasimomentum operator, while the
operator Py is the quasimomentum density.

We shall carry out the averaging with the matrix
density of the form exp [(F — #’)/T], where F is the free
energy and

o = (H—PW)ar (3.4)
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where W is the drift velocity of the excitations. We as-
sume that our crystal has unit volume before the
deformation (e.g., the integration in (3.4) is carried out

over the unit volume). Then
(#') = E' =E — PW, (3.5

where P = (P) (in this section, we assume i; = 0 for

brevity). Making use of the identity
COH/aW) ) = (OE'/0W)s ., (3.6)
where S is the entropy, we get
(OE’/oW)s, v, = —P. (3.7)
Then
dE’ = TdS + onduy, — PdW, (3.8)
dE = TdS + oudu, + WdP, (3.9)

where all the additive quantities refer to unit volume of
the undeformed crystal.
We now use the identity

Oik = (OL"/0Uir)s, w = (0" /0Usr)w). (3.10)
We write 4’ in the form
, /00022 N 1 . 00
H = S(\—2—-+\P 500 [Qh, —Z‘]+W 7, )dr (3.11)

where the integration is carried out over unit volume,
as before. In the differentiation of 7’ with respect to
ujk, we take into account the equality

9 0z, ) 0z, 0z,
duin (?92,; = T Ga; day’ (3.12)

which can be obtained by differentiating the identity

0x; dan,

6(1,,, 011

ile
As a result, we get

oz

Oih = T +Pth?i, (3.13)

where
qtin = 0P / duin).

We now introduce thermodynamic functions referred
to unit volume of the deformed crystal. As is well
known, the density of the deformed crystal p is related
to po by the equation

pg = Po,

where J = ]aai/axkl is the Jacobian of the transforma-
tion. Denoting the new thermodynamic functions by
capital letters with tildes, we get

E=E|Y B =E|Y3=8/9P=pr/y. (3.14)
We substitute (3.14) in (3.8). Then

e TAS—Paw (S _F 0T\,

AE’ = Td3 — PaW }-(g ﬂa(aui/azk))du,,,, (3.15)

where F=E-TS-P - W.

We shall write the quantity #’ for a homogeneous
deformed crystal occupying unit volume. We note it by
J’. This quantity is given by (3.4) where, however, the
integral is carried out over a volume which depends on
the deformation tensor ujy. Therefore, it is convenient
to transform to integration over da. Then
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3}/= S{Pon J-‘P—i———po[.Qt, 601] W;Ji;—.

The integration is now carried out over the unit vol-
ume. We further use the identity

(3.16)

O oun)yw = (OF |9uy) y 5. (3.17)

In the differentiation of (3.16), it is necessary to ex-
press the derivatives 8Qi/8xk in the argument of y in
terms of aQi/Bam and to consider the latter to be con-
stant. It is further necessary to take it into account that
the commutation relations (2.8) contain 6(r — r’)

= ¥6(a —a’), where J depends on ujk. Therefore, it is
useful to transform to a new momentum Zj = pQj

= poQi/ Y, which satisfies the commutation relations

I.Zi(a), Qr (ﬂ’)] = —ikdird (a—a’).

The value of Z; can be assumed to be constant in the
differentiation. As a result, we get the following equa-
tion:

oy
Fg(_azi/azk)

/[ poQ2 N0 t oy aby,
= <(‘2— w)m)—g—+ P 0aia7’MmZ’ (3.18)

Oip —

where
1 /0b b,
@phim == 5 (?9_? S + *"—I[ 5mh> ,
ﬂl
by = ap+ Qp = sp + ). (3.19)

4. THE MACROSCOPIC EQUATIONS
Averaging Eq. (2.4) by means of Eq. (3.13), we get
aGih_ ) a 0:7

polii == oz, ozy (P:W)) W (4.1)
We use here the well-known identities™]
0Ih 1
Ga, Y 0(6a{/01h oz (3 3d:/ﬂrk) =0. (4.2

We now proceed to Eq. (2.5). We write T(f{) in the

form
1 (0)

71k = —Mir __ Lin,
PoQ _ db, op
lin=((—5——"¥) Youn + 3z, 3y (4.3)
or
Q2 dby dyp
(s By s

Multiplying (3.18) by aal/ax1 and comparing the result
with (4.4), we obtain

X Foum. (4.5)
al‘i

tin = on

where F=FJ.
Taking (2.9), (3.3), (4.3), and (4.5) into account, we
finally obtain the equation

b da; » du; s aT W,

— ; e——— —_— .

‘azh+ ‘azk'*‘ dzy Py oz,
8y  da

a
+Ezmmmgagaga;=a (4.6)

For the derivation of the last remaining equation, we
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must find the mean value of the operator q;. However,
obtain it by a somewhat different method. Finding the
derivative of E from the thermodynamic identity (3.9)
and substituting it in the averaged Eq. (2.6), we require
that the derivative of the entropy density S with respect
to the time be equal to the divergence of the vector. We
then get

0= TSWh —t + W, (4.7)

The equation for the entropy has the following form here:
. 7} a.’E,'
s+a_zi(swhgg)=o. (4.8)

Equations (4.1), (4.6), (4.8) are also the desired equa-
tions of the quantum theory of elasticity. If the drift
velocity W is small in comparison with the sound veloc -
ity c, the relation between P and W is linear:

P; = njxWy- In the linear approximation, the equations

1
take the form

poil; = 80w [ dzn, P+ SVT =0, S+ SdivW =0,
which are entirely identical with the result of %,

We shall now show how the variables introduced by
us are connected with the quantities v, and vg which are
required in the hydrodynamics of a superfluid. It is evi-
dent that pu; is the density of the total momentum. The
velocity of the excitations in the laboratory (Eulerian)
set of coordinates is

Vi =1u-+4W. (4.9

Finally, vg should be defined so that the total momentum
density in the set of coordinates in which vg = 0 is iden-
tical with the excitation momentum density

pu = pv, +P. (4.10)

Equations (4.9), (4.10), together with the condition
P; = nijxkWx, allow us to express u and P in terms of
vp and vg. As a result, we get

pli = PnVn + PsVs (411)
where the tensors p, and pg are connected with n by the
relations

=<1+£—)ﬂn, ps=p<1+;"—\_i,

/
Pnik + Psin = POik, (4.12)

while the tensor 7 is expressed in terms of py and pg
in the following way:

n= Pps‘lpn- (4-13)

The dispersion equation for second sound in a solid
has the form (see™®)

2 — T82 -1
0= —CV(T] ) irndiqn,
where q is the wave vector. With account of (4.13), it is
entirely analogous to the corresponding equation of two-
fluid thermodynamics. In the lowest order of the aniso-
tropy, 7 coincides with p, and the velocity of second
sound is temperature independent. However, a depen-
dence on T appears in the higher orders.
As a conclusion to this section, we write out the ob-
tained formulas in Eulerian coordinates. The system
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has the following form: *’
()Hu_ 1 6al

7
-7 (pai) +— =0, = pttiy — oin—r—— + PiW,,
£y (pu:) + Ba; 0 II; Uil — Cir 5 aZh_{_p f
do divor a5
W"_ ivpu=0, -5+d1v5‘v4=0,
aP; a OUnr aT
—dT—i—(,,—ak(pwnh)-f‘ph %a; +SaT.i—_0, (4.14)

There should be a continuous heat flow on the surface
of the crystal, while the tangential component of vy
should be equal to the tangential component of u.

A similar derivation can be made for a liquid. Here
the result is obtained that oj; = —p8J/6ujk, where p is
the pressure. If we substitute this expression in (4.14)
and impose the condition curl vg = 0, this system goes
over into the ordinary equations of two-fluid hydro-
dynamics.

5. NONLINEAR THERMAL CONDUCTIVITY

As an application of the obtained nonlinear system
of equations, we consider the thermal conductivity of
thin rods in the absence of transfer processes. We
shall assume that the drift velocity W is small in com-
parison with the sound velocity c, and that the resulting
lattice deformations are also small (&u;/6x), << 1). Then
the phonon fluid can be regarded as ‘‘incompressible,’’
and Eqs. (4.6), (4.8), which describe the stationary
propagation of heat, will have the following form:

oF oW W,
0—.21- + Wi _0?, Y””’"azkax -
divW = 0. (5.1)

Here y is the viscosity tensor.™? Let us consider the

consequences of the presence of a nonlinear term.
Equations (5.1) are similar to the ordinary equations of
a viscous incompressible fluid. Here the Reynolds
number R is defined in the following way:

(5.2)

where d is a characteristic dimension of the system. In

the phonon approximation,
_wa
T

R = Wnd]y,

(5.3)

where [ is the free path length of the phonons. It is then

DIt can be shown that all the thermodynamic functions depend on
Ujk and Wy 0x;/dag. Starting out from this, we can see that the tensor
I1;; is symmetric. The tensor oj in nonlinear elasticity theory should
be symmetric.
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seen that R can be large. For laminar flow,’

dsd

If the direction of the axis of the long rod (the x axis)
is perpendicular to the plane of symmetry of the crys-
tal, then the solution of the set (5.1) contains only a
single non-zero component of the velocity, Wx(y, z),
which is determined by a linear equation of second
order, and the nonlinear term vanishes. The investiga-
tion of this solution for stability is very complex. It is
natural, however, to assume that the anisotropy changes
the result of such an investigation slightly. Then, using
the experimental data of hydrodynamics, we can con-
firm that the disruption of laminar flow for a circular
rod takes place at R ~ 10°. The equation for cubic
crystals, averaged over the pulsations, has the same
structure as in hydrodynamics. It is therefore natural
to expect that in developed turbulence, 5) the heat flow
will be proportional to (8T/#x)*/2n(8T/6x). However,
such values of R are probably unattainable at the present
time because of the quality of the crystals. Therefore,
there is more interest in the case in which the axis of
the rod is directed arbitrarily relative to the axis of the
crystal. In this case, the components Wy and W, are
different from zero. Here the nonlinear terms begin to
play a role, as only the condition R < 1 is violated.
However, detailed consideration of this question lies
beyond the framework of the present paper.

In conclusion, the author takes the opportunity to ex-
press his gratitude to L. I. Pitaevskil for useful dis-
cussions.
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