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The probability has been measured for rr- capture by hydrogen in ZmHn hydrides and compounds of the 
ZkZmHn type. A relative method is employed which is based on comparison of the rr 0-meson yield from 
the material studied and from LiH. It is shown that the results can be satisfactorily described by a 
model assuming large mesic molecules. The initial capture follows a Z law. The probability for rr­
capture in ZmHn hydrides changes markedly on transition of the atom Z between periods in the pe­
riodic table, and also depends on the type of chemical bond. 

1. INTRODUCTION 

NucLEAR capture of stopped negative mesons in 
condensed materials is determined to a considerable 
extent by the mesic-atom (mesic-molecule) processes 
preceding it. The study of these processes, in addition 
to circumstantial interest, has also a large practical 
value, since the elementary reactions of decay and in­
teraction of negative particles (mesons, antiprotons, 
hyperons) usually must be studied by stopping these 
particles in material with a complex chemical struc­
ture. The interpretation of these experiments requires 
a knowledge of the probabilities of capture of these par­
ticles by the nuclei of the atoms entering into the com­
position of the material. 

The probability of atomic capture of f.J.- mesons 
which have stopped in matter turns out in most cases 
to be roughly proportional to the nuclear charge z, in 
agreement with the Z law of Fermi and TellerYl All 
observed deviationsl2-4J from this law occur in the di­
rection of a weaker Z dependence. 

A different situation exists in the stopping of rr- me­
sons in matter. Studies of the absorption of rr- in LiF 
have shown that the probability of capture of a rr- meson 
by lithium in this compound is substantially less than 
follows from the Z law_l5l In studying the absorption 
of rr- mesons in hydrogenous materials it was observed 
that the probability of capture of rr- mesons by hydrogen 
is strongly suppressed. l6 J To explain this effect the 
model of rr- -meson interception l6 J has been proposed 
specifically for hydrogenous materials. However, sub­
sequent quantitative studiesl7 - 9 J have shown that the 
sharp suppression of rr- capture by chemically bound 
hydrogen nuclei is due to another mechanism, which is 
described by the "large-mesic-molecule" model.l10• llJ 

According to this model the slowed down rr- meson 
transfers from the continuous spectrum to the discrete 
spectrum into levels common to the whole molecule. 
The probabilities of capture of a rr- meson by a proton 
and a nucleus Z are determined by the mesic-molecule 
stage of the process, when the rr- meson transfers from 
the common mesic-molecule levels to the separated 
levels of the prr- and zrr- mesic atoms. 

The Z dependence of the probability W for the cap-
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ture of rr- mesons by nuclei of the hydrogen entering 
into the composition of binary chemical compounds of 
the type ZmHn (LiH, CH2, et al.) has been studied in 
the region Z ~ BY• 8 J Here it was found that the re­
duced probability P, defined as 

m 
P=-W, 

n 
(1) 

follows a law 

(2) 

which subsequently found explanation in terms of the 
"large-mesic-molecule" model. The purpose of the 
present investigation (see l12 J ), 1> which was performed 
at the synchrocyclotron of the JINR Laboratory for Nu­
clear Problems, was to determine the dependence of the 
probability P on Z both for Z < 8 and Z > 8. 

2. MEASUREMENTS 

The experimental arrangement and procedure have 
been described earlier.l7 - 9 ' 13 J The rr- mesons were 
stopped in a target of the hydrogenous material under 
investigation, placed between two Cerenkov total­
absorption spectrometers. The spectrometers were 
used to record the two y rays emitted in capture of rr­
mesons by hydrogen nuclei: 

)t- + p--+ n° + n, n°--+ 2y, (3) 

The main source of background was the process of rr­
charge exchange in flight in the complex nuclei entering 
into the composition of the target material (charge ex­
change of stopped rr- mesons in complex nuclei is sup­
pressed by a factor of more than 104 l14' 15 l). The cor­
rection associated with subtraction of this background 
amounted to 2% for LiH and increased up to 25% with 
increasing Z. The error in determination of this cor­
rection was limited by the accuracy of the measure­
ments in the high-Z region. 

Measurements of W were made for a series of hy­
drides ZmHn (including those previously studied by 
usl7 ' 8 l) and more complex hydrogenous materials of the 

1l See also Z. V, Krumstein, Thesis, JINR, 1965, 
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Table I 

. I I Matenal j z njm I fro;;Eq.l 
(7) 

I 
LiH 3 1 35±4 1.26±0.!4 1.4 1.26±0.14 
BIOH!t 5 1,4 12.6±!.5 1.44•±0.17 1.3 !.03±0.!2 
CH 6 1 5.1:!:0,6 1,28±0.15 L2 !.28±0.15 
N,H, 7 2 5.9±0.7 !.30±0.!5 !.! 0.65±0.01 
H,O 8 2 3.5±0.6 !.!2±0.20 0.9 0.56±0.10 
NaH 11 1 2.4±0.4 3.6±0.6 
CaH2 20 2 2,5±0,3 !1,0± 1.~ 

type ZkZmHn (see Table III below). The targets had 
roughly the same stopping power, equivalent to 3 g/cm2 

of carbon. The chemically active hydrides B10H14 , N2H4 , 

NaH, and CaH2 were enclosed in hermetically sealed 
aluminum containers with a wall thickness seen by the 
beam of about 0.5 g/cm2 • Some of the materials studied 
contained impurities: B10H14 (impurity of other boron 
hydrides 2.5%), NaH (impurity of NaOH and NaCO 5910 ) 

• 2 3 ' 
CaH2 (impurity of CaO and CaC03 10%), N2H4 (impurities 
0.7%, including 0.36% water), KBH4 (impurity of KOH 
and NaOH 7%), and NaBH4 (impurity of NaB02 and 
NaBH(COH3h 3%). The remaining materials were desig­
nated as "chemically pure" or "analytically pure." 

The probabilities W were determined by a relative 
method-by comparison of the counting rate of y-ray 
pairs emitted from the target under study and from a 
target of LiH. Small corrections were made to the 
counting rate ratios obtained, which took into account 
the different stopping powers and the shapes of the tar­
gets. In determining the absolute values of the proba­
bilities W the probability ratios were normalized to 
the quantity W LiH• which was taken equal to the value 
(35 ± 4) x 10-3 which is the average of several investi­
gators' results.ls, 16 • 17 J 

3. EXPERIMENTAL RESULTS 

Hydrides. Probabilities W were determined for hy­
drides of the elements Li, B, C, N, 0, Na, and Ca. 
The results obtained are listed in Table I. It can be 
seen from Fig. 1 that for Z ~ 8 the data obtained are 
well described by a dependence similar to equation (2). 
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FIG. I. Reduced probability 
P (formula (5)) as a function of 
Z. L is the number of the period 
in the periodic table. The solid 
and dashed straight lines cor­
respond to equation ( 4) with 
aL = 1.28 and aL = I. The solid 
points correspond to simple 
hydrides, and the hollow points 
to complex compounds. 

Table II 

CH 1.00 5,1±0.6 0.77 ±0.08 L28±0.15 1.28±0.1;) 
c.n, 1.00 3,.5±0,4 0,5.1±0.08 1.00±0,12 Ul0±0.12 
C1H.{ !.!4 5.1±0.6 O,fi.'±0.07 !.!7±0,13 1.03±0.!2 
en, 2,00 13,2± !.5 I >,90±0.22 ~9.5±0.!1 
C1H1c 2.29 14.6±1,7 0.98c'c0.08 ! .90±0.22. 0,83±0.09 

However, in the region of higher values of z relation 
(2) is violated. In the hydrides NaH and CaH2 , 7T- me­
sons are captured by hydrogen significantly more ef­
ficiently than follows from formula (2). Possible causes 
of this violation are discussed below. 

Hydrocarbons. The experimental values of the prob­
ability W for a series of hydrocarbons are listed in 
Table II. These results confirm the conclusion previ­
ously drawn by usl7 J that the probability of capture of 
1T- mesons by bound hydrogen is nonadditive. The ratio 
of the values of P for CH and CH2 was found to be 
0. 77 ± 0.08. l7 J This result has been confirmed in recent 
experiments in which this ratio was found to be 0. 78 
± 0.09l16 J and 0.61 ± 0.08.l17 l 

Complex hydrogenous compounds. The materials of 
type ZkZmHn studied by us can be divided into two 
groups according to the nature of the bonds of hydrogen 
atoms with the atoms Z 1 and Z: materials in whose 
molecules the bonds of hydrogen atoms with the atoms 
Z 1 and Z are the same (Table III) and materials in 

Material 

CI!,OH 
C2li5GII 
CsfleO 
Csll 7001! 

Table III 

I W·IO' 

. Theory, Eq. (9), 
Expenment r aL = 1.28 ± 0.15 

7 5±0.9 
8.1±0.9 
6.6±0.8 
4.2±0.5 

7.0±0.8 
7.7±0,9 
6. 7±0.8 
4.9±0,6 

which they are different (Table IV). In compounds of 
the first group (Table III) the hydrogen is bound with 
carbon and oxygen by a covalent bond. In compounds of 
the second group (Table IV) the hydrogen is bound only 
with the light atoms of the molecule (boron and nitro­
gen), this bond being covalent, and the substructures 
(BH4)- and (NH4)+ are bound with the heavy atoms by a 
bond of the ionic type, i.e., without common elec­
trons. l18 J 

4. DISCUSSION OF RESULTS 

In the large-mesic-molecule model the probability 
W for capture of a 7T- meson by hydrogen in hydrides 

Table IV 

I IV Z'(ZH,)iWNa(Bll,) I 
Material W·103 I Theory, aL 

Experiment Eq. (IO) 

Na(BH 1) 8.4±1,0 I I 1.05:± I ,2 
K(BH,) 5,9± 1.0 0,70±0.09 0,72±0,07 1.03± 1,2 
(l\'H4)F 4,6±0.7 0.55±0.07 0,51 ±0.05 !,10±0.16 
(NIT 4)Cl 3,2±0.6 0,3R±0.06 0.36±0,o.l 1,10±0,20 
JNII4)Br 1.6±0,2 0.19±0,02 0.22±0,02 0,90±0.13 
(NH4)J 1.2±0.2 0.14±0,02 0,16±0,02 0,94±0,16 
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is given by 

W=aL~-Z-2. 
mZ+n 

Here the reduced probability P is defined as 

( m 1) 
P = \-;;: + z W = aLZ-3• 

The derivation of Eq. (4) is based on two assump­
tions. l19 J 

(4) 

(5) 

1. The probability of meson capture into different 
levels of the system Zmrr- Hn is proportional to the 
density of the electron cloud which existed in the vicin­
ity of these levels before the capture of the meson. 
This statement is equivalent to assuming the validity of 
the Z law in the stage of capture into the discrete spec­
trum, which is reflected in the structure of the factor 
n/(mZ + n) in (4). (Note that a comparatively small 
fraction of the stopped mesons ( ""'n/mZ) are captured 
into the common levels. The main part of the mesons 
are captured immediately into levels of the heavy 
atom Z.) 

2. A hydrogen nucleus can capture only those me­
sons which initially fall into a common mesic-molecule 
level of the molecule. The probability of this process 
is proportional to Z -2 and is determined by radiative 
transitions from the common levels of the system 
Zmrr-Hn to the separated levels of the mesic atoms 
prr- and zrr-. 

The coefficient aL reflects possible deviations from 
the Z law, change in the conditions for rr- capture as 
the electron shells of the atoms build up, and features 
of the chemical structure of the molecule. The index L 
indicates the period of the periodic table to which the 
atom Z belongs. 

The probability Wz H was defined by us so that 
m 

W H2 = 1 for reaction (3) in pure hydrogen. In this case 

Z = 1, m = n = 1 and the coefficient a I = 2. If the in­
fluence of the effects mentioned above on the quantity 
aL for the second period is small, then ai ""'an/2 ""'1. 
Actually, as can be seen from Table I, for the elements 
of the second period of the periodic table (Z ~ 8) the co­
efficient an does not depart significantly from unity. 

However, in transition to the third and fourth periods 
(Na and Ca) the coefficient aL changes in jumps: 
am= 3.6 ± 0.6, aiv = 11.0 ± 1.4, i.e., by roughly a fac­
tor of three. 2) 

We will estimate the values of aL for hydrogen com­
pounds with elements of the second period, taking into 
account the nature of the chemical bond in these com­
pounds. These values depend on the density p of the 
distribution of the valence electron between the atoms 
H and z: 

p = (1- u) Pc +up i· (6) 

Here Pc and Pi are the electron densities produced by 
covalent and ionic bonds, respectively; a is the degree 
of ionicity of the bond, l18 l which is equal to the proba-

2)0ne of the possible causes of this behavior of aL may be associated 
with the change of the conditions for 1r- capture by the molecule in 
the region of the valence electrons, which may depend, for example, on 
the number of mesic-molecule levels NL = 2L2 (Nn:NnrNiv = I :2.2:4). 

bility of finding both electrons in that one of the atoms 
Z or H which is more electronegative. 

The fraction of the electron density for the two elec­
trons of a bond which is concentrated near the atom H 
and between the H and Z nuclei is equal to the coeffi­
cient aL in equation (4): 

( 82 ) 
aL = 2u+(1- <J) \1 +u-;z- , (7) 

where s is the overlap coefficient of the atomic wave 
functions. For almost all compounds s 2/(1 + s 2) ""'0.3, 
i.e., ~0.15 of the electron density from each electron 
of the bond is contained in the region of overlap. l18 l The 
degree of ionicity a can be calculated with the aid of 
the series of electronegative elements. l18 l Here, if the 
electronegativity of hydrogen is less than that of the 
atom Z (as in the water molecule H20), then the first 
term in formula (7) must be omitted. The results of 
calculating aL by formula (7) are listed in Tables I 
and II. As a whole they agree with the experimental 
values. 

The limiting hydrocarbons CH2 and C7H16 are ex­
ceptions. One of the causes of these deviations in the 
carbon series may be the increase (by 1. 5 times) of the 
contribution of the p state to the hybrid orbital in the 
transition from unsaturated to saturated compounds. l18 J 

Another possibility lies in the following: in derivation 
of (4) it was assumed that the mesic-molecule orbital 
from which a transition is possible to a level of the 
mesic atom prr- only couples the atoms H and z. If, 
however, we assume that the mesic-molecule orbital 
belongs to all atoms of the molecule, then the factor 
Z -2 in (4) must be replaced by n/(mZ 2 + n) ""'n/mZ2. 
Then (4) takes the form 

Wz H = bL __ n ___ n_"_· 
m '' mZ+n mZ2 +n 

As can be seen from Tables I and II, the coefficient 

(8) 

bL ""'aLm/n in the case of hydrocarbons is roughly 
equal to unity and depends somewhat more weakly than 
aL on the form of the organic compound, but varies no­
ticeably within the second period (except for decabor­
ane, whose properties are close to organic). In the case 
of the organic compounds the dependence (8) satisfac­
torily describes the experimental results (Table II). 
Analysis of Tables I and II shows that the first hypoth­
esis, which leads to (4), is preferable, and subsequently 
we will use only this hypothesis. 

The dependence of the reduced probability P (for­
mula (5)) on Z is shown in Fig. 1. The solid straight 
line corresponds to the value an= 1.28, which was ob­
tained by averaging the coefficient aL over the second 
period (see Table I). The dashed line corresponds to 
the value a L = 1 and passes through the point P = 1 
for hydrogen. 

For complex compounds of the form ZkZ mHn with 
a covalent bond, equation (4) takes the forml 19 l 

W = aL'v' (Z')-2 + aL vZ-2 

kZ'+mZ+n 
v'+v=n (9) 

( v' and v are the number of bonds of the nuclei Z and 
Z' with hydrogen). As follows from Table III, the re­
sults of calculations on the basis of this formula agree 
satisfactorily with the experimental data. 
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FIG. 2. Comparison of the measured probabilities W for compounds 

(NH4 )Z' and Z '(BH4 ) with equation (I 0). The straight line is the func­
tion 20/[Z '+ (Z + 4)], which corresponds to equation (10), normalized 
to WNa(BH4 )' The ammonia salts are designated by hollow circles. 

In compounds of the form Z 1 (ZH4) (Table IV), the 
atom Z 1 is bound with the radical (ZH4)- by an ionic 
bond [181 and does not participate in the interception 
process, i.e., al, = 0. It affects only the probability of 
the initial capture. In this case formula (9) takes the 
form (k = m = 1, n = 4) 

IV= 4aLZ-2 • 

Z'+(Z+4) 
(10) 

It follows from this formula that the quantity 1/W 
should depend linearly on Z'. The results of the ex­
periments (Fig. 2) confirm this conclusion. This means 
that in the initial capture the Z law is actually sa tis­
fied, and indicates the legitimacy of the general ap­
proach taken by us. 

5. CONCLUSIONS 

The analysis carried out above, on the basis of the 
large-mesic-molecule model, of the experimental data 
obtained in the present work permits us to draw the fol­
lowing conclusions. 

1. The large-mesic -molecule model satisfactorily 
describes the experimental data obtained. 

2. The probability of capture of ~- mesons by hydro­
gen in hydrides ZH changes markedly in transition be­
tween periods of the periodic table. 

3. The probability of capture of ~- mesons by hydro­
gen in hydrogenous materials depends substantially on 
the type of chemical bond. This opens the possibility of 
using reaction (1) not only to distinguish free and bound 
hydrogen [201 but also for study of the nature of chemical 
bonds in hydrogenous materials. 

4. The initial capture of ~- mesons follows a Z law. 
In conclusion we take this occasion to thank S. S. 

Gershte'in for helpful discussions. 
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