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A hydrodynamic mechanism of the thermal conductivity of dielectrics is considered under conditions 
when the scattering of the phonons by the boundaries of the sample is close to specular. For an ar
bitrary scattering law, the boundary condition is obtained for the velocity of ordered motion of the 
phonons. The thermal conductivity of a dielectric plate is calculated by way of an application. 

AT sufficiently low temperatures, when phonon
phonon collisions accompanied by Umklapp processes 
are much rarer than normal collisions, the phonons in 
pure dielectrics behave like an ordinary gas. The 
thermal conductivity of samples of limited dimensions 
has under such conditions the character of a Poiseuille 
flow[l-4]. 

As already indicatedC1•2J, the problem reduces to a 
solution of a hydrodynamic equation of the Navier
Stokes type for the velocity of the ordered motion of 
the phonon gas u ( r), with corresponding boundary 
conditions. It was assumed here that u = 0 on the 
sample boundary, corresponding to diffuse scattering 
of the phonons. However, with decreasing temperature, 
the average phonon wavelength .\T becomes inevitably 
larger than the characteristic dimension of the rough
ness of the sample surface (.\T Rj hs/T, s-speed of 
sound). It is clear that in this case the scattering of 
the phonons by the boundary will be close to specular. 
We obtain below a corresponding boundary condition 
and consider by way of an application the thermal con
ductivity of a plate. 

We denote by zN and zV respectively the mean free 
paths relative to normal collisions and collisions with 
ioss of quasi-momentum, and by d the characteristic 
transverse dimension of the sample. The hydrody
namic situation arises under the condition that 

ZN ~a.zv. 

The phonons are characterized in this case by the 
drift distribution function 

fo(e- up) ~ /o(e) - upo/o I oe, 

( 1) 

(2) 

and the velocity of the ordered motion u ( r) satisfies 
the equation 

yVT=vflu-uf;;V. (3) 

Here E( p) is the phonon energy, f0 ( E)= ( EE/T - 1)-\ 
Y Rj s 2/T, the kinematic viscosity is 11 Rj szN, and TV 
= l V / s. For simplicity, the phonon dispersion law is 
assumed isotropic: E = sp. 

The boundary condition for u ( r) can be obtained by 
starting from the condition of mechanical equilibrium 
of a thin layer of gas adjacent to the surface of the 
sample. Let the layer thickness L satisfy the inequali
ties zN « L « d. The force exerted by the boundary 
on the layer is equal to the momentum absorbed by the 

wall per unit time. Acting from the opposite side, 
where the hydrodynamic treatment is valid, is the 
friction force. We choose the z axis perpendicular to 
the surface of the sample and the x axis along the 
temperature gradient. The equilibrium condition 
yields 

(4) 

1 s~_, ~ I p· I J·} +---; I"PPxSz J dp Rp,f(p, r} = 0. 
h ss<O sz'>O r=ro 

Here p = -h- 3 J dp Pif&( E), ftS( E) = 8fo/aE, ro-coordi
nates of the points of the surface, R~~-probability of 
transition from the state with momentum p 1 to a state 
with momentum p as a result of scattering from the 
boundary. 

The phonon distribution function f ( p, r) contained 
in (4) cannot be obtained for arbitrary ~~. inasmuch 
as the kinetic equation cannot be solved near the 
boundary. The problem simplifies in the case of 
scattering that is close to specular. In the case of 
pure specular scattering of the phonons by the sample 
boundary, in the general case of an arbitrary disper
sion law, a change takes place only in the momentum 
component that is normal to the wall (the longitudinal 
component of the momentum and the energy are con
served, cf.C5J). Therefore, in purely specular scatter
ing, the kinetic equation will have the drift solution (2) 
up to the very boundary. From physical considerations 
it is clear that in nearly specular scattering the distri
bution function f ( p, r) will differ little from the drift 
solution. Substituting (2) in (4) we obtain the following 
boundary condition: 

where 
1-P= [ S dppb,/o1 (e) 

Sz>O 

+ S dppx·••h: ~ dp1R:px'/o1 (e1
) ][ s S dppx2/ 0 1 (e) r (5) 

sz<O sz'>O 

has the meaning of the probability of diffuse scattering 
upon one collision with the wall11 • 

We present by way of an example the result of the 

l)Aswill be shown below, the boundary condition (5), which was 
obtained for the case of almost specular reflection (l- P << 1), is 
actually valid for any character of the scattering. 
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solution of Eq. (3) with boundary condition (5) for a 
plate. If we represent the thermal conductivity coef
ficient K in the usual form: 

X = '/sCDeff s, ( 6) 

where C is the specific heat, then 

~·«·= lv{f-___ sh~----} 
v ch v + 2v2a-1 sh v 

d (1-P)d 
a=---·, 

lN 

Here d-thickness of the plate. Let us consider the 
following possible limiting cases: 

a) when a~ 1 ~ v2 

b) when 1 ~a~v2 
feff ~ d/2(1-P); 

c) when v2 ~a or v~1 
l•ff ~ lV, 

(7) 

(8) 

(9) 

(10) 
The results can be readily explained by intuitive 

considerations. Since zN « d, the normal collision 
will cause the phonon to move from the wall to the wall 
like a Brownian particle. From the formulas for 
Brownian motion it follows that in this case the phonon 
covers a path with a total length on the order of d2/lN. 
It is also clear that it collides with the wall on the av-· 
erage d/zN times before it moves away from the wall 
a distance comparable with d, and thus, a yields the 
number of diffuse collisions during that time. On the 
other hand, reff = zeff; s is the free path time relatiVE! 
to collisions with loss of ~uasi-momentum (in the 
x-axis direction), and .zef is the length of the corre
sponding trajectory. It is clear from the foregoing th~Lt 
if we disregard exchange collisions with loss of quasi·
momentum, then zeff ~ d2/lN when a» 1 and teff 
~ d2/ zNa ~ d/( 1 - P) when a « 1 (see formulas (8) 
and (9)). Finally, if d2/ZN or d/( 1 - P) is much 
larger than zV, then collisions with the boundaries are 
insignificant, and, in accordance with (9), zeff ~ zV. 

We note that expression (8) has exactly the same 
form as in the case of pure diffuse scattering of pho
nons by the boundaries (seeC2J). Consequently, the con
dition (5) becomes equivalent to the condition u ( ro) = 0 
even within the limits of applicability of the approach 
developed above, i.e., when 1 - P « 1. This is caused 
by the fact that the phonon returns many times to the 
wall as the result of normal collisions with other pho .. 
nons. It is clear therefore that the boundary condition 
(5) is valid for any character of the scattering. 

We note that when the scattering is close to specular 
it can be easily shown (see, for example,CsJ that 
1 - P = a ( TJI>..T )2 , where TJ is the characteristic 
dimension of the roughness of the surface, >..T ~ hs/T 
is the wavelength of the temperature phonons, and a is 
a dimensionless factor on the order of unity, the valuE! 
of which depends on the detailed structure of the sur
face of the sample. 

Using formula ( 6) -( 10) we can easily obtain the 
temperature variation of the thermal-conductivity co
efficient. Depending on the ratio of the parameters of 
the problem, three cases can occur, as shown in the 
figure. Case a corresponds to relatively bulky sam
ples with perfect boundaries, on which a>> 1 when 
v ~ 1. Then, the possibilities (10), (8), and (9) are 

realized with decreasing temperature. On the other 
hand, if a « 1 when v ~ 1, then the result depends 
on whether the inequality d >> zN is violated when v2 

« a (case b) or when v2 » a (case c). 
The dashed lines in the figure show the regions 

where zN :» d, and therefore the hydrodynamic method 
of describing is not applicable. This case was con
sidered by the authors earlierC7J (see Fig. 2b in[7J, 
where the dashed lines, to the contrary, denote the 
region investigated in the present paper). 

We note that within the limits of applicability of the 
hydrodynamic approach, the thermal conductivity is 
not very s1ensitive to the shape of the cross section of 
the sample (seeC2J), and therefore formulas (8) -(10) 
are correet, in order of magnitude, for samples of 
arbitrary form. 

The obtained results make it possible to explain 
qualitatively the experimental data of Mezhov
Deglin[sJ on the thermal conductivity of crystalline 
He4 • The measurements were made on cylindrical 
samples in the temperature interval approximately 
from 0.4 to 1.5"K. In the thinnest of the investigated 
samples, at temperatures close to 0.5°K, there was 
observed ~L relatively small growth (by a factor of 
approximately 1.5) in the value of zeff with decreasing 
T. On the other hand, a decrease of zeff was observed 
in the bulkier samples under the same conditions. To 
explain thE!se regularities, it is natural to assume that 
when T ~ 0.5°K the scattering of the phonons by the 
boundaries is nearly specular. In thin samples, ac
cording to (9), we have zeff oo T- 2 , while in thick sam
ples, owing to multiple collisions between the phonons 
and the boundaries, the case (8), corresponding to ef
fective diffuse scattering, is realized, and zefl oo T5 • 
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