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The Hamiltonian for interaction of spin waves with dislocations in a magnetically ordered crystal is 
found, and the contribution by processes of scattering of spin waves by dislocations to the line widths _Y oj 
of uniform ferro- and antiferromagnetic resonances is calculated. The dependence of the resonance lme 
widths on the concentration and dimensions of the dislocations is considered. It is shown that if the dislo
cation concentration ~ is small, then Yoj ex: ~; at high dislocation concentrations, Yoj a: ~- 112 • The influ
ence of the specimen shape on the width y oj is investigated. 

INTRODUCTION 

A great amount of research has been devoted to the in
vestigation of the line width of ferro- and antiferromag
neticresonances. Atpresent there are many well-studied 
mechanisms that lead to a finite line width in ferromag
netic resonance (FMR) and antiferromagnetic resonance 
(AFMR). In particular, there has been a detailed investi
gation of the temperature dependence of the FMR line 
width produced by the processes of scattering of spin 
waves by one another and of spin waves by phonons a.nd 
conduction electrons. The line width due to these proc
esses approaches zero when the temperature of the body 
approaches zero. 

If there are defects (point, linear, or two-dimensional) 
in the crystal, then scattering of spin waves by these de
fects leads to a line width in FMR (AFMR) that is inde
pendent of the temperature. These scattering processes 
can play a decisive role in real crystals at a sufficiently 
low temperature. Scattering of spin waves from rough
nesses of the crystal surface was considered by Clogston 
et al. [lJ 

The present work is devoted to the investigation of the 
contribution to FMR and AFMR line width by processes 
of scattering of spin waves by linear defects, and specif
ically on dislocations in the crystal. The dependence of 
the FMR and AFMR line width on dislocation concentra
tion in the body and on specimen shape is found. 

If the FMR frequency is not too close to the minimum 
frequency of Walker oscillations, and if the characteris
tic dimensions R of the dislocations (we suppose that the 
distance between dislocations is also of order R) are not 
too small, so that the condition R » a(E>ciMBMo)112 is 
satisfied, then the FMR line width y0 is determined in 
order of magnitude by the formula y0 "" w0 (a2 ~), where 
w0 is the FMR frequency, ~ is the dislocation concentra
tion, a is the lattice constant, 8c is the exchange con
stant (equal in order of magnitude to the Curie tempera
ture), MB is the Bohr magneton, and M0 is the magnetic 
moment of unit volume. If there are in the body finer 
dislocations with characteristic distances R 
« a(8ciMBM0 ) 112, then the line width Yo approaches zero 
with increase of the dislocation concentration ~ accord
ing to the law Yo a: 1/ {f. This is due to the fact that the 

amplitude of scattering on small-scale dislocations, as 
on point defects, decreases rapidly with diminution of the 
wave vector of the spin wave. 

The shape of the body, or more accurately the rela
tive sizes of the demagnetizing factors, can exert an ap
preciable influence on the dependence of FMR line width 
on dislocation concentration. Thus, for example, if the 
specime111 has the form of a plane-parallel plate and if 
the characteristic dimensions of the dislocations, R, 
satisfy the condition R » a(E>c/J.LBM0 ) 112 , then the FMR 
line width is inversely proportional to the square root of 
the disloeation concentration, y 0 ~ w0 ( J.LBM0 /6c)312 

x (e 3/a .ff,), in the case in which the external magnetic 
field H0 is oriented almost perpendicular to the surface 
of the plate (e is the angle between the normal to the 
plate and the external magnetic field), and y 0 

~ w0 (J.LBM0 /E>c) 112 a{f when H0 is oriented along the 
surface of the plate. In the rest of the angular range, 
y 0 "" w0a2 ~. Investigation of the angular dependence of the 
size of y 0 gives, in principle, still another possibility 
for the experimental determination of the characteristic 
dimensions of dislocations in a body. 

In this paper it is also shown that Y1 , the half-width 
of the AFMR line corresponding to the higher frequency, 
is practically independent of the size of the magnetic 
field H0, whereas Y2, the half -width of the AFMR line 
corresponding to the lower of the frequencies, ap
proaches zero both in the weak-field region and in the 
field region close to the turning-over field. The magni
tude of Y2 is proportional to the square root of the dis
location concentration~; the dependence of the magni
tude of y1 is described by two terms, proportional to ~ 
and to {f. 

The dependence of the half-widths of the AFMR lines, 
Yoj, on specimen shape has been investigated. 

1. HAMil,TONIAN FOR THE INTERACTION OF SPIN 
WAVES WITH DISLOCATIONS 

In order to determine the Hamiltonian that describes 
the interaction of spin waves with dislocations, we shall 
start from the general expression for the energy of a 
ferromagnet. This energy, as is well known, depends on 
the magnetic -moment density and the deformations in the 
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body; the magnetization and the displacements occur in 
the energy expression in the form of combinations that 
are invariant with respect to rotations and translations 
of the body as a whole. [2 J We have 

(1.1) 

where 

p is the density of the material, h is the alternating 
magnetic field, IJ. is the magnetic moment of unit mass, 
and Xi and 17i are the Eulerian and Lagrangian coordi
nates (we recall that Xi = 17 i + ui ( '17 ), where u is the dis
placement vector). 

We shall designate by IJ.o the equilibrium value of the 
magnetic moment, and we shall suppose that the La
grangian coordinates 17 i define the coordinates of the 
points of the body in the equilibrium state. The small 
deviations of the magnetic moment from the equilibrium 
value we shall designate by m: m = IJ. - IJ.o; the small de
formation fields in the body we shall describe by the dis
tortion tensor aui/ilxk· For later work it is convenient 
to expand the function F, which occurs in formula (1.1), 
in a series in the quantities mi, ami/axk, and ouz/ilxk: 

F = Fo + F2 +Fa+ ... , 

The index zero in these formulas designates F and the 
derivatives of F in the equilibrium state. 

Since we shall be interested hereafter only in the in
teraction of spin waves with dislocations, we have, in the 
expression for F3 , limited ourselves to terms linear in 
the distortion tensor aui/oxk and have omitted terms of 
higher order in aui/auk. We have further supposed that 
the crystal possesses a center of inversion, and there
fore the series for F contains no terms of the type 
mz omi/oxk· The absence of linear terms in the expan
sion (1.2) is due to the fact that the Hamiltonian (1.1) has 
a minimum for mi = aui /oxk = 0. 

Presence of dislocations in the body leads to defor
mations of it, and these in turn lead to a nonuniform de
viation md of the magnetic moment from its equilibrium 
value. In order to determine these deformations and the 
magnetic-moment deviations caused by them, it is nee-

essary to solve simultaneously the equations of elastic
ity and the equations that determine the magnetization. 
Since a given magnetization deviation produces in a fer
romagnet, thanks to magnetostriction, deformations of 
the order of [2 J. 

where M0 = Po IJ.o is the magnetic moment of unit volume 
and s is the speed of sound, while given deformations 
lead to a magnetic -moment deviation m/ IJ.o ~ ou/oxk, 
we may in the solution of the equations of elasticity neg
lect the magnetic properties of the medium; and we may, 
in the determination of the magnetic -moment deviation 
ffict caused by the dislocations, consider the tensor 
ou/ouk given. The magnetization md and the magnetic 
field hd corresponding to it are determined by the equa
tions 

rot hd = 0, 

Hetf = 0, p, = -poilu; / ox;, (1.3) 

where Heff is the effective magnetic field acting on the 
magnetic moment of unit mass J.L:[ 2 J 

aF 1 a aF 
Hett=h--+--· -p-~--

. 0!1 p ax, ii(ii!lfiix.) 

We shall suppose that the crystal is uniaxial. By use 
of formula (1.2), one can obtain the following expression 
for Heff: 

Hetr = hd- Po~llld + poa.<lmd- Po!lo[ (/ + ~) V (nu) + /(nV)u] (1 4) 
-np0 [b(nmd) +c(Vu) + (b+~-to"d)(nV)(nu)j, • 

where a is the exchange constant, {3 is the magnetic
anisotropy constant, f, c, and d are magnetostriction 
constants, and n is a unit vector along the anisotropy 
axis. They are defined in accordance with the formulas 

( 02F ) 
ilK; ilK; o = p/- [~ll;; + bn;n;], 

iJ2F ) (-. -- = Po2 [/ftO ( llm,nl + ·ll~snm) + C~tolltmTts + d~to3rttTtmrts]. 
iilzmiiK, o 

On using expression (1.4) for Heff and on going over 
to the Fourier components 

1 . 
md(r) =- ~ md(k)e•kr, 

-yv k 

. 2ngMo . . } 
·[~Wxz- (~ + 2/)ux,- 2n sm 29 cos .putd + --frov,sm29 sm 11' , 

. e, 

hd = -4npok(kmd-i~-toun)k-2, Utk = i(utk•+u•kt), (1. 5) 
ffi!k = i(Utkk- Ukkt), 

where Ek = gMo[(ak2 + {3)(ak2 + {3 + 41T sin2 eW/ 2 ' the 
z axis is directed along n, e and 1/J are the polar and 
azimuthal angles of the wave vector k, and g is the gy
romagnetic ratio. These formulas determine the nonuni
form magnetization and the magnetic field that arise be
cause of dislocations. 
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We further represent the deviation of the magnetic 
moment from its equilibrium value JJ.o in the form 

m=md+m,, (1.6) 

where ms is the deviation caused by spin waves and 
connected with the Holstein-Primakoff operators by lthe 
formulas [3 l 

(1. 7) 

We get the Hamiltonian for interaction of spin waves 
with dislocations if we substitute (1.6) into formulas 
(1.2) and pick out the terms linear in ilu/ilxk, md, and 
hct and quadratic in ms: 

:Je,d = ~ { m,Mo[(c- a,)u;; +(! + d + p + b- a3)u,,] 

( az ) po iJm; iJm; } + po p +--;- m;mhuih + -~- ( a1u11 + azu,) · pdV 
2 2 ox. ox. 

+ ~ [-1 h,hd+-1 ~h,2\ dV, (1.8) 
4:rt 8:rt po 1 

where the quantities ai and 0! are connected with the 
values of derivatives of the function F: 

( o•F ) po f 1 
, oi;.oK,iJKm ,.= 2 L a,6;•6,m + 2 a2(6a6hm + 6;m6.,) 

+ a361mninh + a4b;hnlnm +as ( 6;,nknm + 6;mnknl 

+ 6kzn;nm + 6kmn;nl) + a,n;nhnlnm J , 
( o3F l 1 

OK . -oK of ; = -2 · poat6mn6;k61i- apo6;m6kn6;1, 
, l] kl mn 0 

( o'F ) po 
OK . -oK 0-K- = -.- az6;h6;,nm. 

' lJ hi m · o ·flO 

The constants ai have the meaning of constants of the 
relativistic magnetostrictive interaction, the constant 0! 

of exchange magnetostrictive interaction. The appearance 
in the e~ression for (il 3 F/ilKijilKkl ilimn)0 of the second 
term, w1th a constant 0! that coincides with the exchange 
constant in the expansion of (il 2F/ClKijilKkZ)0 , is due to the 
fact that the exchange energy, because of its invariance 
with respect to rotations in the spin system, depends not 
on the invariants Kij, Ki, and I zm separately, but on 
their combinations Kijijz - 1Kzs and Kiiij - 1 Kz, which are 
invariant with respect to rotations of the spins (that is, 
of JJ.). 

On going over to Fourier components in the expres
sion (1.8) and on using formulas (1. 5) and (1. 7), we get 

.'Jf,d = L <1>(1,2)a,+~+ h.c. (1.9) 
1, 2 

where the scattering amplitude of the spin waves is 1> 

<1>(1, 2) = gMo{a,k,kzuu(q) + t\[uu(q)- u,(q)J + (a1 -c)u11 (q) 
- (/ + d + ~ + b- as)u,(q) - 4nq,q-2 (q, md- l'ou11 (q))}; 

q = k 1- ka. The Fourier components of the deformation 
tensor determined by the dislocations, [SJ which occur in 
this formula, are 

llWe note that the relativistic interaction of spin waves with dis]o,:a
tious was written down incompletely in [4 ], since the change of mag
netization caused by the dislocations was not taken into account. 

U;;(q) =- ~-!flihlm(q0)"' b<•>T';;; (q)e-iqr<•> 
qV LJ z ' 

v 

q:;hlm(q0) = 2(~2 -1)q;0qk0qn°€lmn 

+ 1/o(Eimlqk0 + Ekmlqi 0 + Ekmn qn°6a + Einmqn°6kl), 

T~V) (q) = ~ 'tme-iql dl, 

where b«11 > is the Burgers vector of the vth dislocation, 
C 11 is the contour of the vth dislocation and T is a unit 
vector tangent to the dislocation line, d l is an element 
of length along the dislocation line, q0 = qq -\ and !;2 

= T}/(>.. + :2TJ) (>..and TJ are the Lame coefficients). 
It is convenient to represent the amplitude of scatter

ing of spin waves on dislocations in the form 

(1.10) 

where b is the mean magnitude of the Burgers vector 
over the dislocations of the body, R is the mean dimen
sions of the dislocation, cpnm(K 1, K2 ) is a certain function 
of the order of unity, dependent on the directions of the 
wave vectors K 1 and K 2 , and 

t~) (q) = __!__ T~) (q) = _!:___ ~ I d R R Tme-;q I. (1.11) 
c. 

2. WIDTH OF THE FERROMAGNETIC RESONANCE 
LINE 

Knowing the amplitude of scattering of spin waves on 
dislocations, we can find the collision integral for a spin 
wave with wave vector k = 0: 

~o{n} = 2n ~ I <1>(0, k) l2 (nh- no) 6(eo- e.), (2.1) 
k 

where the bar denotes an average over the random dis
tribution of dislocations in the body, and where nk is the 
number of spin waves with wave vector k. As in [4l, we 
assume that the free path length of a quasiparticle is ap
preciably larger than the mean distance R between dis
locations. 

Hereafter we shall only estimate the value of the re
laxation ti.me T 0 of spin waves with k = 0 due to the scat
tering by the dislocations. In accordance with this, in the 
exact formula that determines T 0 for n0 » nk, 

1 
vo=o-=2nL; I<P(O,k)l 26(eo-ek), 

To k · 

we shall set cp(Kl> KJ = 1. Then by use of formulas (1.10) 
and (1.11) we get 

(bR)2 (b<•JRl''))2 dk 2hR(v) (2.2) 
vo=n(gMo) 2-V-~ (bR) 2RM ~ kJ ~ l2(x)6(e 0 -e.)dx, 

v 0 

where J 2 is the second-order Bessel function and R<ll> 
is the radllus of the vth dislocation, which for simplicity 
we consider circular. 

Since, in general, ck = £ 0 [ 1 J when k ~a - 1 ( JJ.BMofE>c) 1 / 2 

(a is the lattice constant), it follows from formula (2.2) 
that y 0 is determined in order of magnitude as follows. 

If R » a(E>c/ JJ.BM0 ) 11 2, then 

vo ~ gMo(b I R) 2 ~ gM0a2f,. (2.3) 

In obtaining this formula, we have taken into account 
that 
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r r dk 1 J h(x)da: ~ 1, J -6(eo- Ek} ~ -, 
0 ~ ~ 

and we have supposed that the sum over all dislocations 
:E11[(b<11 >R<11 >) 2/(bR)2R<11 >] is approximately equal to /R, 
where is the number of dislocations in the body, equal 
in order of magnitude to V /R3 • 

If, however, R « a(6c/t.J.BM0 ) 112 , then 

(2.4) 

In obtaining this formula, we have taken into account that 

na<•> 
~ h(x)da: ~ (kR<•>)3. 
0 

From (2.4) we see that at small dislocation dimensions 
the time of relaxation of spin waves on them diminishes. 
This is due to the fact that at small dislocation dimen
sions, when kR « 1, scattering on them becomes of 
"Rayleigh" type, and its cross section decreases with 
decrease of the dimension R of the scattering centers. 

Thus the mean frequency for collisions of spin waves 
with k = 0 with dislocations decreases both for small 
and for large dislocation dimensions R and attains its 
greatest value when R Rl a(ec/i.J. BM0) 11 2: 

(yo)max ~ gMo(!lsMo/8c}'" ~ 108 sec-1 

The dislocation concentration in the body ~ a:R - 2 ; in this 
case it is equal in order of magnitude to ( J..LMofec)a - 2 

Rl 1012 em - 2 , if we suppose that M0 ~ 103G, ec Rl 103 o K, 
and the lattice constant a Rll0-8 em. Such dislocation 
concentrations are often encountered; the estimates 
show that these can give an appreciable contribution to 
the line width and that it would be very desirable to ob
serve the diminution of this "residual" collision fre
quency both on increase and on decrease of the number 
of dislocations in the body. 

Formulas (2.3) and (2.4) were obtained on the assump
tion that the distance L between dislocations is of the 
same order as the dimensions R of the dislocations. If 
the dislocations in the body are distributed sparsely, so 
that L » R, then by use of formula (2.2) we can obtain 
the following expression for the quantity y 0 : 

b2R ( 8c )''• 
gilfo---y;.-, R~a 'llsMo ' 

Yo·~ 

( llBMo )''' b•R• ( l"lc )''• (2. 5) gMo -- -- R<_a --
8c a3L3 ' llsMo · 

We shall now consider, using the example of the plane
parallel plate, the dependence of the frequency y0 - of 
collision of spin waves with dislocations on the demagne
tizing factors. 2 ' The frequency of uniform resonance in 
such a plate can be represented in the form 

Eo= g[(H + ~Mo+·4nMosinofr) (H + ~M0)]'i•, (2.6) 

where H is the magnetic field intensity in the body and 
(3 is the magnetic-anisotropy constant (sin e describes 
the orientation of the external magnetic field with respect 
to the surface of the plate). 

By substituting the expression (2.6) for the frequency 
E0 into formula (2.2), we can find the following expres-

2lin the case of a sphere or of a not too anisotropic ellipsoid, for
mulas (2.3) to (2.5) are valid but naturally differ by coefficients of 
order unity for specimens of different shape. 

sion for. the value of y0 when (R/a)( J..LBMo/66} 1 / 2 » 1: 

( !lsMo )'" ofr3 R ( fl.sMo )''• gMo -- --, '!}- ,.,-..- <O!l;1 
' 8c al's a 8c 

gM0a2t In [sin -It ( llsMo) '"] sin -It~ 1. 
Yo ~ e aJ'; 8c ' 

gMoal'f(j.isMo)''', I _::_-It ~~!:_,(He })'" (2.7) 
8c 2 R llsMo 

The first of these formulas describes the FMR line width 
in the case when the external magnetic field is perpen
dicular, the last when it is parallel, to the surface of the 
plate. The middle formula relates to "intermediate" 
angles. We see that with change of the inclination angle 
e there is an appreciable change in the dependence of the 
FMR line width on the dislocation concentration ~. 

3. WIDTH OF THE ANTIFERROMAGNETIC 
RESONANCE. LINE 

We now consider scattering of spin waves by disloca
tions in antiferromagnets whose ground state is deter
mined by two compensated sublattices. We consider only 
uniaxial antiferromagnets with magnetic anisotropy of the 
"easy axis" type. The Hamiltonian for interaction of 
spin waves with dislocations in such an antiferromagnet 
can be deduced in a manner similar to that in which we 
found the Hamiltonian for interaction of spin waves with 
dislocations in ferromagnets. The independent invari
ants from which the Hamiltonian of an antiferromagnet is 
constructed have the form[61 

a= 1.2. 

We shall not present all the calculations here, but shall 
present only the final result for the Hamiltonian that de
scribes the scattering of spin waves by dislocations:3 > 

where 

3&=~ 'l'w(k,k')ak;+ak'i'+h.c. (3.1) 
kj.k'j' 

'l'u(k,k') = '¥22(k, k') = 8N(Mo/HAE) (/full+ fzu,,), 
M 

'l'i•(k, k') = 'l'.f· (k, k') =eN • 
}'HAE(HAE + 2Ho) 

)(\(fs(Uxx- UV!I + 2illxy) + f4(Uxx- Uyy- 2fUxy) ], 

Uik == lZ;k(q) = i(a;qk + ukq;), q = k.- k2, 

Mo is the magnetic moment of a sublattice, HAE is the 
field that determines the activation of spin waves in an
tiferromagnets, eN is the exchange constant, equal in 
order of magnitude to the Neel temperature, and the 
quantities fj (of order unity) describe the magnetostric
tion in antiferromagnets. 

We write the collision integral of spin waves with dis
locations in the form 

~l<i = 2n ~ l'l'w(k,k') l 2 (n~t•;• -nk;)6(e;(k)- e;•(k') ), (3.2) 

whence we get the following expression for the AFMR 
line width: 

Y;o = 2:rr ~ I 'l';;o(O, k') l26(e;(O) - e;-(k') ). (3.3) 
k:'j' 

In order to find the values of Yjo in explicit form, 

3lWe note that in finding this Hamiltonian, we may disregard the 
magnetic field produced by the nonuniformity of the magnetic moments, 
since the static magnetic susceptibility of antiferromagnets is small. 



862 BAR'YAKHTAR, SAVCHENKO, and TARASENKO 

besides knowing the spin-wave scattering amplitudes 
>l!jj'(k, k'), we must use the expressions for the frequen
cies of spin waves in antiferromagnets and for the AFMR 
frequencies. Since transition of a spin wave of type j, 
with wave vector k = 0, into a spin wave of the same 
type, but with wave vector k* 0, is possible only if, in 
the spin-wave spectrum, account is taken of the contri.
bution from the magnetic dipole interaction, we shall 
quote here these expressions for the spin-wave frequen
cies[71 or for the AFMR frequencies: 

E1,2(k) = ffi(k) { 1 + ( (J)~;) r + 2n)(oCOS2 0 

± 2 [ n2xo2 cos' e + ( ~ l 2 
( 1 + 2nxo cos2 G) J '/,}''' , 

, ffi (k) I 

E1,2(0) =ffi(O){ 1+C~~) )" +2nxocos2 0o 

± 2 n')(02 cos' Oo + ffiH ( 1 + 2nxo cos2 flo . [ ( ) 2 ]'''}''' 
,(J) (0) 

where w(O) = gHAE = g,IHAHE, w2(k) = w2(0) + eN-(ak)2, 

WH = gH0 (e 0 is the polar angle when k = 0), and HA and 
HE are the anisotropy and exchange fields, respectively. 
The angle e0 serves to describe the demagnetizing fae
tors (e 0 = rr/2 if H0 is parallel ~o the surface of the 
plate, and e0 = 0 if it is perpendicular to the surface of 
the plate). 

By using these formulas and the expressions (3.1) for 
Wjj '(k, k') and by carrying out the integration in formula 
(3.3), we can obtain the following expressions for y 10 and 

eN• HAE-Ho [!lBMo 1 ] 
Y•• ~ a2!;ln ---- . 

!lBHAE HAE . eN a•; 
(3.4) 

These formulas are valid if R » a(E>NIJ..LBM0 ) 112 , the 
external magnetic field is large enough so that H0 

> rrxoHAE• where Xo is the static magnetic susceptibility 
of the antiferromagnets, and cos e0 ~ 1. We note that 
these formulas determine, in order of magnitude, the 
AFMR line width also in the case of an ellipsoid. 

If the magnetic field Ho is almost perpendicular to 
the surface of the plate, so that eaR« a(~/ J..LBMo) 112 , 

then 

On comparing these formulas with formulas (3.4), we 
see that the AFMR line width decreases abruptly in a 
narrow range of small angles. 

We quote, finally, the formulas that determine the 
width Yjo i.n the case in which the magnetic field is ori
ented alon!~ the surface of the plate: 

( eN )'/'( ·~ HAE+Hoj'/, 2 HAi!;Mo 
Vt~~ gMo f.t8M0 a" ~lHAE I +eNa S ~Ho(Ho+HAE) (3•6) 

From a comparison of these formulas with formulas 
(3.4) it is evident that the AFMR line widths may in
crease on change of the angle of inclination of the mag
netic field from a value e0 ~ 1 to I e - rr/21 « 1. 

The authors thank A. G. Gurevich and M. I. Kaganov 
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