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A system of equations for elastic scattering of Ellectrons by helium atoms is derived and the phase shift 
of the s -wave is calculated with allowance for exchange and correlations. A method is used which yields 
the lower bound of the phase shift if the exact wave function of the atom is employed. Thirty-two (and in 
one case 36) correlation terms are taken into aecount in the calculations. It is found that the results 
should be appreciably altered if terms that vanish when the exad atomic wave function is used are re­
tained. When such terms are not taken into account, the scattering phase shift is in good agreement with 
the most exact results of other methods. A less accurate value has been obtained for the scattering 
length. The behavior of the phase shift as a fun<:tion of the number of correlation terms when k = 1.25 
(k is the momentum of the incident electron in atomic units) indicates that resonance should occur at 
k < 1.25. No signs of resonance have been observed for k :::;; 1. 

1. INTRODUCTION 

IN a number of recent papers, attempts were made to 
calculate more accurately the phase shifts of elastic 
scattering of electrons by helium atoms. Different va·­
riants of the polarization potential were used in the adi­
aba~ic approximation in [1 - 41• Pu and Chanlf 51 calcu­
lated, with the aid of a modified perturbation theory, 
the second-order correction to the exchange-static ap­
proximation. Herzenburg and Lau[61 discussed the pos­
sibility of resonance at low energies. The approxima-· 
tions used in these papers have a somewhat arbitrary 
character. The calculated scattering phase shift may 
turn out to be either larger or smaller than the real 
phase shift. At the same time, it was shown recent­
ly[7' 81 that there exist calculation methods that have 
extremal properties. These are the methods that fol­
low from the Kohn variational principle and in which 
the space of the trial functions for the open channels 
is not limited. The calculated scattering phase shift (or 
K matrix) must then be smaller than the real phase 
shift, and increases monotonically with increasing spa.ce 
of the trial functions for the closed channels. In other 
words, when the number of variational parameters in-· 
creases, the scattering phase shifts changes in analogy 
with the change of the absolute value of the energy in 
variational calculations of the discrete spectrum. 

Among the extremal methods, the simplest are those 
in which the closed channels are described by finite al­
gebraic expressions, i.e., by linear combinations of 
known functions. In this case, if only elastic scattering 
is open, then there follows from the variational princi­
ple a system of a single integral-differential and sev­
eral algebraic equations. 

This method was used to calculate the phase shifts 
(more accurately, the lower bounds of the phase shifts) 
of elastic scattering of positrons[9 ' 101 and electrons[H, 
121 by hydrogen atoms. 11 

1lSome of the closed channels were described in [1 3], for the same 
problem, with the aid of functions that were not specified beforehand, 
thus increasing the number of integra-differential equations. 

In the present paper we use a similar calculation 
method for the elastic scattering of electrons by helium 
atoms. Unfortunately, owing to the inaccuracy of the 
wave function of the atom, an additional error is pro­
duced in this case. T.he error can have an arbitrary 
sign, so that the extremality of the result may be vio­
lated. 

2. SYSTEM OF EQUATIONS 

In the absence of spin -orbit interaction, the problem 
reduces the solution of the Schrodinger equation in co­
ordinate space. The wave function with the required 
symmetry properties can be constructed with the aid of 
the Slater determinants, Fock's rules, [141 or Young pat­
terns. In the present article we use symmetrization 
operators eorresponding to a certain combination of 
Young pattE~rns. For a system of three electrons with 
total spin equal to 1/2, the most convenient operators are 

Qt = (1 I 2}'3) (1- P2a) (1 + Pt2) (1 + P,.), (1) 
Q2 = tfa(1- P2a) (1 + P12) (1- Pta), (2) 
Qs = tla(1 + P2a) (1- Pt2) (1 +Pta), (3) 

Q,, = ( -1 I 2}'3) (1 + P23) (1- P12) (1- Pta), (4) 

where Pij is the operator of permutation of the i-th and 
j -th electrons. 

These operators differ insignificantly from those 
given in the book by Slater.[151 They constitute a com­
plete set oJt basis operators for the space containing all 
the operators of permutation of three arguments ortho­
gonal both to the symmetrization operator s and to the 
anti-symmetrization operator A, where 

S=tla(1+P23)(1+Pt2)(1+Pta), (5) 

A = 1la(1- P23) (1- P12) (1- Pu). 

The properties of the operators Qi are discussed in 
greater detail in [161 • We note here that the pairs Q1 

- ~ and Q3 - Q4 generate an irreducible unitary rep­
resentation of the permutation group when multiplied by 
Pij from the right (i.e., QPij), while the pairs Q1 - ~ 
and ~ - Q4 do the same when multiplied from the left. 
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The wave function of the system of three electrons is 
chosen in the form 

N 

11> = l''/2 [ QJIDo + ~ (a 1Q, + b;Q2)ID;], (7) 
i=! 

where 

(8) 

l/Jo is the wave function of the ground state of the helium 
atom. The function f describes the scattered electron: 

f(oo) ~sin (kr+TJ), (9) 

where TJ -phase shift of the scattering (we are consid­
ering an s-wave), k = v'2(E -Eo) -momentum of the in­
cident (and scattered) electron, and Eo-energy of the 
ground state of the atom (we used an atomic system of 
units). 

The sought function f and the parameters ai and vi 
are determined from the variational principle: 

M I 6f = 0, a! I oa; = o, iJI I iJb; = 0, i = 1, ... , N, (10) 

where 

I= (ll>IH -Ell!>)- 'MTJ. (11) 

Substituting (7) in (10) and (11), and choosing l/Jo in the 
self-consistent field approximation 

1jJo = (4nrtr2)-'u(rt)u(r2), (12) 

where u satisfies the Hartree equation, we obtain a 
system containing one integra-differential equation and 
several ( s2N) algebraic equations: 

""" (3) (4) Lf(r) + 3 .Li [a;q;, (r) + b;<p; (r)] = 0, (13) 

"" i (3) """ (3) '') .l 'fi (r)f(r)dr + .Li (M;; a;+ M;; b;) = 0, (14) 

"" 
\ (4) """ (1) (2) l <p; (r)f(r)dr+.:J (M;; a;+M;; b;)=O, i = 1,2, ... , N. (15) 

Here 

"" 
V(r1)=-2r1-'+2~ u2(r2)r>-•dr2, (17) 

<pr> (r1) = (4n)-'l•(ljlo(r2,ra) IH -E1Qn1D;(r,,r2,ra)), (18) 

M;jn) = (ID;jH- EIQn<D;); (19) 

r> denotes the larger of r1 or r2. The integration in 
the angle brackets of (11) and (19) is over all the coor­
dinates of the electrons, while the integration in (18) is 
over the angles of the first electron and all the coordi­
nates of the remaining electrons. In the derivation of 
(16) it was assumed that 

00 

~ /(r)u(r) dr = 0. (20) 

The total wave function of the system of three elec­
trons, containing also the spin variables, is of the form 

'I'= P+(j3(1)u(2)u(3)11>(1, 2, 3)], (21) 

where p+ is the sum of the cyclic-permutation opera-

tors: 

P+F(1, 2, 3) = F(1, 2, 3) + F(2, 3, 1) + F(3, 1, 2), (22) 

a and {3 are the spin functions of the states with defi­
nite spin-projection directions. 

Substituting (7) in (21), we can reduce the obtained 
expression with the aid of (1)-(4) to the form 

'I'= P+{ <Do( 1, 2, 3}xt(1; 2, 3) 

+ 1/2.~ a;[ID;(1, 2, 3)+ Ill; (1, 3, 2)Jx•(1; 2, 3) 

+ 1/2 ~b;[ll>;(1,2,3)-ID;(1,3,2)]x2(1; 2,3) ), (23) 
t 

where Xt and x2 are the spin functions of the states in 
which the total spin of all three electrons is equal to 
1/2 and the total spin of the second and third electrons 
is equal to zero or unity: 

X• = l'312Q,~(1)u(2)a(3), 

X2 === l'%Q3~(1)u(2)a(3). 
(24) 
(25) 

It is clear therefore that the coefficients ai and bi 
characterize the virtual excitation of singlet and triplet 
atomic states. 

If the operators Q1 and Q2 in the expression for the 
coordinate wave function (7) are replaced by Q3 and ~. 
then formulas (13)-(19), which determine the system of 
equations, remain unchanged. Consequently, the phase 
shift of the scattering remains unchanged also (or else 
the energy level in the discrete -spectrum problem). 
This is a manifestation of the fact that the two-dimen­
sional representation has two realizations. From this 
point of view, Fock's conditions separate one of the two 
equivalent possibilities. We note that Q1 and Q2 satisfy 
Fock's conditions, which for three electrons are of the 
form[t7J 

(1 + P23)Q = (1- P12- P .. )Q = 0. (26) 

The operators Q3 and ~ satisfy the modified condi­
tions 

(1-P,3)Q = (1 +Pt2 + Pw)Q = 0. (27) 

However, when we replace Q1 and Q2 in (7) by Q3 and 
~. the total wave function defined by (21) will be differ­
ent. Instead of an anti-symmetrical function we then ob­
tain a function that is symmetrical with respect to elec­
tron permutation.[161 Thus, in the absence of interac­
tions that depend on the spins, the Hartree-Fock equa­
tions do not depend on the type of symmetry of the total 
wave function. 

We denote by .p+ the function which we obtain by re­
placing Q1 by Q3 and Q2 by ~ in (7). The following 
relations hold: 

(JI+ = II III, 11> = III!>+, 

where 
1 

II= -(Pt2- P,a) = Q, + Q,, 
-.'3 

II2 = Q2 + Q3 = 1 - S - A. 

(28) 

(29) 

(30) 

The functions .P and .p+ are expressed in terms of each 
other for all permutations of the arguments-they con­
stitute a basis of an irreducible two-dimensional repre­
sentation. 
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Phase (in radians) of s--wave of elastic scattering of 
electrons by helium atoms 

(the scattering length is given for k = 0). 

" 1,6 
T 3,6 

Exchange-static approximation 1,483 
Allowance for 32 correlation terms 

and using (34) 1,282 
Allowance for 32 correlation terms 

without using (34) -14,9 

The fact that the use of Q3 and ~ leads to a sym­
metrical total wave function can be understood by taking 
into account the definition of the determinant and notiilj~ 
that these operators, expressed in the form of a sum of 
permutations, differ from Q1 and Q2 only in the sign of 
the even or the odd permutations. 

3. CALCULATION RESULTS 

The functions <I>i in (7) describe the correlation of 
the electrons. They were chosen in the form 

(3ll) 

The part that depends on r 1 and r 2 is analogous to that 
previously employed in the papers of Gailitis[llJ and 
Aronson et al.[121 , who investigated e· -H scattering. 
The third electron can be regarded as being in the 
ground state of the helium ion ( y Rl 4). The index i de·· 
notes here the aggregate of the integers l, m, n, p. 
The quantities K and y are regarded as nonlinear varil­
ational parameters. The system of equations was solved 
by a non-iterative method/u, 131 in which the problem 
is reduced to the solution of a series of inhomogeneous 
integra-differential equations, the calculation of matrix 
elements, and the solution of a system of algebraic 
equations. 

In the first part of the calculations we determined the 
optimum values of the parameters K and y. To this 
end, we solved equations with a small number ( 5 8) va­
riational parameters for different K and y. In accord-· 
ance with the extremality principle, the optimal values 
are those for which the scattering phase shift is maxi­
mal. Then, using the optimal values of K and y, we 
solved equations with 32 variational parameters. Thes•e 
values of K and y are listed in the table. The used val­
ues of the numbers l, m, n, and p are seen in Fig. 1. 
If m*n, then two terms in the sum (7) or (23) corre­
spond to the set of numbers l, m, n, and p. In Fig. 1 
we show first the singlet term. When m = n there are 
no triplet terms. This is connected with the fact that 
Q2<1> = ..f3Q1 <1> if <1>(1, 2, 3) = <1>(2, 1, 3). Therefore we can 
put bi = 0 when m = n. 

As the radial wave function of the atom we use the 
three -parameter function [lsl 

u (r) = Cr( e-Zr + 0,6-2Zr), 

c = 2,968466, z = 1,455799, 

(32) 
(33) 

which differs little from the exact numerical solution 
of the self-consistent-field equation. 

In calculating the functions <Pin> defined by (18), we 
used a simplification which is valid if 1jJ0 is an exact 

,,,I at.un. 

0,25 0,6 0.76 1,0 I 1,25 

2 2,4 2,6 2,8 2 
3,6 4 4 4 4 

2, 7756 2.4356 2.1386 1,8899 1,6866 

2,8127 2.4845 2,1910 1.9479 1. 7359 

2,6386 1,9896 

0.05 

0 ~~~~~~~~~~~~~~~~ 
m 22J J J 333223 3 JJJ4 " JJ't 9 
"221 2 2 333222 2 JJJJ J JJJ J 
p Ill 2 I I 123111 I fiJI I 121 I - ..___,...._ _J'"' 'f-p,''' ~~ !"!,''' ''' ·''~ 

FIG. 1. Cb.ange of phase with increasing number of correlation 
terms. We plotted ll11 = 11-flstat• where flstat- phase of the exchange­
static approximation; the corresponding difference in the scattering 
length was determined at k = 0. The upper ll.fl curve was obtained with 
allowance for only one correlation term. 

eigenfunction of the helium atom. Then we have in (18) 

H--E= - 1M!•t- 2/rt + 1 /r12+ 1 /rt3- 1/2k2. (34) 

Generally speaking, the wave function of the self­
consistent Jtield (12) is not an exact eigenfunction. In 
order to determine how this affects the results, the 
calculations were also performed at certain energies 
of the incident electron without using the simplification 
(34), i.e., retaining all the terms in (18). At low ener­
gies, the sc:attering phase shift turned out to be much 
larger, and the scattering length much smaller (see the 
table). The scattering length has in this case a value 
which is definitely improbable. Thus, at low energies, 
the inaccuracy of the atomic function comes strongly 
into play.2 > The use of (34) decreases its influence. We 
note in this connection that in the derivation of (16) we 
did not take~ into account the fact that the function (32) 
employed by us is not an exact solution of the self­
consistent-field equation. In analogy with the foregoing, 
we can expect allowance for the corresponding addi­
tional terms in (16) not to improve the result. The 
question of the two variants of the exchange part of the 
static approximation was considered in the monograph 

2> A similar· circumstance was observed in an investigation of the 
dispersion relations for the scattering of electrons by helium atoms [19]. 
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FIG. 2. Change of phase in com­
parison with the results of other in­
vestigations (we plotted L'l.'T/ = 'T/­
Tlstat): X - results of present work 
(with k.;;; I and with allowance for 
32 correlation terms, and with k = 
I. 25 with allowance for 36 terms), 
0 - different variants of the 

adiabatic polarization potential [ 1 ] ; 

e - expanded polarization poten­
tial (4 ] ; L'l. - optical potential with 
allowance for second-order term [ 5 ]. 

by Drukarev, l171 where it was shown that the exchange 
particle responding to expression (16) comes closer to 
the exact exchange operator, since it does not contain 
terms of the type 2/r. 

The scattering phase shift in the variant in which re­
lation (34) was not used is undoubtedly larger than the 
real scattering phase shift. Consequently, the error in 
the atomic function leads to a violation of the extremal­
ity principle. We cannot state that the use of (34) re­
stores the correctness of this principle, but comparison 
with the results of other calculations (see Fig. 2) allows 
us to think that this is possible. Our results lie between 
the results of the two papers l4 , 51 which can be re­
garded as the most accurate. In l41 a most complete ac­
count was taken of all the possible terms of the polari­
zation potential in the adiabatic approximation, while in 
lSJ the optical potential was constructed with allowance 
for terms of second order in the modified perturbation 
theory. 

For k = 1.25, a calculation was also performed with 
36 variational parameters. In addition to those shown in 
Fig. 1, we used for Z, m, n, p the values 0421 and 1321. 
We then obtained 1J = 1. 7432. It should be noted that at 
k = 1.25 the validity of the employed approximation is 
less reliable, since no account is taken of inelastic 
processes that are possible at this value of k. 

In order to obtain a solution with a smaller number 
of correlation terms, it is necessary to repeat only the 
last stage of the solution process-to solve the de­
creased algebraic system of equations. Therefore in 
each case we calculated also the phase shifts corre­
sponding to allowance for 1, 2, ... correlation terms. 
The change of the phase shift with increasing number of 
the correlation terms is shown in Fig. 1. We see that, 
in accordance with the extremality principle, the phase 
shift increases everywhere. An exception is the case 
k = 1.25. This quantity lies above the e- -He reso­
nance, l201 and therefore the strict extremality principle 
no longer holds for it. The jump in the phase shift in­
dicates a resonance at k < 1.25. The absence of phase­
shift jumps at k ~ 1 indicates that there is no resonance 
in this region. 

It should be noted that the fact that the phase shift 
increases with increasing number of variational param­
eters is in general insufficient to cause it to represent 
the lowest limit. Owing to the inaccuracy of the atomic 
wave function, the phase shift may turn out to be larger 
than the exact value. For example, in the case without 
the use of (34), the phase shift also increases through­
out (when k ~ 1), but it reaches values that are clearly 
too high. 

Figure 1 shows also the change of the phase at k = 1, 
which we obtain by adding to the static approximation 
only one correlation term. We see that in this case the 
effect produced by it can greatly differ from that when 
other terms are also taken into account. The influence 
of the different correlation terms has a non-additive 
character. 

The sign of the scattering length is the opposite of 
the sign of the tangent of the phase. Therefore, with in­
creasing number of variational parameters, the scatter­
ing length decreases (see Fig. 1). Allowance for 32 cor­
relation terms decreases it from 1.483 to 1.282. But 
this is certainly insufficient. With the aid of the disper­
sion relations, l191 and also by the method of the ex­
panded polarization potential, l41 we obtained a value 
1.15. Thus, allowance for the polarization with the aid 
of functions of the type (31) has slow convergence if 
k = 0. A similar result was observed by Schwartzl211 

in a calculation of the scattering length of electrons by 
hydrogen atoms. 

In the present paper, within the framework of the 
statistical approximation, we also calculated the depend­
ence of the phase shift of the s-wave on the choice of 
the wave function of the atom. Besides the functions 
(12) and (32), we used 1-, 3-, and 6-parameter Hylleras 
functions. l221 The results are shown in Fig. 3. In the 
case when no exchange is taken into account, the phase 
shift changes monotonically with increasing number of 
parameters of the atomic function-it increases 
throughout. This is the consequence of the monotonic 
decrease of the static potential (17), which in turn is 
apparently connected with the monotonic increase of 
the scale factor in the wave function. The phase changes 
in this case in analogy with the energy: the difference 
between the results of the 3- and 6-parameter func­
tions is much smaller than for the 1- and 3 -parameter 
functions. The results for the 3-parameter Hylleras 
function and the functions (12) and (32) are practically 
equal, this being a certain justification for the use of 
the latter in the calculation with allowance for the cor­
relation. Calculations with allowance for exchange were 
made only with the 1-parameter Hylleras function and 
with the functions (12) and (32). In this case, the change 
of the phase is much smaller ( ~0.01) and is non-mono­
tonic-negative at small k. 

The dependence of the phase on the choice of the 
atomic function in the static approximation with allow-

0.1 

0 1,0 k, at. un. 

FIG. 3. Dependence of the phase of the static approximation on the 
choice of the wave function of the atom. We plotted L'l.'T/ = 'T/- 'T/1, 
where 'Ill -phase using the !-parameter Hylleraas function. I and 2 cor­
respond to 3- and 6- parameter Hylleraas functions; 3 - functions (32); 
a - without allowance for exchange, b - with allowance for exchange. 
Curves I a and 3a coincide within the scale of the figure. 
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ance for exchange was investigated earlier in c231 , 

where it was found that allowance for the term contain·· 
ing r~ in a function of the Hylleras type changes the 
phase by not more than 0.006, while allowance for the 
term containing r 1r 2 changes it in the range 0.04-0.1. 
The latter is an overestimate, since a similar term is 
contained also by the functions (12) and (32), for which, 
as already noted, the change of the phase is much smal­
ler ( :::;;0.01). 

We also used the 1-parameter Hylleras function with 
k = 1 in a calculation with 32 correlation tertns. This 
yielded TJ = 1.9310, which is smaller by 0.0170 than the 
phase obtained with the function (32). The phase differ-· 
ence is somewhat larger than in the exchange-static ap­
proximation (0.007), but at the same time smaller than 
in the static approximation without exchange (0.044). 

In conclusion we note that in the present paper we 
were the first to employ the method determined by for­
mulas (7)-(11) for the collision between an electron and 
an atom containing more than one electron. This raises 
a difficulty connected with the inaccuracy of the wave 
function of the atom. The obtained results indicate that 
the use of relations of the type (34), i.e., simplifica­
tions that are valid for the exact wave function, is one 
of the possible ways of overcoming this difficulty. 
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