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The motion of an electron is studied in a nondeg;enerate band of an antiferromagnetic semiconductor, 
each lattice point of which contains a magnetic electron. If zero-point oscillations are not taken into 
account, the motion of an extra electron is possible with spin flip and correspondingly with violation 
of magnetic order along its trajectory. This results in an increase of the magnetic energy as the elec­
tron moves away from the center; consequently the ground state is an auto-localized state resembling 
a magnetic polaron. The upper and lower energy limits of such a state are determined. 

GooDENOUGH[11 and de Gennes[21 advanced, within 
the framework of the sd-model, the idea that in a non·­
metallic antiferromagnet a conduction electron can dis­
turb the antiferromagnetic ordering in its immediate 
vicinity. It was shown in [31 that under certain condi­
tions there is formed around the conduction electron a 
ferromagnetic microregion, with which it can move 
over the crystal. Such a quasi-particle was called a 
magnetic polaron. 

To describe many antiferromagnetic substances it is 
better to use the dd-model, in which, unlike the ad­
model, both the magnetic and the electric properties of 
the crystal are determined by electrons of the same 
group. [41 In the dd model, if the number of d electrons 
per magnetic ion is an integer (for example, in Fe203 
but not in Fe304), then each d electron is localized at a 
definite atom, owing to the strong Coulomb interaction 
with the other d electrons. The role of the conduction 
electrons is played by the d electrons in excess of this 
number, since they are the ones that can go from atom 
to atom. 

In [41 we investigated the translational motion of the 
extra d electron in an antiferromagnet under the as­
sumption that it does not change the states of the re­
maining d-electrons. It was shown under this assump­
tion that the motion of the extra electron over the crys­
tal is possible only as a result of the oscillations of the 
spins about the equilibrium position. Inasmuch as the 
amplitude of zero-point oscillations of the spin is small, 
the gain in the energy of the ground state of the system 
due to the translational motion of the x-ray electron 
over the crystal is much smaller than the same value in 
a nonmagnetic crystal (with the same value of the Bloeh 
integral). 

The result of the preceding investigation[41 allows us 
to state that the considerations advanced in [31 with re­
spect to the energetically favored position of the mag-· 
netic-polaron states can be extended also to the dd­
model, since in this model they ensure a gain in the ki­
netic energy of the electron as compared with the case 
of the undisturbed antiferromagnetic ordering. Three 
different types of localized electrons state are then 
possible. The first occurs when the electron moves 
over a d-level not occupied by the localized state of the 
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electron. This case is perfectly analogous to the sd 
model considered in [31 • 

If there· is more than one localized d-electron per 
ion and thE~ extra electron moves over occupied levels 
(for example NiO, MnO), then a situation similar to the 
first arises, for in the case of an ideal antiferromag­
netic ordering the "extra" electron cannot move, as a 
result of the Pauli principle, and the "own" electron 
cannot move as a result of the strong intraatomic ex­
change (which leads to Hund's rule). Therefore, just as 
in the firslt case, the formation of a ferromagnetic mi­
croregion around the "extra" electron is energetically 
favored. On the other hand, the magnetic energy differs 
in this case somewhat from the case of the sd-model, 
since the spin at the center, where the "extra" electron 
is located, differs from the spin of the remaining ions. 

The situation in which only the spin of one d-electron 
is unpaired in the regular magnetic atom, and the land­
ing of the extra d electron on this atom leads to an· 
electronic structure with zero spin (for example, CuO 
or a hole in V02 or Ti203), calls for special analysis. 
In this case, too, the magnetic-polaron state would be 
more favoJred than the state investigated in [41 • Here, 
however, the extra electron of the magnetic atom can 
go over to the neighboring one at any orientation of the 
spin of the latter, and therefore, in order to obtain the 
maximum gain in the translational energy, there is no 
need for losing energy to the creation of the ferromag­
netic microregion. It will be shown below that in such 
a situation the extra electron is in an autolocalized 
state of a different nature. 

Assume that an additional electron appears at the 
magnetic atom in an antiferromagnet. With further mo­
tion of the excess charge through the crystal, if we neg­
lect the zero-point oscillations of the spins, the transi­
tion from this atom to the neighboring one should be 
executed by that electron, whose spin is opposite to the 
spin of the neighbor, (i.e., the former "own" electron 
of the atom). The electron remaining in the same atom 
has a spin opposite to the initial spin of the atom (the 
former "extra" electron). Since each such spin flip of 
the atoms by the excess charge passing through them is 
accompanied by an increase of the energy of the ex­
change inte!raction of the electrons, this extra charge 
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cannot propagate freely through the crystal and becomes 
auto-localized. The center of the auto-localized state is 
the atom on which the extra electron lands without caus­
ing the spins of the remaining atoms to lose the ideal 
antiferromagnetic ordering. As the electron moves 
away from the center, flipped spins appear on its tra­
jectory, and the exchange energy increased with length­
ening of the trajectory. This can be interpreted as the 
existence of a quasi-elastic force that tends to return 
the extra electron to the center. Thus, the auto-localized 
electron is to a certain degree the analog of a three­
dimensional oscillator, and we shall use the term 
"quasi-oscillator" to denote this state. 

The quasi-oscillator state differs essentially from 
the polaron state. In the latter, the deformation of the 
captured subsystem (crystal latticel5l or spin sys­
teml2' 3l) exists at all possible positions of the conduc­
tion electron. In a magnetic-polaron state, thi~ leads 
to a non-zero magnetic moment of the microscopic re­
gion in which the electron is localized. On the other 
hand, in the quasi-oscillator state violation of the mag­
netic ordering occurs only when the electron moves 
away from the center, and the character of this viola­
tion is such that no additional magnetic moment appears 
here. 

We shall consider below the ground state of a rest­
ing quasi-oscillator. We assume for simplicity that 
there can be not more than two electrons per atom, so 
that the state of the electron is characterized by the 
number of the magnetic atom g and by the spin projec­
tion a. As in l4 l, we describe the system in the iso­
tropic case by the Hamiltonian 

H =HG+ H', H' = ~ pa;.,ag•a, 
(g, g'), a 

(1) 

Then the system with the extra electron (or hole) in the 
zeroth approximation in H' will be N2N- 1-fold degener­
ate (N -total number of magnetic atoms). This degener­
acy is lifted by the term H', and accurate to second or­
der in H' inclusive, we obtain the secular equation with 
the effective Hamiltonian 

Herr= PH'P+PH' ~.-=-PEH'P 

(g, g'), a (gJ, gl), Oi., O"z 

J = pz I [U (0, 0)- U (0, 1)], (2) 

where P is the operator of projection on the space of 
the N2N - 1 -fold degenerate functions of the system with 
the "extra" electron. The first term in (2) describes 
the transitions of the "extra" electron to the neighbor­
ing centers, and the second describes the magnetic in­
teraction of the localized electrons due to the indirect 
exchange. All the centers, except that occupied by the 
"extra" electron, take part in the exchange, and the 
spin on the occupied center is zero. This is taken into 
account by the operator 1 - P in (2). The second term 
in (2) leads also to transitions of the "extra" electron 
to centers that follow the nearest neighbors. We shall 
neglect them compared with the transitions to the near­
est centers, since J « {3. 

In the absence of the extra electron, the Hamiltonian 

(2) reduces to the Heisenberg Hamiltonian.l6 , 7 l We 
shall assume that in the absence of an extra electron 
the Hamiltonian (2) leads to antiferromagnetic ordering, 
and we neglect the zero-point oscillations of the spins. 
Then, in accordance with the foregoing, the wave func­
tion of the system can be represented in the form 

<I>= ~C'[l]ll), C'[l] == C'(gn, ... ,g.,t_ro), 

!l) = a;n• ana11n-1• crna;n-1• an-1. ~. a;t, a~ag'" aaa;~. a lag,, ala;o, -a,} 0). 
(3) 

Here Z-trajectory of the "extra" electron, l ={go, g1 , 

... , gn}; I 0)-wave function of the ground state of the 
antiferromagnetic (without the extra electron). The 
proper electron of the central atom go has a spin pro­
jection ao. The set of spin indices ak is determined by 
the following rule: a1 = ao; if the trajectory crosses it­
self on the k-th step, then ak = ak_ 1 , in all other cases 
ak = -ak-P The summation over gk in (3) is limited by 
the condition that the atom with number gk be the near­
est neighbor of the atom gk-u but must not coincide 
with gk_2. 

From (2) and (3), with allowance for the orthogonal­
ity of the states for the different trajectories, we obtain 
the energy of the system 

18 = p 2j C' [l'] C' [l] + 2]E1 (C' [l))2 , 

(1,1') I (4) 

where the trajectory l' differs from l by a continuation 
through one step, Ez-magnetic energy of the flipped 
spins on the trajectory l. In the three-dimensional lat­
tice, for trajectories without self-intersections and 
self-tangencies, Ez = 2J(z- 2)n + 2J, where n-number 
of steps on the trajectory l, and z-number of nearest 
neighbors. On the other hand, the energy of the trajec­
tories of the same length with self -intersections and 
(or) self-tangencies is smaller. 

We shall show first that the energy of the magnetic 
quasi-oscillator state is smaller than the energy of the 
electron calculated in l4 l. To this end we use a varia­
tional method, confining ourselves in (3) and (4) to tra­
jectories in which the number of steps does not exceed 
three. There are no self-intersecting trajectories in 
this case, but there is one type of trajectory with self­
tangency. Calculation yields 

~ :::: -3,7~ + 221. (5) 

From expression (5) we see that when J « {3 this value 
of the energy, being too high compared with the true 
value, is nevertheless lower than the value of the en­
ergy of the states obtained in l4 l. 

We obtain now an approximate solution of the prob­
lem such that it gives a lower estimate for the energy 
of the ground state of the quasi-oscillator. To this end, 
we break down all the trajectories into groups with 
fixed final point g. Such trajectories will be denoted 
Zg· It is convenient to make the substitution C'[ Zg] 
= 1/Jg C[ Zg ] such that 

~ (C[lg])• = 1. (6) 

'g 

The summation in (6) is over all the trajectories that 
emerge from the point 0 and terminate at the point g. 
The quantity 1/!g is the amplitude of the probability of 
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finding the extra electron in the site, independent of the 
path taken to reach the site. It is the exact analog of 
the ordinary wave function with discrete representa­
tion for the Schrodinger equation with the ordinary po­
tential that depends only on the point but not on the tra­
jectory. In this notation, the energy (4) becomes 

l = ~ 2} '(Jc'flg· 2: C [l0 ] C [lg·'] + h('(Jg)2 ~E1g(C [lg])2 • ( 7 '1 
(g.g') lgl'g' g lg I 

We now replace in the second term of (7) the values of 
the energy by the smaller values Kg = 2J(z - 2)mg, 
where mg is the smallest number of steps that lead to 
the point g (Kg-energy of the shortest trajectory lead-· 
ing to the point g; the values of the energy Ez on the 
remaining trajectories are larger than Kg). When such 
a substitution is made, all the trajectories leading to 
the point g become equivalent, and for each point 
C[ Zg] = canst = 1/VL"g, where Lg is the total number of 
trajectories leading to the point g. We shall now show 
that Lg = Lg'· Indeed, any trajectory leading to the 
point g can be continued into the neighboring point g', 
by making one more step, in a unique manner. At the 
same time, each trajectory leading to g' can be unique·· 
ly set in correspondence with a trajectory leading to g 
and differing from the initial one only by a single step 
from g' to g. Thus, we can establish a mutually-unique 
correspondence between the trajectories leading to two 
neighboring points: consequently, the total number of 
such trajectories is the same, Lg = Lg'· Hence C[lg] 
= C[lg'] = 1/v'Lg and by using (6) we get 

"' (8,'1 g = ~ ~ '(1g*1J'g· + kJKc('flc)•. 
<gg'> g 

When {3 » J we can go over to the approximation of 
the continuous medium and obtain for a cubic crystal, 
from (8), the equivalent Schrodinger equation 

-~d'fl(r) -6~\(J(r) + 8Jnp(r) = E¢(r). (9) 

For the s-wave Eq. (9) reduces to the Airy equation, 
and the energy of the ground state is 

fS = -6~ + 9.32~'"F'•. (10) 

We note that in the case of a strongly anisotropic 
crystal (for example, of the vo2 type), in which the 
Bloch integral f3x for the neighbors along the x axis is 
large compared with f3y and /3z, the motion of the elec­
tron can be regarded as one -dimensional. At the same 
time, the exchange integrals Jy and Jz will be as­
sumed to differ from zero, for in the other case there 
would be no magnetic ordering. In this case the one­
dimensional equation analogous to (9) turns out to be 
exact, since the magnetic energy depends here only on 
the final point of the trajectory Ezg = Eg = (Jy + J z) 
x (z - 2)g + 2Jx· The corresponding values of the 
ground-state energy is in this case 

~· = -2~x + 1. 02~;,t'[(ly + 1,) (z- 2)f''· (11) 

The occurrence of an auto-localized quasi-oscillator 
state leads to the formation of a region with partial dis­
order near the center of its localization. Using the ap­
proximation equation (9), we can estimate the value of 
the magnetic moment produced at the sublattice site by 
a single extra electron in the quasi-oscillator state. 
The change in the a.verage spin of the site located at a 

distance R from the localization center is 

A (SR') = 4n~• 5 ¢~(r) dr, 
I r I >R 

(12) 

Since the spin-flip probability at a given site is equal 
to the probability of the emergence of the x-ray elec­
tron to the outside of a sphere of radius R through 
this site. Averaging of this expression over the posi­
tion of the localization center of the quasi-oscillator 
gives at an extra-electron concentration n 

co 

A(S'>=nSdR S ¢2 (r)dr=n(~/J)'1•. (13) 
o I•I>R 

So far we have considered only the localized state of 
the quasi-oscillator. Such states with centers at differ­
ent lattice sites are equivalent, and therefore the quasi­
oscillator should move over the lattice. It is easy to 
verify, however, that if we confine ourselves to the con­
sidered class of functions (3) and do not take into ac­
count the zero-point oscillations, then, in analogy with 
[4 J, in first order in H' there will be no transitions 
from center to center, since 

($giH'I<l>g·) = o for g =F g', 

where <l>g is the wave function of the quasi-oscillator 
(3) with center at the site g. 

Our analysis was limited to the case T = 0. It is 
clear that when T >TN the antiferromagnetic ordering 
vanishes, and the quasi-elastic force localizing the 
electron vanishes with it. Therefore we can expect that 
when T » TN the extra electron will move over the lat­
tice freely, with minimum energy ( -6 {3). Thus, on go­
ing through the Neel point, the minimum excitation en­
ergy decreases by an amount ~ {3 1 / 3 J 2 / 3 • This result, 
in a somewhat different model, is analogous to the re­
sult obtained in [4 J, and can be connected with the ex­
perimental data on the change of the energy gap in a 
number of antiferromagnetic semiconductors on going 
through the Neel point.[s, 9 J 

In conclusion, we are grateful to L. V. Keldysh for a 
useful discussion. 
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