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This paper considers the distribution function for fast electrons and the concentration of atoms in the 
first excited level in the case in which the first excitation potential exceeds the mean electron energy. 
It is shown that in a number of cases the transitions of atoms between excited levels can lead to a 
Maxwellian electron energy distribution for arbitrarily weak electron- electron collisions; on the 
other hand, if these transitions are not taken into account, it is possible to obtain arbitrarily large 
deviations from a Maxwellian distribution. The electron temperature below which the spatial inhomo
geneity of the fast electron distribution function can be neglected is also estimated. 

THE problem of determining the electron energy dis
tribution in a weakly ionized plasma has been considered 
by a number of authors. 1 1-4 1 The basic factor that causes 
deviations from a Maxwellian distribution in such a 
plasma is the inelastic collision mechanism for colli
sions between electrons and atoms. It was assumed 
there that the plasma is homogeneous (the necessity for 
this condition is treated in the Appendix). 

It was also assumed in the work cited above that the 
slow electrons, with energies much below the first exei
tation potential E1, exhibit a distribution function that is 
essentially Maxwellian at temperature T with kT « E1; 
on the other hand, in the kinetic equation for electrons 
with energies ~ E1 account is taken of inelastic electron
atom collisions, characterized by transitions between 
the ground level and the first excited level, as well as 
diffusion of electrons in energy space as a consequenc:e 
of electron-electron collisions which lead to the produc
tion of fast electrons, i.e., electrons with energy greater 
than E1. 

Mo1zhes et al.151 have used a similar method to sollve 
the self-consistent problem for a cesium plasma, that is 
to say, they found the electron distribution function to-
gether with the atomic distribution over the excited 
levels under conditions in which the mechanism for 
violation of equilibrium in the system is the nonequili
brium ionization. In this case the density of free elec
trons is smaller than the equilibrium value given by the 
Saha formula. The number of fast electrons and the as
sociated number of atoms in the first excited level was 
determined from the balance in the later production of 
fast electrons due to diffusion in energy space and the' 
loss of fast electrons due to atomic transitions between 
the ground level and the first excited level. The diffu-
sion is due to electron-electron collisions and is pro
portional to N~ (Ne is the density of free electrons) 
while the loss of fast electrons is proportional to N0N,e 
(No is the concentration of atoms in the ground level). 
Hence, as the degree of ionization Ne/N0 is reduced, the 
number of fast electrons approaches zero in this formu
lation of the problem. This result, which follows from 
the work of Motzhes et al. 15 1 is found to be incompatible 
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with a more rigorous numerical calculation carried out 
in1 6 1 for the same conditions on an electronic computer, 
in which all transitions for 40 excitation levels were 
taken into account in the kinetic equation. These calcu
lations show that the number of fast electrons remains 
the same as for a Maxwellian distribution function even 
in the case Ne/N0 - 0, in which electron-electron colli
sions are not important (radiation effects are not con
sidered in151 or161 ). 

The purpose of the present work is to show that the 
results of1 6 1 can also be obtained by means of the model 
used in1 1-5 1; it is shown, however, that it is necessary 
to take account of the production of fast electrons in 
collisions of electrons with excited atoms, these colli
sions leading to the transition of the atom from one ex
cited level. to another (by analogy with optical transitions 
we will call these nonresonant transitions, in contrast 
with the resonant transition between the first excited 
level and the ground level). In general, the product~on of 
fast electrons in nonresonant transitions is much weaker 
than the production or loss of a fast electron due to 
resonance transitions which were taken into account 
earlier. However, the change in the number of fast elec
trons due to resonant transitions is not determined en
tirely by the total number of such transitions, but by the 
difference in the number of transitions in the upward 
and downward directions. This difference is equal to the 
flux of atoms over the spectrum from the first excited 
level to the continuum, that is to say, the ionization rate 
(this follows directly from1 51). If the ionization rate 
is smaller than the number of nonresonant transitions of 
atoms due to collisions with electrons with energy ~ E1, 
as is the c:ase in cesium, the nonresonant transitions in 
collisions are found to produce a Maxwellian electron 
distribution function. Although the simplified model 
used below is obviously not quantitatively as rigorous 
as the numerical method used in the earlier work16 1 it 
is more lucid and provides the possibility of determining 
the physical pattern of the effect which is responsible 
for produc:ing the Maxwellian electron distribution func
tion solely by means of inelastic electron-atom colli
sions. Using this approach without repeating the numer-
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ical calculations such as those in16 1 , we can also esti
mate the distribution function for a gas which is differ
ent from cesium. 

Within the framework of this model, as will be seen 
below, it is also an easy matter to take account of radia
tion. 

We introduce the quantity II{ E)= f(E)/fM(E), which 
characterizes the deviation of the electron energy dis
tribution function f( E) from a Maxwellian distribution 
fM(E), and the quantity Yi = N/NP which characterizes 
the deviation of the atomic population Ni in the excited 
level from the equilibrium Boltzmann value 

N B N g; ( E;) ; = og.-exp -kT . 

Here, go and gi are the statistical weights of the 
ground level and the i-th level. In the first excited level 
i = 1. As shown in1s 1 , for weak electron-electron colli
sions 11( E) is given approximately by 

v(e) = { 1, 

Yt, 

s<Et 

s>Et ' 

while the rate of production of fast electrons due to 
diffusion in energy space is 

(1) 

D(Et) (2) 
/,(Et) = kT /M(Et) (1- Yt), 

where D(E) is the diffusion coefficient, which determines 
the diffusion flux Ie(E) = -D(E)fM(E)dv/dE in the energy 
space E. 

As we have already indicated, the rate of production 
of fast electrons Ie(E1) is equated in1 s 1 to the loss due 
to inelastic collisions associated with the resonant tran
sition, which in turn, is equal to the flux of excited 
atoms from the first level to the continuum, that is to 
say, the generation rate. If recombination is neglected 
the generation rate J can be written in the form 

I= QNoN.vy~, (3) 

where v = (8kT/7Tm) 112 is the thermal velocity, k is the 
Boltzmann constant, m is the electron mass, and the 
cross-section Q depends only on the temperature. 

It can be shown that if approximate account is taken 
of the nonresonant transitions, Eqs. (1)- (3) which follow 
from1 s 1 , still apply. However, the diffusion coefficient 
D(e) in Eq. (2) must be written in the form of a sum of 
coefficients De( E) which determine the contribution from 
electron-electron collisions already taken into account 
earlier [ cf. Eq. (2) for D( E) in1 s 1] and the coefficient 
Dinel(E), which determines the total flux of electrons 
through the energy surface E due to nonresonant atomic 
transitions: 

D(e) =De( e) + Llinel/(s). (4) 

In particular, transitions between excited levels i and 
k produce an electron flux Iik in energy space: 

(5) 

where aik(E) is the cross-section for a transition from 
the level i to the level k; Ni and gi are the concentration 

and statistical weight in the level i; Eik is the energy 
for the transition from level i to level k. The calcula
tions show1 6• 7 1 that for a Maxwell ina distribution func
tion in which the electron temperature is not too high a 
number of the lower excited levels characterized by 
i :s ip have a population which is close to the equilibrium 
population given by the concentration in the ground level 
and the electron temperature, that is to say, Yi Rj 1. In 
this case the energy of the transition between these 
levels is comparable with kT and smaller than E1. Thus, 
transitions between these levels occur by virtue of slow 
electrons with E < E1 and for deviations from a Max
wellian distribution in the region of fast electrons 
E > E1 [cf. Eq. (1)] the excited levels i :s ip (including 
the first excited level i = 1) remain in equilibrium be
tween themselves and the ground level. In other words, 
for these levels Yi Rj Y1 (y1 < 1). The sum Iik over the 
level indicated above for the group of low excited levels 
can be expressed in terms of dv/dt: if we use the follow
ing approximation in Eq. (5): v(E'- Eik) is replaced by 
ll(t:') - Eikdli(E)/dE: 

~ I;• = -Dmel(e)/M(e) dv, (6) 
t<l<h<i • de 

where 

Substituting Eq. (4) in Eq. (2) and taking account of Eq. 
(6), we obtain the following expression for Ie(El): 

I.(Et) = (Q.N.2 + ~ineJ\l"oN.yt)v(i- Yt), (7) 

where the cross-sections ~and ~nel depend only on 
the temperature and are related to the appropriate 
diffusion coefficients: 

(8) 

Using the relation Ie(EI) = J for Y1, we obtain a quad
ratic equation which has the single positive solution 

Yt=~[1-y--Q,N. +{(1-y- Q.N. ) 2 +4 Q.N. }'''],(9) 
2 · QineljNo QineltA'o Q,ineltA'o 

where 

'Y == Q / Qinel (10) 

The behavior of Y1 will be different as Ne/No- 0 for 
different values of y. When y » 1 Eq. (9) is equivaJent 
to the expression obtained in1s 1 for weak electron-elec
tron collisions: 

1 (11) 
Yt =·:-1 +-;--;Qo;-;N.,--o/"Qoc-.N; 

In this case it is not necessary to take account of non
resonant transit~ons and Y1 ~ Ne/No when Ne/No- 0. 
If y < 1, then when Ne/No- 0 the quantity Y1 approaches 
the limiting value 1 - y. For this reason, if the parame
ter y is small the deviation from the Maxwellian distribu
tion does not appear in spite of the fact that electron
electron collisions become very infrequent as Ne/No 
-o. 

In order to estimate y, in addition to knowing ~nel• 
we must know the effective cross section Q which char
acteriz~s the ionization rate J [cf. Eq. (3)]. In cesium 
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the value of Q can be taken to be that obtained by the 
numerical calculations16' 8 1 for a Maxwellian distribution 
function, in which case Y1 is close to unity. In Fig. 1 we 
show (solid curve) the dependence of Q on temperature 
in accordance with curve 9 of Fig. 2 of1 6 1 , where the 
ionization probability and the probability for transitions 
between excited levels have been computed by the class
ical Thomson relation. In the same figure the dashed 
curve shows the values of Q as computed by means of 
detailed balance and the formula for the recombination 
coefficient ap taken from Gurevich and Pitaevskii'1 9 1• 

In accordance with the principle of detailed balancilllg 
we have 

where 

Nes={(2nmkT)')voexp (_ Eton )}''• 
h2 ·, kT 

is the equilibrium density of electrons or an atomic 
concentration No in the ground level. 

Usin§ Eq. (5) for ap from19 1 and substituting in it the 
value Ne in place of Ne we obtain the following expres
sion for Q: 

= 4l'2n'i• eiOZ3m'l•ln l'ZZ + 1 (.:._ Eton ) 
Q · 9 h3 (kT)'h exp kT ' 

where Z is the ion charge (in cesium Z = 1). 
In the work of Gurevich and Pitaevski1 19 1 the discrete 

spectrum of energy levels for the excited states has 
been replaced by a continuum and this is valid for tran
sition energies Eik « kT. For the temperature shown 
in Fig. 1 in cesium the quantity Q is limited by the tran
sition probability in the upper part of the spectrum 
where Eik is comparable with kT (c£. 161 ) while the en-· 
ergy spectrum differs from a hydrogen-like spectrum. 
The small differences between the curves in Fig. 1 
show, nonetheless, that taking account of the actual dis
crete structure of the spectrum under these conditions 
yields small corrections and one can use the formulas 
from 191 for those gases for which the calculations sim
ilar to those carried out in1 6 1 have not been carried out. 
In accordance with Fig. 1, the quantity Q- exp(-E*/kT) 
where E* - 3 eV and is close to the ionization potential 
for cesium Eion = 3.98 ev. The quantity ~nel 
- exp(- 2E1/kT) in accordance with Eq. (8) so that y and 
its dependence on temperature are a function of the 
ratio Eion/E1. The trend toward a Maxwellian distribu-
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tion due to nonresonant transitions must be stronger for 
larger ratios of Eion/Er, in which case y is small. The 
ratio Eion/E1 for the alkali metals is larger, for exam
ple, than for the inert gases or hydrogen. Thus, for 
cesium y is smaller than unity up to a temperature of 
4000° K and this explains the results of the numerical 
calculations in1 6 1• 

We now consider the situation in which radiative tran
sitions from the first level are important (resonance 
lines) but in which radiative transitions from higher 
levels remain rare compared with the collision transi
tions to these same levels. This situation will apply in 
a plasma which does not have high optical thickness, in 
which case the absorption of the resonance lines is not 
very large. In this case, as before, we can use Eq. (3) 
for the flux of atoms from the first level to the con
tinuum but it is now necessary to take account of radia
tion in the balance relations; in· place of the relation 
Ie(E1) = J we now have Ie(E1) = J + G where G determines 
the loss of excited atoms due to radiation: 

G = Nt / 'tt = YtZNov, 

g1 exp(-E1/kT) 
Z= o "'"V 'i 

(12) 

where T1 is the effective lifetime in the first level (tak
ing account of absorption). As before, y1 will be deter
mined by a quadratic equation whose solution is of the 
form given in (9); the expression for y given by (10) 
now becomes 

QN.+z 
y=.--. 

Qinel Ne 
(13) 

It is evident that as Ne is reduced the value of y increa
ses and when y > 1 the nonresonant transitions between 
excited levels can not bring about a Maxwellian distri
bution for the electrons and need not be taken into ac
count. For large values of y, taking account of the 
change from (10) to (13), we find that (11) is replaced by 

= ( 1 + QN.No+ zNo)-• 
Y1 Q.N.2 • 

(14) 

In all of the relations given above it is not necessary 
to know the cross section for transitions between the 
ground level and the first excited level. These are ac
tually assumed to be infinitely large. In those cases in 
which the intensity of Coulomb collisions exceeds the 
intensity of collisional transitions from the ground level 
to the first excited level and back, the optical deexcita
tion does not have an effect on the shape of the distribu
tion function. 

APPENDIX 

EVALUATION OF SPATIAL TRANSPORT OF FAST 
ELECTRONS 

In the present work, as in1 1-5 1, it is assumed that for 
the fast el1~ctrons the spatial transport is small com
pared with the transport in energy space. In order to 
evaluate the validity of this assumption we consider two 
equations121 for the isotropic f0 (t:) and anisotropic f1(t:) 
parts of the electron distribution function f0 ( e) + f1( e)vx/v 
where v and Vx are the modulus of the electron velocity 
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and the component in the x direction: 

~ 1/28 ( !l.!_ + dqJ ~ iJ(fte)) = S(/o(8) ), (A.1) 
3 Vm ,ax dxe 88 

8fo · dqJ 8fo it 
a;+ dx a;=·- L(s). (A.2) 

Here, S[fo(E)] is a collisional term, which takes account 
of electron collisions and inelastic electron atom colli
sions, cp(x) is the potential associated with the electric 
field, and L(E) is the relaxation length for the momen
tum. We will assume the highest general power depen
dence of L(E) on energy, that is 

L(e) = Lp8P. (A.3) 

In (A.2) we substitute a Maxwellian distribution func
tion in place of fo(E). Then, using (A.2), we can express 
f1(E) in terms of the gradients of Ne, T and cp, relating 
the current 

"" 
Ie ~ ~ f<(e)ed8 

0 

and the flux of electron kinetic energy 

P. ~ r /t(8)s2de 
0 

with f1(E) and expressing f1(E) in terms of Ie, Pe and 
dcp/dx. Substituting f1(E) in (A.1) we have 

fM(II) {die [ (~)p+'/, _ (--'=- y+'!.J 
(p+1)1 dx (p+S) kT kT1 

-~(dP,_Ie dqJ)[(~)P+'!. __ 1 (~)P+'I'] 
kT dx dx kT p + 2 , kT 

3((p+2)I.-P./kTf[ ( 8 )P+'!. 
+ N.i(k1')v(p+2)! -(p+a)(P+ 2) kT 

+2(p+3) (~)P+'!._ f~)p+'!.]+~ dqJ[Ie(P+3)-~J 
' kT \JkT · kT dx kT 

r ( II )p-'/, ( 8 )P+'/, 1 ( 8 )p+'!.]} 
. L (p+i) kT - 2 kT + p+2 kT =S(fo(8 )). 

(A.4) 

The first two terms in (A.4) are related to the ionization 
rate J, the loss of excited atoms by radiation G, and the 
balance of particles and electron energy: 

die 
ax='· 

(A.5) 

Thus, two terms in (A.4) determine the spatial trans
port associated with the nonconservation of particle flux 
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and energy flux associated with the ionization and radia
tion. These are always present and depend on the con-
centration and temperature at a given point. The ,UI 

remaining terms on the left in (A.4) depend on the 
proximity of the boundaries and external electric fields 
applied to the plasma, and will not be considered further. 

The number r of fast electrons that appear at a given 
point by virtue of spatial transport is obtained by inte
grating the first two terms on the left side of (A.4) with 
respect to £,using the limits E1 and infinity. For integer 
p we have 

. r~'1 (E'); 1 (E')P+2l ( E,) 
I=-/L,":0T! kT -(p+1)1 kT J exp -kT 

( / E;on . E,) 1 (E')P+2 ( E1 ) 
+ kT . + G kT (P + 2)1 kT exp - kT . 

The quantity r can be neglected if it is small compared 
with J and G. In Fig. 2 we show the dependence of r /G 
on E1/kT for p = 0 and p = 2 for small values of J. The 
case p = 0 corresponds to scattering from hard spheres 
and the case p = 2 approximates Coulomb scattering. It 
follows from Fig. 2, for example, that for Coulomb 
scattering with Et/kT < 10.4 the ratio r /G > 1, that is 
to say, it is not possible to neglect the spatial inhomo
geneities in considering the deviation from Maxwellian 
distributions due to radiation. A corresponding tempera
ture for hydrogen, for which E1 = 10.2 eV, is 
T = 11,400°K while for cesium T = 1540°K 
(E1 = 1.38 eV). It should be noted thanhe spatial flow 
of fast electrons associated with ionization and radiation 
leads to enhanced loss of fast electrons, this being the 
mechanism that produces the deviation from a 
Maxwellian distribution. Hence, situations in which 
these flows must be taken into account do not eliminate 
the possibility that the distribution function can be a 
good approximation to a Maxwellian distribution; rather, 
they only indicate the possibility of a deviation. 

I am indebted to G. E. Pikus for direction of this 
work and to A. v. Gurevich and F. G. Baksht for valua
ble discussions. 
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