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A detailed analysis is presented of the influence of suppression of inelastic scattering channels [IJ on 
the character and energy dependences of Bragg reflection of y quanta from perfect single crystals in 
the presence of resonance nuclear and Rayleigh electron scattering mechanisms. It is shown that if 
the Bragg condition is satisfied exactly total reflection should be possible (and hence suppression of 
inelastic reaction channels) even in the case of a pure resonance interaction between the y quanta 
and the nuclei, irrespective of the relation between the cross sections for the elastic and inelastic 
processes. A general analytic expression is derived for the (angular) integral intensity of Bragg re
flection for arbitrary relations between the imaginary and real parts of the dynamic equation coef
ficients. The influence of interference between nuclear and electron scattering on the curves for re
flection from perfect crystals is analyzed in detail. A brief analysis of interference is presented for 
the case of mosaic crystals and the interference curves are compared for perfect and mosaic 
crystals. 

1. INTRODUCTION 

THE dynamic theory of y quanta moving in ideal 
crystals and interacting in purely resonant fashion with 
the nuclei was developed inC1J. It was shown there that 
under certain conditions it is possible to suppress 
fully (or partially) the inelastic scattering channels in 
such systems, i.e., to alter radically the character of 
the nuclear reaction. This effect of suppression of the 
inelastic channels is connected with the fact that when 
the particles move in the crystal in a direction close 
to the Bragg angle, a major change occurs in the par
ticle wave function. As a result, the amplitude of pro
duction of the excited nucleus turns out to be close to 
zero, causing suppression of the inelastic channels of 
the reaction. This effect remains in force also when 
the atoms in the crystal oscillate, and also for arbi
trary values of the spin of the ground state of the 
nuclei and the resonant-isotope concentration. A simi
lar phenomenon takes place also in the case of reso
nant scattering of neutrons in the crystalC2J. 

In[lJ the problem was considered only for the case 
of passage of y quanta through the crystal. It is 
natural to ask how this effect influences the character 
of the Bragg reflection of Mossbauer resonant radia
tion. The answer to this question is all the more inter
esting since experimental studies of resonant Bragg 
scattering using Mossbauer radiation have been re
cently initiated. The corresponding problem is analyzed 
in detail in Sec. 2. 

Gamma-quantum scattering in a crystal is charac
terized by interference between the resonant nuclear 
and Rayleigh electron scattering. The interference was 
studied in a number of investigations at the University 
of Birmingham (see, e.g.p- sJ). The picture of the in
terference was clearly outlined in a recent paper by. 
Vo'itovetskii and co-workersC6J. 

In Sec. 3 we analyze the influence of the dynamic 
character of scattering in a thick crystal on the picture 
of Bragg reflection in the presence of interference be
tween the Rayleigh and nuclear scattering. 

Scattering differs greatly in thick ideal and mosaic 
crystals. To display this difference, we present in 
Sec. 4 a brief analysis of the influence of the mosaic 
structure. In Sec. 5 we compare the pictures of scat
tering by ideal and mosaic crystals, using as examples 
reflections from tin and iron crystals. We emphasize 
that the experiments performed to date were made on 
crystals with a highly developed mosaic structure. 

2. RESONANT BRAGG SCATTERING OF GAMMA 
QUANTA BY A THICK CRYSTAL 

A. We consider a crystal in the form of a flat plate 
of thickness l. For the dynamic problem of the motion 
of gamma quanta inside such a crystal we can use the 
results of[1J 1 >. However, bearing in mind the reflection 
problem ( {3 < 0), we must modify the boundary condi
tions: 

R~'l + Ef> = iff 0,, E,t!> exp(iz}'l I)+ E,~> exp (iz,(2)Z) = 0; (2 .1) 

z~t.2> = xe~~2> /vo. (2 .2) 

(We use the notation of I throughout.) 
For an electric field in a crystal with polarization s 

we have the following expression: 

E,(r) = i§0,e''' [e,\jJ0(r) + e1,eiK,r\jJ1(r)], (2.3) 

¢ 0 (r) = [ (2e~2j -<roo) exp (tz!2> l + iz!'l nr)- (2~!> -goo) exp(iz!'l l + izf> nr)] 

X[(2e~2! -goo) exp (iz;2>l)- (2e~? -guo) exp (i;:>z)]-1, (2.3') 

Wt(r) =- ~gto' [exp (iz!2>t + iz!'>nr) - exp (iz!'> l + iz~ nr)]· 

X [ (2eo~>- goo) exp (iz!2)l) - (2eg>- goo) exp (iz,<qz)l-1. (2 .3") 

The values of the roots EM; 2 > are determined by 
expression I (3 .10). The quantities g~f3' which are 
fundamental for the problem considered here, can be 
represented in the presence of a resonant nuclear and 
electron scattering in the form 

0This paper will henceforth be cited as I. 
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I( a~'=~ Lexp [i(k~- k,.) p;l{ 1') exp [- !_z;(k,.)- _!_z;(k~) J 
x2~ . 2 2 

' 
X /ni'(ka, kp) + exp [- +z;(ka- kp) J /e;'(k,., kp)} (a,~= 0, 1). 

(2.<1) 
Here f~j and f~j are the coherent parts of the am

plitudes of nuclear and electronic scattering by the 
j -th atom in the unit cell, with ( li = 1) 

f •k k --~ r, .. 21+1_ '( c. 
n; (a, e)- 2x (J)-(J)o+if/22(2lo+1)Pn a,~) '' 

where Cj = 1 for the unit-cell sites containing reso
nantly scattering nuclei, and Cj = 0 for the remaining 
sites ( 7]--concentration of the resonant isotope), r 0 -

classical radius of the electron, Fj ( q) -atomic factor 
of the j-th atom in the unit cell, ps(a, (3) and 
P~ (a, f3) -polarization factors. n 

Mossbauer nuclei are characterized by transitions 
of the type E1, M1 and E2. In this case p~ ( a, f3) has 
the following values: 

Transition: Et Mt E2 
s= 1: 1 cos q>a.3 cos <pct,B 

•=2: COS cpcqi 1 cos 2<pa,3 

The quantities p~ (a, f3) coincides with the values 
p~ ( a, f3) for the E 1 transition. 

(2 .B) 

Using formula (2 .3), we can easily find expressions 
for the intensities of the reflected ( P1s) and trans
mitted ( Pas) y -quantum fluxes: 

!.::_= l~llg!O'I'·J 1-exp[i(zf>-z!'>)l] j' 
los (2e<:~--goo)-(2e~]-g00)exp[i(z<;>-z(:>)i] ' 

(2. '7) 

{I) {2) . (2) 

_!"'-= 4 1-----~~)exp(tz, I) J 2 • ( 2 .:3) 
los (2e<~;-l(oo)-(2e~~-goo)exp[i(z~>-z~>)i] 

B. Let us consider the case of a thick crystal, for 
which the condition 

<'! <'> xi <•> (t) Im(zs -z, )1=-lm(eos -eos )~1 
Yo 

(2.!l) 

is satisfied (we assume here and throughout that the 
index 2 pertains to the root with the larger imaginary 
part). Then 

P,, 
los 

l~llg10sl 2 

l2e~~- gool 2 
(2 .10) 

or, with allowance for the explicit form for E~~>, I(3.10), 

Pts 411(10'1' 
T.: TU_:_ 21(oo ± [ (a --==2-go.:...,o ):-::2----:-41(-ot-'1(-,o-:•]"'"''•""'12 

(2 .11) 

where a = K1 ( K1 + 2K) /K 2 characterizes the deviation 
from the Bragg condition ( Kd21T-reciprocallattice 
vector). The sign in front of the root is chosen such 
that the imaginary part of the root is negative. (In 
obtaining (2.11) we have confined ourselves, in order 
to simplify the problem, to the symmetrical case of 
scattering, when f3 = - 1, and assumed that the condi
tion goo = gll is satisfied). 

At a y-quantum energy close to resonant, the imag
inary part of the electronic scattering amplitude can 
be practically always neglected compared with the 
imaginary part of the nuclear amplitude. 

Let the nuclear transition be of type E1 or Ml. 
Then p~ (a, f3) = 1, for one of the polarizations, and 
the nuclear amplitude for this polarization does not de
pend on the direction of the vectors ka and k(3. We 
shall confine ourselves henceforth to crystals for which 
we can select the reflection in a manner such that 

exp (iK,p;) = 1, 

exp [ - 1/zz; (ko)] = exp [ - 1/ 2z; (k1)] 

for all atoms in the unit cell. We then obtain from 
(2.4) and (:2.5) for this polarization 

(2.12) 

(2 .13) 

A direct analysis of (2.11) shows that when (2.13) is 
satisfied there always exists an angle 

ao = 2 (goo' - g10•'), (2 .14) 

at which total reflection takes place, i.e., 

P,,f los= 1. 

We emphasize that this situation is realized for an 
arbitrary ratio of the amplitudes of the electronic and 
nuclear scatterings. The result is a direct consequence 
of the effect of suppression of inelastic channels in 
complete analogy with the case of Laue diffraction 
(see I). 

For the other polarization in the case of E1 and 
M1 transitions, and for both polarizations in the case 
of an E2 transition, the second relation of (2 .13) is not 
satisfied, and as a result we have 

P,,f los< 1 

for all values of a. The maximum possible value of 
the reflected intensity depends to a considerable degree 
on the ratio 

(2 .15) 

Figure 1 shows the dependence of P1s/Ios on a for 
the case of purely nuclear scattering and for several 
values of the parameter ps, corresponding to different 
values of the polarization factor (continuous curves). 
The energy of the y quanta is assumed to coincide with 
wo, in other words, the parameter 

V=2(ffi-ffio)/f (2 .16) 

is assumed to vanish. (The abscissas represent the 
quantity a/ go, where go = I goo ( w = w0 ) j.) The curves 

-J -z -1 /} z J 
rf./5'o 

FIG. I. 
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-J -J -! I! J J, 

FIG. 2. 

demonstrate clearly the difference in the character of 
the behavior of the reflected intensity as a function of 
a at small deviations from the Bragg condition, in the 
case when the inelastic channels are suppressed fully 
( pS = 1) or partly ( pS f 1). We note that for small 
values of a and when ps = 1 we have 

(2 .17) 

If V f 0, then the dependence of P1s /los on a be
comes asymmetrical. This is clearly seen from the 
curves of Fig. 2, which shows plots of the reflected 
intensity against the parameter 

a- 2(goo'- gw''p•) 
X=· 

go 
(2 .18) 

for ps = 1 and ps = 0.9 and for two values of the 
parameter V. (It should be noted that the curves re
main unchanged when V is replaced by - V and x is 
simultaneously replaced by - x.) This character of 
the dependence is due to the fact that by varying V we 
change the ratio of the real and imaginary parts of the 
scattering amplitude. The sensitivity of the scattering 
picture to the value of the parameter V leads to a de
pendence of the reflected intensity on the energy dis
tribution of the incident beam. In the absence of hyper
fine splitting in a thin Mossbauer source it can be as
sumed that this distribution has a Lorentz form 

l (w) - I f' /2n 
os - Os (w-wo')"+ f'2/4 

(2 .19) 

where r'-width and w6-center of the source line. 
Figure 1 shows also a plot of P1s/los against a, ob
tained after averaging over the distribution (2.19). The 
corresponding curves (dashed) were plotted under the 
very simple assumptions that r' = r and w6 = wo. 

If {3 f - 1, then the picture becomes more compli
cated. Now in the analysis of (2.10) it is necessary to 
use the general expression for E~~ 2 ): 

erf:'2) = 1/.{goo -I ~lgu +I~~ a± [(goo -I~ I gu +I~~ a)" 

-41 ~~ (gooa- L\')]''•}. (2 .20) 
It is easy to see that for arbitrary {3 the imaginary 

part of one of the roots vanishes only if 

(2 .21) 

The equality (2 .21) is satisfied when pS = 1 and the 
scattering has the purely nuclear character. If, on the 
other hand, the electronic scattering is significant and 

g~; f g~0 , then the reflected intensity does not reach 
unity for any value of a. Consequently, in the case 
{3 f - 1 the suppression of the inelastic channels is de
creased in the simultaneous presence of nuclear and 
electronic scattering. 

It is interesting to note that in a non -cubic crystal 
the anisotropy of the Mossbauer-effect probability 
( exp [- z ( ko)] =f exp l- z ( k1)]) can lead to g6~ 
= I {3 I g1'1 at a certain temperature even when I {3 I f 1. 
When ps = 1 we also have g6~gf\ = g~tg~o''. (It is as
sumed throughout that the first of the conditions in 
(2 .12) is satisfied.) An analysis of the expression (2 .20) 
shows that in this case both roots E~~ 2 ) are real when 
a 0 = t::.s"/g6~. Thus, in this case the maximum reflec
tion intensity as a function of the crystal temperature 
will pass through a maximum, at which P1s/los = 1. 

We have considered so far the case of ideal colli
mation of incident beam. A real incident beam as a 
certain finite aperture angle :::.e. The integral in
tensity r1s depends significantly on the ratio of the 
angular width of the Bragg maximum :::.eB and of the 
collimation :::.e of the incident beam. 

Let us determine the integral reflected intensity in 
the case when as before, we confine ourselves to the 
case of symmetrical reflection ( {3 = -1) and we 
assume the following conditions to be satisfied: 

Since we can put de = - ( 2 sin 2() B) -l da near the Bragg 
angle, it follows that 

R,,=f-P~s(O)d0=,_2lg•~r1 da .. 
-oo lo.. sin20B -oo la-2goo±[(a-2goo) 2-4(gw') 2]'1•1 2 

(2 .22) 
The integral in (2.22) can be expressed in terms of 
elliptic integrals. As a result we get 

where 

Bl g, •• I 
R,,=-3 . "O F(p',u'), 

, S1llJ.J B 

(2 .23) 

F(p, u) = (u' + p')-''•{ (u2 - 1 - p') (u2 + 1) '"E(k) 
-•j,n(u'- p")- (1- p2) (u2 + 1)-'!.[(2u2 -1)K(!:) 

-3u2IIt(-p2, k)]}. (2.24) 

Here K(k), E(k), and ll1( -p2 , k) are complete 
elliptic integrals of the first, second, and third kind, 
respectively[7 ' a], 

us=- g10s' 
goo" ' 

( u' + p' )''• k= ~-. 
u2 + 1 

When ps = 1 expression (2.24) reduces tc.. 

(2.2 5) 

3 u2 - 1 3 3u 
F(1 u)= 1--n------~~+----ln[(u2 +1)'i•+u]. 

' 4 (u2 +1)'" u2 +1 (u2 +1)''• 
(2.24') 

Expressions (2.23) and (2.24) make it possible to 
analyze the character of the dependence of R1s on V. 
Let us consider the case of pure nuclear interaction 
(in this case us = pSV). It is easy to see that for 
large I V I we have 

Rt,- 11 !VI. 

This type of behavior differs strongly from the case of 
a thin crystal, when the integral intensity, obviously, 
is proportional to the cross section for the scattering 
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s<nZI, R 
9u Is 

FIG. 3. 

by an individual nucleus and when I V I >> 1 we have 

Rts ~ 1/ V". 

Figure 3 shows the corresponding R1s ( V) curves 
for a thick crystal at three values of ps. It is seen 
from the figure that in the case of a thick crystal the 
dependence of the integral intensity R1s ( V) on the 
parameter V is not Lorentzian, and the width of the 
curve (defined at half the height) increases strongly. 
Thus, when ps = 1 it is approximately four times 
larger than in the case of a thin crystal. 

3. INFLUENCE OF INTERFERENCE BETWEEN THE 
RESONANT NUCLEAR AND RAYLEIGH ELEC
TRONIC SCATTERING 

So far we have considered principally resonant 
nuclear scattering. In this section we shall stop to 
discuss the features of the Bragg scattering in a thick 
crystal when interaction between the y quanta and the 
electrons is simultaneously present (we shall neglect, 
however, the imaginary part of the electronic ampli
tude). 

We confine ourselves to the case when conditions 
(2.12) are satisfied and the scattering has a symmetri
cal character. To describe the relative rule of the 
electronic scattering, we introduce the parameter 

a = - (g!O'')e /go (3 .1) 

(see (2.4)). When a f 0, a strongly pronounced inter-
ference arises between the electronic and nuclear 
scattering. This is clearly seen in Fig. 4, which shows 
P1s ( x)/Ios as a function of x for the cases a= 1, 
ps = 1 and 0.9, at three values of the parameter V. 
The role of the interference is manifest in these curves 
in their appreciable dependence on the sign of V. 

The interference between the electronic and nuclear 
scattering is clearly pronounced also on the integral 

--Ps"', 

---pS={/.9 

-7 -(i · .f ·4 - J -Z -I 0 

FIG. 4. 

R15 iVJ-R15 t=i 

R1sf=J 

--pS=I 

-- -~~5 =fl.s 

Z(J V 

FIG. 5. 

intensity of the reflection in the case of broad collima
tion of the incident beam, as a function of V. The cor
responding curves are shown in Fig. 5. 

If we compare the presented results with the curves 
of Fig. 3, then we are struck with the fact that the in
terference effects are strongly pronounced even at 
small values of the ratio of the electronic to nuclear 
amplitude. With increasing a, the maxima of the 
curves decrease rapidly, and the curves themselves 
begin to recall more and more the curves of the ordi
nary Mossbauer absorption. It should be noted, how
ever, that the dip still remains asymmetrical even when 
a>> 1, and the position of the minimum turns out to be 
shifted somewhat from V = 0 ( V min ~ -0.2). This 
result follows directly from formulas (2 .2 3) and (2 .24), 
which for a>> 1 assume the following form: 

R,,=~(:a+_E'V-3n/4) (3.2) 
3sin28B V2 +1 

4. INFLUENCE OF THE MOSAIC STRUCTURE OF THE 
CRYSTAL 

If the erystal has a noticeable mosaic structure, 
then the picture of the scattering by a thick crystal 
changes noticeably compared with the value obtained 
in the preceding sections. We again consider a crystal 
in the form of a flat plot consisting of blocks of small 
dimensions with characteristic thickness do 
« 1/ K I goo J. The dynamic effects in scattering by an 
individual block do not play any role here (primary 
extinction is neglected). Let the characteristic dis
orientation angle of the blocks 15 be large compared 
with 1/ Kdo. Then all the blocks can be regarded as 
scattering: incoherently and we can use the simplified 
system of equations for the intensities Pas ( y, w) (see, 
for example,C9J): 

dPos(y,w) (~-'(w) ) P ( .) ---- =- -----+r,(w) P0,(y,w)+r,(w) "y,w, 
dy Yo 

dP,,fy,w) (~-'(w) ) ( ) 
---' -= --+r,(w) P,,(y,w)-r,(w)Pos(y,w) 4.1 

dy "" 
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with boundary conditions 

Po,(O, ffi) = los(ffi), P,.(l, ffi) = 0. 

(Here it is assumed again that {3 = - 1.) 
Let the collimation angle of the primary beam Jl(} 

be smaller than o, but much larger than the interval 
of angles characteristic of reflection from an individ
ual block. We then have for the reflection coefficient 
rs ( w) per unit thickness 

r!X lg10'12 
r,(ffi)=-----. 

2yo.S sin 28 8 

(4.2) 

The linear absorption coefficient JJ.( w) is given simply 
by (see I) 

J.t(ffi) = xgoo". (4.3) 

The solution of the system (4.1) yields for there
flected intensity the expression 

P18 (0,ffi~=r,yo [ 1-exp(- 21[!1/1+ 2r,yo)J 
los(ffi) [! Yo Y [! 

X [( 1 + r,yo + Vt + 2r,yo) _ ( 1 + r,yo _ V~+ _2r,y0 ) 

' [! [! [! J.! 

( 21[1 l/-2r,y0 )J-1 
·exp -y; y 1 +-[!- , (4.4) 

which depends only on two dimensionless parameters, 
rs Yo! JJ. and 2lJJ.ho· 

In a thick crystal ( 2lJJ.(} ( 1 + 2rsYo/ JJ.) 112 » 1) 
there remains only a dependence on a single parameter, 
and expression (4.4) takes the simple form 

Pls(O,ffil_ r,yo/[1 (4.5) 
los (~l) 1 + r,yo/ [! + (1 + 2r,yo/ [!) '/, · 

In the case of small secondary extinction, corre
sponding to the condition rsYol JJ. « 1, we get from 
(4.4) 

P~s(O,ffi) =r,y0 [ 1 -exp(- 21[1)]. ( 4 .6) 
lo,(ffi) 2[1 Yo 

Such a formula was obtained by O'Connor and 
BlackC5J, who also analyzed the interference of the 
nuclear resonant and electronic scattering essentially 
for the case of mosaic crystals. We note that in the 
case of a small block disorientation angle, when 
o <I do 1 2/g~~. formula (4.6) cannot be used, and the 
calculation must be carried out in accordance with the 
general formula ( 4.4) or (at large values of l) in ac
cordance with ( 4. 5). It must be emphasized that such a 
situation is perfectly realistic, on the one hand, and on 
the other hand it leads to an appreciable change of the 
interference picture in the case of scattering as com
pared with the case (4.6). 

5. DISCUSSION OF RESULTS 

An analysis of the results obtained above reveals an 
appreciable influence of dynamic effects, particularly 
the effect of suppression of the inelastic channels, on 
the Bragg scattering of Mossbauer y quanta. This is 
particularly easy to trace by comparing the results 
obtained for ideal and mosaic crystals of the same 
substance. Figure 6 shows plots of the integral coef
ficient of reflection R ( V )/R ( oo) of unpolarized radia
tion for the case of a crystal of metallic tin containing 

tf/V//ff(=, H(YI/K(=. 

2 

[ZOO] /600] 

·11717 -.fl7 J(J 100 -1170 -.fl7 

R /V//Rf:-.} 

[200] 

I 
'\ I 

\ I ,, 
I 

v 

FIG. 6. 

[500] 

-fOP -JO 0 .ffl IOU -1/lfl -.ffl 0 JO IUD 
v v 

FIG. 7. 

100% of the isotope Sn119 • We have considered here the 
reflections [200) and [600), and the temperature was 
assumed equal to 77°K. The presence of a sharp peak 
on the curve, corresponding to reflection from an 
ideal crystal (the solid curves on Fig. 6, and also on 
Figs. 7 and 8, correspond to reflection from an ideal 
crystal, and the dashed curve to a reflection from a 
mosaic crystal), is connected to a decisive degree with 
dynamic effects. The increase of the peak on going 
from the first order of reflection to the third is 
naturally connected with the decrease of the relative 
role of the electronic scattering. On the other hand, 
the dip on both curves has the same nature-interfer
ence between the nuclear and electronic scatterings in 
conjunction with nuclear absorption, and therefore no 
radical qualitative difference is observed between 
these curves in this region. By virtue of the effect of 
the suppression of the inelastic channels, the inter
ference pattern itself is much more distinct in the 
case of an ideal crystal than in the case of a mosaic, 
crystal. 

When the relative role of the nuclear scattering is 
decreased, as is the case, for example, when the tem
perature is increased or the concentration of the 
resonant isotope is decreased, the difference between 
the pairs patterns in both cases becomes weaker, al
though in the case of an ideal crystal it turns out to be 

R/V//H/=1 R(YJ/ II/=! 

J J 

50 !PO 
r 

FIG. 8. 
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more distinct. This can be traced on the curves of 
Fig. 7, plotted for the same case as the curves of Fig. 
6, but for T = 293°K. 

Similar results were obtained also in the analysis 
of the Bragg scattering of Mossbauer y quanta by 
iron. A 100% content of the isotope Fe57 was assumed, 
and a crystal having the parameters of metallic iron 
was considered, but without hyperfine splitting. Figure 
8 shows curves for ideal and mosaic crystals, for the 
reflections [ 110] and [220] and for T = 293° K. 

It is interesting to note that, unlike the curves of 
Fig. 6, in this case the transition to the higher order 
of reflection does not increase the difference in the 
quality of picture of the interference between the ideal 
and mosaic crystals, but conversely, weakens it to 
some degree. Physically this is connected with the 
fact that on going over to second order of reflection in 
the case of iron, the nuclear factor ps (2.15) de
creases strongly for one of the polarizations. But it 
is seen directly from the curves of Fig. 3 that the in
tensity of the reflection for this polarization decreases 
strongly at values of T close to zero, this being con-· 
nected to a considerable degree with the strong attenu
ation of the effect of suppression of the inelastic chan
nels, and consequently with the intensification of the 
absorption. As a result, the peak on the curve of Fig. 
8 corresponding to an ideal crystal (solid line), is 
connected to a considerable degree in the case of the 
the [110] reflection only with one polarization of the 
quanta, whereas in the case of the [220] reflection the 
analogous peak is due to y quanta with both polariza-· 
tions. 

We note in conclusion the interesting circumstance 
that in the presence of predominantly resonant scatter-

ing of the y quanta (or x-rays) the integral coefficient 
of reflection from ideal single crystals is close in 
absolute magnitude to the value of this coefficient for 
mosaic crystals. In this sense, the picture differs 
radically from the usual case of non-resonant scatter
ing of x-rays, when the reflection from the mosaic 
crystal gives a much larger integral intensity as com
pared with the reflection from the ideal crystal. 
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