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The spectral intensity S(w) of current fluctuations in a semiconductor near the stationary nonequili­
brium state and located in a strong electric field E and a crossed magnetic field H 1 E is calculated. 
The dominant mechanism of interaction between the electrons and the lattice is assumed to be the in­
stantaneous spontaneous emission of optical phonons of energy :fi wo. As a result, scattering of elec­
trons of energy E = :fiwo is highly inelastic. The other, elastic scattering mechanisms are characterized 
by a relaxation time T. When H = 0 the electron is accelerated over a time TE from E = 0 to E = :fi Wo, 
emits a phonon, is stopped, and then begins to repeat the same motion periodically. Under these con­
ditions the noise intensity S(w) is a superposition of peaks at frequencies that are integer multiples of 
21T/TE· The width of each peak is of the order of 1/T and the intensity proportional to the square of 
the electron velocity Fourier component. In contrast to S(w), the differential conductivity a(w) is a 
small quantity and hence the Callen- Welton theorem does not hold at all. When H exceeds a certain 
critical value H~, additional peaks at frequencies that are integer multiples of the cyclotron frequency 
we appear. Those peaks whose frequencies are integer multiples of 21T/TE vanish when a different 
critical field H0 is exceeded, and at H = Ho coincide jumpwise with the peaks at frequencies that are 
multiples of we. 

1. INTRODUCTION 

CURRENT fluctuations in a system in a state of 
thermodynamic equilibrium are connected by well known 
universal relations1 11 with the response of the system 
to a weak external electric field: 

(1.1) 

On the left side of the equation is the intensity of the 
fluctuations of the current components at the frequency 
w; T-thermodynamic temperature, aik(w)-conductivity 
tensor at the same frequency w. If we consider a system 
of electrons in a strong constant electric field E, then 
Oik(w) can be interpreted as the differential conductiv­
ity, which determines the ac component of the current 
when an additional small alternating field of frequency w 
acts on the system. However, inasmuch as such a sys­
tem is non-equilibrium, relation (1.1) is not satisfied. 
Therefore a study of the current fluctuations gives addi­
tional information not contained in Uik· 

The current fluctuations in a strong electric field 
("hot" electrons) were investigated in a number of pa­
pers12-71. In all these papers, they considered almost­
elastic scattering of the electrons when, as is well 
known1 81 , the electron momentum distribution function 
f(p) has small anisotropy. Then (with the exception of 
singular cases connected with electron runaway191 ) the 
symmetrical part of the distribution, i.e., the energy 
distribution fo(E), agrees qualitatively with the equili­
brium distribution exp(- E/kT), if we replace in the 
latter the lattice temperature T by the electron tem­
perature T*, which is connected with the average elec­
tron energy (E) by the relation (E) = (3/2)kT. There­
fore relation (1.1) remains valid in order of magnitude, 
if T is replaced in it by T* 13 1. 

There are, however, known scattering mechanisms 
in which the deviation of the distribution f(p) from 
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equilibrium is appreciable. Thus, in inelastic scatter­
ing of electrons by optical phonons, when the electron 
loses practically all its energy after emitting the optical 
phonon, the electron distribution has a sharp aniso­
tropy1 10- 121 . It was shown earlier1 13 1 that this situation 
is realized at low lattice temperatures in a certain 
electric-field interval: 

(1.2) 

where :fiwo is the energy of the optical phonon, and the 
characteristic fields are defined by the relations 

eE-r: =Po, eE+'to =Po, Po= i2mliwo, (1.3) 

in which To is the time of emission of the optical phonon 
and T is the scattering time (by impurities and by acous­
tic phonons) in the energy interval E < n w0, where the 
emission of the optical phonon is impossible; it is as­
sumed that T >> To. It is natural to expect the current 
fluctuations in such scattering to have more distinct 
features than in elastic scattering. This question was 
touched upon by Price12 1, who indicated that the fluctua­
tion spectrum can have singularities and frequencies 
that are multiples of the reciprocal of the time T E 
= Po/eE during which the electron accelerates from the 
energy E = 0 to the energy E = :fi w0• 

In the present paper we calculate the spectrum of the 
current fluetuations in inelastic scattering of electrons 
under conditions (1.2) and in the presence of an external 
magnetic field H. The electron density n is assumed to 
be so small that the interaction between the electrons 
can be disregarded. We consider only long-wave fluc­
tuations. This allows us to assume the spatial correla­
tion to be absent and to disregard the fluctuations of the 
distribution in coordinate space, confining ourselves to 
fluctuations of the distribution in momentum space. It is 
assumed that the potential difference on the sample is 
determined by an external circuit: for long-wave flue-
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tuations this means that the electric field in the sample 
does not fluctuate. We then find with the aid of the 
Poisson equation that the electron density likewise does 
not fluctuate. 

2. CALCULATION PROCEDURE 

To calculate the fluctuation spectrum we use a method 
developed in13 • 61 • It is convenient, however, to rewrite 
the formulas of these investigations in such a form that 
the quantities entering here do not depend on the normal­
ization volume. We introduce the quantity 

1 .. 
y;(p)., = -2 S dt eiwt ll/(p, t)6j;(O). (2.1) 

no 

Here <'lj(t) is the fluctuation of the i-th component of the 
current density at the instant t, and of(p, t) is the fluc­
tuation of the distribution function at the point p at the 
instant t. The bar denotes averaging over the ensemble 
or over the initial instant of time. The distribution is 
normalized to the concentration n. With the aid of the 
Wigner- Khinchine theorem we get 

(6j;lljh)w = ~ (dp)[ev;(p)yh(P)O. + IWA(P)'\'i(P)-..], (2.2) 

where Vi(P) are the electron-velocity components. The 
equal-time correlator of the distribution function can be 
obtained by assuming that the concentration does not 
fluctuate: 

llj(p,O}Ilj(p',O) = ll(p-p')J(p) -J(p)J(p') /n, (2.3) 

where I is the stationary distribution and n = n is sta­
tionary concentration. The equation for y is obtained13 ' 61 

by using (2.3) together with the Onsager hypothesis, i.e., 
by assuming that the fluctuation of the distribution 
evolves in time in the same manner as the distribution 
itself: 

(2.4) 

where L is the usual kinetic operator, consisting of the 
field and collision terms. Then the equation for y takes 
the form 

. 1 ) (L+zro)y;(p)., =- Tne[v;(p)- u1]J(p), (2.5 

where u is the average electron velocity in the station­
ary state. 

Let us consider first the formal solution of Eq. (2.5), 
assuming that the function y can be expanded in the 
eigenfunctions of the operator L, which are determined 
by the equation 

[L + iro (6) ]q>(siP) = o. (2.6) 

Here ~ numbers the eigenvalues and the functions. Since 
Lis a not-self-adjoint operator, it is necessary to in­
troduce the eigenfunctions of the adjoint operator 
IJI(I;.Ip)1141 , which form together with cp(~ lp) a biortho­
gonal system. The value ~ = 0 will be referred to the 
eigenvalue w(O) = 0, corresponding to the eigenfunction 
cp(Oip) = f(p)/n, which coincides, apart from normaliza­
tion, with the stationary distribution. Therefore all the 
IJI(I;.Ip) with 1;. ""'0 are orthogonal to T(p). Bearing these 
remarks in mind, we can easily obtain a formal solution 
of (2.5); substituting it in (2.2), we get 

where 

a;(s)= ~ (dp)J(p)ev;(P)'Il(siP), 

b;(6)= ~ (dp)ev;(P)cv(Sfp), 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The prime at the summation sign in (2. 7) indicates that 
the term 1;. = 0 has been left out of the "summation" and 
its contribution is written separately. The correspond­
ing low-frequency noise 1/w will be of no interest to us, 
and this term will be disregarded. 

The main equation (2.5) will be solved by using the 
methods employed in1 15 1 to find T. In this connection, we 
recall certain concepts and symbols. It is assumed that 
the optical phonon is emitted instantaneously (To= 0), as 
soon as the electron reaches the equal-energy surface 
~ defined by the condition E(p) = nwo. Then all of the 
electrons are in the passive region n (bounded by the 
surface~) where E(p) < nwo. It is convenient to solve 
(2.5) in a coordinate system connected with the trajec­
tories in momentum space: S-length of arc along the 
trajectory, and a-parameters determining the trajec­
tory. A special role is played by the principal traj ec­
tory a' which passes through the point p = 0 correspond­
ing to s = s. The remaining trajectories are called 
secondary. In the presence of a magnetic field, there 
can exist trajectories that are closed in G; the region 
occupied by them is denoted Gc. Similarly Ga denotes 
the region occupied by trajectories that are open in n; 
these trajectories begin and end on the surface~, on its 
sections~- and~· respectively. The start and end of 
the trajectory correspond to values s = s-ands= s •. A 
special position is occupied by the invariant trajector­
ies- the closed ones and the section of the open principal 
trajectory from s to s •. Fast processes-motion under 
the influence of the field and emission of optical 
phonons-do not change the number of the electrons on 
these trajectories. 

In terms of the new variables, the volume element is 
(dp) = g(as)(da)ds, and the density of states near the 
trajectory is g(a) = J dsg(as). We intro.duce also the 
velocity of motion along the trajectory s(as) and the 
time of motion along the trajectory from the point s0 to 
the points: 

• ds' 
t(also, s)= S -.-- = t(ais). 

., s(as') 
(2.11) 

The second form of the symbol pertains to those cases 
when the value of s 0 is immaterial. The total time of 
motion along the trajectory is 

Tp(a) = S "(ds) • s as 
(2.12) 

It is useful to bear in mind the relation 

a 
08 [g(as)s(as)] = 0, (2.13) 

from which it follows that 

g(as)s(as)TF(a) =. g(a). (2.14) 
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The most significant is the period of revolution over 
the closed trajectory and the period of the cycle of ac­
celeration along the principal open trajectory 

.1: ds ~ 8
{ ds 

'tF(a)= ':\' -- (aEQ,), 'tl'(a)= J -. -.-. 
• l(as) ; s(as) 

(2 .15) 

In terms of these coordinates, the operator L as­
sumes the form 

Lf(as) = Df(as) + S(f[as). (2.16) 

The first term describes here the fast processes-mo­
tion under the influence of the field and emission of 
optical phonons: 

a 1 ~ ~ 
Dj(as) =- s(as)-!(as)+-- 6(a- a)6(s- s)l(f), (2.17) as g(as) 

S r /(as+) 
1(1)= (da)g(as+fs(as+)f(as+)= J (da)g(a}-(-) · (2.18) 

~ ~ ~a 

The integral I is the flux of electrons that reach the sur­
face~+ under the influence of the field. The second term 
in (2.16) describes slow processes-the scattering in­
side n (by impurities or acoustic phonons, and also the 
absorption of optical phonons with prompt emission­
compound scattering1 161 ): 

f(as) 
S(flas)= ---+B(fias), 

-r,(as) 

B(/las) =, S (da') S ds'g(a's') W(a's', as)f(a's'). 

(2.19) 

(2.20) 

Here W is the probability of the corresponding scatter-­
ing and T the lifetime relative to this scattering. In ad­
dition, it is necessary to satisfy the following condition 

!(as_) = 0. 

3. ABSENCE OF SCATTERING IN THE PASSIVE 
REGION 

(2.21.) 

We shall solve first Eq. (2.5) assuming that there is 
no scattering inside n ( T = oo). The stationary distribu­
tion I was obtained in this approximation in1 151 , and by 
using (2.14) it can be written in the form 

- 1 • • 
/(as)= g(a) 6(a-a) 9(s:._s)n, a EQ4 , (3.1a) 

- 1 •• 
/(as)= g(a)lll(a-a)n+n(a)J, aeQ.. (3.1b) 

Here 8(s) is the Heaviside step function, n is the number 
of electrons on the principal trajectory and n(QI) the 
number of electrons on the closed secondary trajectory 
Ql. The distribution I differs from zero only on the in­
variant trajectories. We now find the eigenfunctions of 
the operator L in the same approximation. Integrating 
the expression 

Dw(as) + i6>qJ(as) = 0 

with respect to s and satisfying the boundary condition 
(2.21), we get 

qJ(as) = 'tp(~) l(qJ)6(a-a)9(s-s) exp{iwt (a[s,~)}, aEQ4 , 

g(a) 

cp(as) = C(a) exp {ioot(ais}}, aE Q,, 

(3.3a) 

(3.3b) 

where C is an integration constant. Substituting (3.3a) 

in (2.18), we get 

Stipulating that cp(Qis) must be periodic in s on the 
closed trajectories, we get 

C(a) = C(a) exp {ioo-rF(a)}. 

(3.4a) 

(3.4b) 

Equation (3.4) should be satisfied by choosing a cer­
tain w "" 0, and this yields the eigenvalue. Obviously, 
this can be done only if rp(Qis) differs from zero on only 
one of the invariant trajectories {3. Then w should be 
chosen to be a multiple of the frequency of revolution on 
this invariant trajectory. We thus find ultimately the 
eigenfunctions and the eigenvalues. For the principal 
unclosed trajectory {3 = & 

(j) (lal as)= 6 (a- a) g (a)-'1•9 (s- s) exp {ilw (a) t (a Is, s)}, a E Q., I 

oo (a)= r::, = 2rr.;-rp (a), z = ±l, ± 2,... (3 .5a) 

For a closed trajectory 

w(lf31 us) = 6 (a- f3) g(fl) -'/, exp {iloo (f:l} t(.f31 s)}, 
m (,p) = 2n I 'tF(fl), l = ±1, ±2, ... 

(3.5b) 

The obtained functions form an orthonormal system 

S (du) ~i dsg(as)q>*(lflias)q>(l'f3'ias)= llw6(fl- fl'), (3.6) 

from which it follows that in the approximation under 
consideration 1/! ( 0 = rp (!; ) • This agrees with the fact 
that the eigenvalues of the operator iL are real in this 
approximation. 

Calculating the coefficients (2.8) and (2.9), we get 

(3.7) 

(3.8) 

where v.l({3) is the l-th Fourier component of the i-th 
velocity\omponent on the trajectory {3: 

., 1 's+ . . . v,' (~) = v, = -.-· dt (a Is) v, (~s) exp {ilw (u) t (a [ s)}, 
TF (a) :; 

(3 .9a) 

v,1(fl) =-1--~ dt(flls)v,(f3s)exp{ilw(fl)t(f:lls)}, fl E Q,. (3.9b) 
'tp(fl) 

Substituting (3.7) and (3.8) in (2.7), we can find the 
noise spectrum. For a correct calculation of the singu­
larities it is necessary to replace w (!;) by w (!;) - iv, 
where v > Cl, and then let v- 0. The basis of this 
procedure is the fact that when T is finite all the states 
of the system relax to I, and therefore in such a case 
w (!; ) should contain an imaginary part, with Im w ( i; ) < 0. 
It is important that the foregoing does not pertain to 
i; = 0, where w(O) = 0 is an exact eigenvalue also when T 

is finite. Discarding the low-frequency background, we 
get 

(/lj; /lh.)., = _1 __ .s (df3)n(f3} 
2m 

00 
. 1 1 

X ); { ev,1(fl) • ev,' (fl) [ + ----;:-:-::-:---.,....-
;:, · lm(f:l)+w-iv -lw(fl)-w-iv 
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Using the well known representation of the 6-functions 
and letting v- 0, we ultimately get 

(B};ljj~) .. = S (dp)n(P) ~[ev;'(W ev~1 (p)6(ro + lro(M) 
l=l 

(3.11) 

This result admits of a very simple interpretation. 
Each electron located on one of the invariant trajector­
ies ''makes noise'' at frequencies that are multiples of 
the frequency of its revolution on this trajectory. The 
noise intensity at each harmonic is determined by the 
corresponding Fourier component of the velocities. We 
note that the result (3.11) can be obtained also by direct 
integration of (2.5) along each of the invariant trajec­
tories. If desired, it is possible to expand on each 
trajectory in the eigenfunctions (3.5), which constitute 
a complete system for each of the invariant trajectories. 
This can be regarded also as a justification of the formaJ 
solution. 

It is convenient to break up the noise intensity into 
two components corresponding to the contributions of 
the principal and secondary trajectories: 

(3.12) 

where the contribution of the principal trajectory is 
eo 

Su.(ro) = n ~ [evrevk111 (w + loo) + evk1' ev.ZII (w-loo)J (3.13) 
l~l 

and the contribution of the secondary trajectories sik(w) 
is expressed by a formula similar to (3.11), except that 
n({3) is replaced by n({3). The fu~ction ~hk{W) h~s o-like 
singularities at the points w = lw, whereas in sik(w) the 
singularities become smeared out after integration with 
respect to {3. However, if the spread of the revolution 
frequencies w ({3) for different closed trajectories in the 
region nc is small (~w <<we, where we is a cez;_,tain 
average revolution frequency), then the function Sik(w) 
consists of a set of peaks of width ~w at the points 
w = lwc. 

The general form of the noise spectrum Sik(w) de­
pends on the topology of the trajectories in the region 
n 1 15 1 • In sufficiently weak magnetic fields H, when there 
are no closed trajectories, Sik(w) = 0, and the spectrum 
~k(w) represents a "comb" of equidistantAo-like peaks 
with pitch w. With increasing H, the pitch w decreases. 
In a certain field H~, closed trajectories appear; owing 
to the contribution of sik(w), a second "comb" appears 
in the spectrum, having peaks of width ~w with a smaller 
pitch we< w. With further increase of H, the pitch of 
the first comb continues to decrease, and that of the 
second increases. In a certain field Ho, the principal 
trajectory becomes closed. At this value of the field, 
the frequency~ becomes jumpwise equal to we and both 
combs coalesce. The jumplike change of the noise spec­
trum Sik(w) at H = H0 has the same physical nature as 

d. 0 t" t bt. d" [13,151 the jumps of the 1ss1pa lVe curren o ame m . 
Let us discuss now the connection between the noise 

spectrum and the differential conductivity or, in other 
words, the question of the degree of satisfaction of (1.1). 
We confine ourselves for simplicity to the case H = 0. 
Then only the Fourier components of the velocity paral­
lel to E 11 z differ from zero in the approximation under 
consideration, and consequently only Szz(w) differs from 

zero. We have (we omit the indices z) .. 
S(w)= n ~ levll 2 [6(,w -l~)+6(ro + LW)]. (3.14) 

l=l 

We now calculate O"zz(w) = a(w). To this end we write 

E=E+E'e-l"'t, f-=f+fe-iwt, (3.15) 

where E and I are the stationary values, and E' and f' 
are the high frequency small additions. When H = 0 we 
have s = eE, so that the operator D can be represented 
in the form D + D' exp [-iwt], where D and D' corre­
spond to the fields E and E'. The kinetic equation for 
the correction f' takes the form 

(.D + iw)f = -D'J. (3.16) 

The equation for f' differs from the equation for y only 
in the form of the right-hand side, as should indeed be 
the case13 1 • The distribution I is given by formula 
(3.1a), and it is convenient to choose as the coordinates 
a= (Px, Py) and s = Pz· Then 

f{p)=~6(p,)6(Pu)O(p,), (3.17) 
Po 

where p0 is the length of the principal trajectory. Fur­
ther, substituting (3.17) in (2.17), we get 

D'J(p) =- eE' ~ f(p)+ 6(p)eE' S S dp,.dpuf(p) = 0. (3. 18) 
IJp, 

Solving (3.16) by the method as (2.5), we find that f' = 0 
and consequently 

a(w) = 0. (3.19) 

Comparison of (3.19) and (3.14) shows that in the 
inelastic- scattering mechanism under consideration the 
relation (1.1) is violated most strongly. Therefore the 
determination of the "noise" temperature Tn with the 
aid of relation kTn = wS(w)/(w) is not advantageous in 
this case. 

4. ALLOWANCE FOR COLLISIONS IN THE PASSIVE 
REGION 

It is physically obvious that the main effect of the 
influence of the elastic collisions inside n will be the 
broadening of the peaks in the noise spectrum-each 
o-function in (3.11) is replaced by a peak of finite width 
r, and in order of magnitude r Rj 1/T. It follows from 
(1.2) that T » T F• i.e., r « W, We, and therefore the 
peaks remain well resolved. A more detailed estimate 
of the width of each peak can be obtained on the basis of 
a formal expansion of (2. 7), from which it is seen that 
the width of the peak r connected with the eigenvalue ~ 
is determined by the imaginary part of the eigenvalue 
r(~) =-1m w(~). 

The imaginary correction to the eigenvalues connec­
ted with the closed principal trajectory can be obtained 
by a perturbation method. To this end we write down the 
eigenfunction and the eigenvalue in the form cp = cp0 + 
cp' and w = w 0 + w', where cp 0 is defined by (3.5a) and 
w 0 = lw. Now, assuming that S(f) is small compared with 
Df, we get 

(D + iro0)cp'(as) = -S(cp0 las) - iro'cp0 (as). (4.1) 

This equation can be rewritten in the form: 
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D(exp {iw0t(aJs,s+)}q>'(ots)) 
= -exp {iw 0t(aJs, s+)}[S(<p0 Jas) + ioo'q>0 (as) ]. (4 .. 2) 

This can be easily verified by using the explicit form of 
the operator D, in accordance with (2.17). Since the fast 
processes conserve the number of electrons in the reg­
ion nc, it can be readily verified that 

~ (da) ~ dsg(as)Dj(as) = 0 (4 .. 3) 

" a 

for any function f(as) satisfying the boundary condition 
(2.21). Integrating (4.2) with respect to na, using (4.:1), 
and substituting the explicit form of cp 0 in (2.20), we f:ind 
the correction to the eigenvalue w 0 = lw: 

w' =- i~[1- ei~•], (4.4) 
't(a) 

where T (a) is the average lifetime on the trajectory <l', 

_1 __ r dt(aJs) _1- (4.5) 
't(a) - J 't'p(a) 't(as) ' 

and 

e;5'='t(a) (' (da)Sdsg(as)Sdt(uJ.s') W(as', as) 
cl. 'tp (a) 

X exp {il(J) (a) [t (a Is, s') + t (a Is, s+)]}. 
(4.6) 

The first term in (4.4) is connected with the depar­
ture of the electron from the trajectory Q., and accord­
ing to (4.5) it retains its meaning for any invariant 
trajectory. The second term is characteristic of the 
principal trajectory and is connected with the possible 
return of the electron to this trajectory. Its meaning 
can be understood as follows. The electron can be scat­
tered at any points' of the principal trajectory and fall 
into the point s of the trajectory a. If the trajectory 
a = na, then the electron, moving on this trajectory,. 
reaches after a time t(als, s+) the region~+, emits an 
optical phonon, falls in the point p = 0, and now moving 
on the principal trajectory, returns after a time 
t(als, s') to the point from which it left the principal 
trajectory. Thus, the argument of the exponential in the 
integral is the loss of phase as a result of the scattering, 
and oz is the result of its averaging over all possible 
scattering acts. The width of the peak at the frequenc:y 
lw is found to be 

1 r, = -.-[1- cos llz]. 
't(a) 

(4.7) 

The employed method, based on perturbation theory, 
is not applicable if the principal trajectory is closed, 
for in this case there exist eigenvalues that are arbi-· 
trarily close to each other. The same pertains to the 
peaks connected with closed secondary trajectories. In 
this case it is possible to employ a method similar to 
the Wigner- Weisskopf method1 171 , investigating the "de­
cay" of the states (3. 5) under the influence of the scat­
tering inside n. Let us consider the nonstationary 
problem for the distribution 

8j f at =Df+B(f)--;r 

with initial condition 

f(as, 0) = q>(h~Jas). 

We seek the solution in the form 

(4.8) 

(4.9) 

j(as, t) = e-Atu (as) + x,( as, t), 

u(as) = ll(a -1~)u(s), x.(as,O) = 0, (4.10) 

where the term e-Atu describes the electrons that re­
main on the trajectory {3, and the term x describes the 
electrons going off to other trajectories. If the solution 
of the form (4.10) exists, then it is assumed that A 
corresponds to the eigenvalue A= iw' of the stationary 
problem of the non-hermitian operator L. 

We consider first the "decay" of the principal un­
closed trajectory {3 = a E na, and show that in this case 
we obtain the same result as when the perturbation 
method is used. Substituting (4.10) in (4.8), we separate 
the terms containing the singularity 0 (a- a) from those 
regular in a. As is customary in the Wigner- Weisskopf 
method, we neglect the term S(x), which describes the 
redistribution among the states in which the decay takes 
place. We then obtain the system of equations 

[ 1 J 1 • e-At D+'A--.- u(s)+-.-6(s-s)I(x)=0, 
't(as) g(as) 

(4.11) 

[ 8 . 8 J - + s(as)- x(as, t) =e-At B(uJ as), 
8t 8s 

(4.12) 

'+ 
B(uJa5)= ~ ds'g(~s')W(~s',as)u(s'). (4.13) 

• 

In order to calculate I(x) it is necessary to know x for 
a E na. The solution of (4.12) for such a is 

" 
x (as, t) = !i dt( aJ s') 9 (t- t (a J s', s)) exp{- 'J..(t- t(a Js', s)) }B(u I as'). 

'- (4.14) 

Substituting (4.13) in (4.14), putting s = s+ and substitut­
ing in (2.18), we get 

I(x.)= 's ds'g(as')u(s') \ (da) ·~dsg(as)W(as', as)9(t-t(ajs,sJ) 
~ dG 1-

Xexp{-'J..(t-t(ajs, sJ)}. (4.15) 

As is eustomary in the Wigner- Weisskopf method, 
we consider times that are longer compared with the 
period of the rapid motion, t » T F· It is seen from 
(4.15) that the factor () is then insignificant, I(x) depends 
on the time like e-At, and consequently Eq. (4.11) can be 
satisfied. It assumes the following form: 

[D +'A-____;.___] u (s)+ ____;.___ 6 (s- ;) \ (da) ~ dsg(as) ~ds'g (as') 
't (as) g (as) ci 

x u(s') W (as', as) exp {'At(: j s, sJ} = 0. (4.16) 

This equation is solved for v(s) and A by successive ap­
proximations in 1/T. Putting v = v0 + v' and A= A0 + A1 , 

where the primes denote small terms proportional to 
1/T, we get 

u0 (s) = ce (s-s) exp{ilw(a) t (a js, s)}, 
]..• = affi. (4.17) 

From a comparison of (4.17) and (3.5) we see that, 
setting the integration constant C = g(af112 , we satisfy 
the initial condition (4.9), accurate to small terms. We 
then substitute v = v0 and A= A0 in the small terms of 
(4.16). Subsequently, using (2.14), we reduce the integ­
ral to exp(ic'iz). From the condition for the solvability 
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of the equation for v'(s), just as for Eq. (4.1), we get 
>..' = iw', where w' is defined by (4.4). 

Exactly the same method can be used also in the case 
when the principal trajectory is closed. The solution is 
then given by formula (4.4). For a secondary closed 
trajectory {3, this method yields 

' i 1 ) 
(l) =- 't(f3) ' f(f3)= 't(f3) . (4.18 

The broadening is the same for all peaks; the absence 
of the term exp(ioz) is natural, since the electrons do 
not return to the trajectory {3. We note that if the spread 
of the revolution frequencies over the closed secondary 
trajectories is large, t:.wT >> 1, then the collision broad­
ening for the corresponding peaks is insignificant. 

Another effect of the influence of the elastic collisions 
in n is the occurrence of a weak background without 
pronounced singularities in the noise spectrum. This 
background is connected with the fact that at finite T the 
distribution I differs from zero also on the non-invar­
iant trajectoryr 151 • However, on these trajectories the 
electrons do not execute periodic motion and therefore 
cannot produce singularities in the noise spectrum. The 
appearance of the background is connected mathematic­
ally with the fact that at such value of f the solution of 
(2.5) cannot be expanded in terms of the functions (3.5), 
which all vanish on the non-invariant trajectories. 

We note that the broadening of the peaks and the oc­
currence of the background can be connected with the 
fact that the optical phonon is emitted not instantaneously 
(To"' 0). Then the electrons penetrate during their ac­
celeration the active region E(p) > nw 0 , and after emis­
sion of the optical phonon they return not exactly to 
p = 0. Therefore the principal trajectory becomes 
"smeared out" and with it the critical fields H~ and H0 , 

at which the re-alignment of the noise spectrum takes 
place, become "smeared out." Concrete estimates de­
pend on the dispersion of E(p) and are given in the next 
section for a parabolic band. 

5. PARABOLIC DISPERSION LAW 

By way of illustration, let us consider a parabolic 
dispersion law with an effective-mass tensor m, assum­
ing H 1 E. The analysis is interesting also because this 
dispersion law has certain features. Let us assume the 
following notation: md-mass of the state density, 
mh-cyclotron mass, me-ohmic massr 151 , m0 = m£/me. 
All these masses depend only on the orientation of the 
fields E and H, which are specified by the unit vectors 
e and h. We introduce 

Vo = (2/iwo I mo) 'h, Po= (2m,,iwo) 'h = mhvo, . 

E 
Vn=CH' (5.1) Ho = 2c E. 

Vo 

We then obtain the frequency of revolution over the 
closed trajectory we, which is the same for all trajec­
tories, and the frequency of acceleration over the prin­
cipal unclosed trajectory 

2:rt X 
w=---.-, (5.2) 

'CE arcsmx 

The Fourier components of the velocity for the principal 
unclosed trajectory are 

(5.3) 

where the dimensionless vector, which depends only on 
the orientation of the fields, is 

and 
-x+il'~ 
2:rtl- 2 arcsin x · 

(5.4)* 

(5.5) 

The Fourier components for the closed trajectory a are 

'( ) 1 [ e- pv(a)+ 1/z(v(a)mv(a)) ]'" 
va=z liwo S, l = 1, 

v1(a) = 0 

Here v(a) is the average velocity on the trajectory a, 
defined in accordance with (4.6)r 151 • The fraction in the 
expression for V 1 is an integral of the motion and is of 
the order of unity. 

As shown inr 151 , there are no closed trajectories 
when K < 1/2. The noise spectrum contains peaks at 
frequencies lw, with intensities that decrease like 1/12 , 

in accord with (5.5). When K = 1/2 there appear closed 
trajectories (H~ = Ho/2), with We= w/6. According to 
(5.6), this leads to the appearance not of a "comb," as 
in the general case, but of only one peak at the frequency 
we· The intensity of this peak is proportional to the 
number of electrons in nc, and therefore in accordance 
with (4.11a)r 151 , it increases like (K -1)5/ 2 • When K = 1, 
the principal trajectory becomes Closed, and We= w/2. 
Therefore, when H approaches Ho from the low side, we 
have a "comb" at frequencies lw = 2lwc, and one addi­
tional peak at w/2 = We· As soon as H becomes larger 
than Ho, the ''comb'' vanishes and there remains the one 
peak at the frequency we. 

It is possible to take into account the finite time of 
emission of the optical phonon in the case of H = 0 and 
for an isotropic effective mass. Then, as follows from 
(2.19)r 131 , the electrons penetrate into the active region 
E(p) > nwo to a depth f::.p f':j Po(To/TE)213 • The solution of 
the eigenvalue equation (2.6) gives the width of the peak 

a~ 1. (5.7) 

The ratio of the times is connected here with the depth 
of penetration, and peaks of the higher harmonics 
broaden more, since in their case more "fluctuation 
waves" of length po/l are contained in the length t:.p, 
and the phase collapses more strongly. The smearing 
of the critical fields is determined from the estimate 
f::.K f':j (7 0/TE) 1 /2. 

We note that the results of this investigation can be 
generalized in obvious fashion to the case of a many­
valley semiconductor, for which the question of the in­
variance of the trajectories was considered inr 181 • 
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also F. G. Bass. 

*[e, mh] =eX mh. 



792 I. B. LEVINSON and A. Yu. MATULIS 

1 See, e.g., I. M. Levin and S. M. Rytov, Teoriya 
ravnovesnykh teplovykh fluktuatsil:' v elektrodinamike 
(Theory of Equilibrium Thermal Fluctuations in Elec­
trodynamics), Nauka, 1967. 

2 P. J. Price, IBM J. 3, 191 (1959). 
3 V. L. Gurevich, Zh. Eksp. Teor. Fiz. 43, 1771 (1962) 

(Sov. Phys.-JETP 16, 1252 (1963)]. 
4 Sh. M. Kogan, Fiz. Tverd. Tela 5, 224 (1963) [Sov. 

Phys.-Solid State 5, 162 (1963)]. 
5 P. J. Price, IMB Res. Pap. RW-58, (1964). 
6 V. L. Gurevich and R. Katilyus, Zh. Eksp. Teor. 

Fiz. 49, 1145 (1965) (Sov. Phys.-JETP 22, 796 (1966)]. 
7Sh. M. Kogan and A. Ya. Shul'man, Fiz. Tverd. Te~la 

9, 2259 (1967) [Sov. Phys.-Solid State 9, 1771 (1968)]. 
8 B. I. Davydov, Zh. Eksp. Teor. Fiz. 6, 463 (1936). 
9 1. B. Levinson, Fiz. Tverd. Tela 6, 2113 (1964) 

[Sov. Phys.-Solid State 6, 1665 (1965)]. 
10 W. Schockley, Bell. System. Tech. J. 30, 990 (1951). 
11 J. B. Gunn, Progr. in Semicond. 2, 213 (1957). 

12 E. G. S. Paige, J. Phys. Soc. Jap. 21, Suppl. 397, 
(1966). 

13 1. I. Vosilyus and I. B. Levinson, Zh. Eksp. Teor. 
Fiz. 50, 1660 (1966) (Sov. Phys.-JETP 23, 1104 (1966)]. 

14 P. M. Morse and H. Feshbach, Methods of Theor­
etical Physics, McGraw-Hill. 

15 1. I. Vosilyus and I. B. Levinson, Zh. Eksp. Teor. 
Fiz. 52, 1013 (1967) [Sov. Phys.-JETP 25, 672 (1967)]. 

16 P. A. Kazlauskas, I. B. Levinson, and G. E. 
Mazhuolite, Litovskil fiz. sb. [Lithuanian Physics 
Collection] 6, 377 (1966). 

17 M. Born and H. Kun, Dynamical Theory of Crystal 
Lattices, Oxford, 1954. 

18 1. I. Vosilyus and I. B. Levinson, ZhETF Pis. Red. 
6, 854 (19tli7) (JETP Lett. 6, 295 (1967)]. 

Translated! by J. G. Adashko 
172 


