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Using a dispersion approach, we find an expression for the amplitude for scattering of an electron by 
a paramagnetic impurity. The solution found has a simple analytkal structure and for integral values 
of the spin of the impurity it can be expressed in terms of elementary functions. 

IT is well known that it is impossible to solve the prob-· 
lem of the scattering of conduction electrons by para
magnetic impurities using perturbation theory. In the 
papers by Suhl and Wong1 1 and Maleev12 ' 3 1 a dispersion. 
approach was used to obtain a solution. In a paper by 
Maleev and the author1 41 it was shown that near the 
Fermi surface the results of these papers are prac
tically the same and we shall therefore compare the re
sults obtained in the following only with12 ' 3 1• 

In the present paper we obtain the solution of the 
problem in a simpler form than in12 ' 3 1• In particular, 
the scattering amplitude is for integral values of the 
spin of the impurity expressed in terms of elementary 
functions. This solution is similar in form to the solu
tion of the equations of Chew and Low1 s-? 1• The expres
sions obtained in the present paper for the amplitude 
are very convenient for a generalization to the case of 
superconductivity. In a paper by the present author18 1 

such a kind of solution was constructed for spin one. 
However, a generalization of the solution obtained in18 1 

to the case of larger spins leads to the appearance of 
energy poles in the complex plane in the scattering am
plitude. In the present paper we construct a solution for 
arbitrary spin which is free from this difficulty and 
agrees well with presently available experimental 
data.l91 

It is well known that the scattering amplitude F has 
the form F = A + BS · a where S is the impurity spin and 
the ai are Pauli matrices. For the quantities A and B 
there are unitarity relations (see13 • 101 ) 

Im.rl = k{jA j2 +S(S + 1) jBj 2}, 

Im B = k{A*B + AB*- jBj 2 th ( w /2T)}, 
(1) 

k is the electron momentum, w the energy reckoned 
from the Fermi surface, and T the temperature. Here 
and henceforth we assume that w = w + i 1i • In the follow-
ing we shall use Born amplitudes which we denote by a 
and b. 

We introduce instead of A and B amplitudes Cl':t and 
corresponding to them the S-matrix elements S1 : 

a+=A+BS, (l_=.1-B(S+1), 
(2) 

s.± = 1 + 2ika,. 

The unitarity conditions for Cl':t have the form13 1 

Ima+=k{Ja+J 2 + (2S~i)'j~-a-J 2n(w) }, 

{ 2 2(S+1) 2 } (3) 
lm(l_=k 1(1_1- (2S+ 1)'1a+-(l_Jn(w), 

n(w) is the Fermi distribution function. 
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Let us consider the function u (13 • 111 ): 

1+2ikA . (S+1)S++SS_ 
U= =2tk . 

B s+-s-
(4) 

Suhl has shown that 

u(w + i6)- u(w- i6} = 2ikth (w /2T). (5) 

Bearing in mind that u(w- iii)= u*(w + io) we get 
from (5) 

1 '" k' dw' w' 
u(w)=P(w)+- S -,--th 2T · 

n ·w -w 
-EF 

(6) 

P(w) is a rational function. We choose P(w) in the same 
way as in12 •3 1 • Carrying out calculations completely 
analogous to those in13 1, we get near the Fermi surface 

2po 2po { nT 
u(w)=---- In-,--

ng :rt 2yEF 

+ w(!_-~~-w(~)} Imw>O· 
2 2nT I 2 ' ' 

2po 2po { nT 
u(w)=--·-- In--

ng 'II 2yEF 

+'~'(t2 + 2~T)-w(~)}, lmw<O; 

_!__ = _n_ [ 1 - -4pob ( 1 -In 2) + a+a-p02 ] , 
g 2pob :rt 

a+=a+bS, a-=a-b(S-1-1), (7) 

where l}l is the logarithmic derivative of the r-function, 
ln y = C = 0.5'77. 

It is convenient to introduce instead of u the dimen
sionless function 

«ll(w) = u/2ik. (8) 

We have from (7) and (8) near the Fermi surface 

i { 1 nT ( 1 iw \ ( 1 ~} «11=- --+ln--+'1' ----,-'1' -;-- ,, 
:rc g 2yEF 2 2nT , 2 

Imw>O; 

i { 1 nT «11=--· --+In--
n g. ' 2yE,, 

( t iw ) ( t )' +'If' -+- -'I' - f 2 2nT 2 ' 
Imw < 0. (9) 

One shows easily that on the real axis 

i { 1 nT 1 [ ( 1 iw ) «11=- --+In--+- '¥ -+--
:rc g 2yEF 2 2 2nT (10) 

( 1 iw ) ( 1 )]'} 1 w +'¥ ---- -2'1' - +-th-. 
2 2nT 2 2 2T 

When lwl « T 
i { 1 nT } «11=- --+In-- . 
n g 2yEF (11) 
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When lz I » 1, >V(z) ~ ln z so that when lw I » T 

i{ 1 (J)'} 1 
<1>=- --+In- +-. 

:it g EF 2 (12) 

From (4) and (8) we get easily the relation 

s+ <I>+S 
~=<1>-(S-!-1). 

(13) 

Moreover, using (2), (3), and (13), we find 

IS I'- (Im<I>) 2 -!- 1/ 4(2S+1+2n) 2 ( 14) 
± - (Im<1>)~1/.[(2S-!-1)2-4n(1-n)]' 

Expression (14) is the same as the analogous formula 
for 7); obtained in13 1• 

We consider first the zero temperature case. When 
T =o 

IS±/ 2 = 1, "'> 0; 

(Im <1>)2 + '/•(2S + 1 + 2) 2 

(Im <1>)2 + 1/ 4 (2S + 1) 2 ' 
"'<0. 

(15) 

The unitarity conditions (15) determine S± apart from 
functions of modulus unity while Eq. (13) means that this 
function is the same for S+ and for S-. Denoting it by 
Ds(w) we get 

S+ = <ps(w )D8 (w), 

S - <I> -(S + 1) (16) 
-- <I>+S <ps(w)Ds(w), 

/Ds(w) /2 = 1. 
We shall find cpS for integral S. From (15) it is clear 
that 

/S+(S + 1) /2 = /S-(S) /-2. 

Moreover, we have from (16) 

<1>-!-S 
<ps+t(w)= <1>-(S-!- 1) qls-•(w). (17) 

One shows easily that when S = 1 and 2 the unitarity 
condition (15) is satisfied by the functions 

<I> <1>2 - 1 (18) 
<pt(w) = <D __:T' <r•(w) = <I)(<IJ- 2) . 

From the recurrence relation (17) and (18) we get 
easily cps for any integral S: 

8 <l>-'lz+(-1)"-1(S-n+ 1/ 2) 
<ps(w)= IT , · (19) 

"~'<I>_ t!z _ (-1)n-t[.S -I!+'/.) 

Equations (18) and (19) are the same as the correspond
ing equations obtained when the Chew- Low equations 
are solved. 15 ' 71 . 

We make some remarks. It is clear from (12) that 
when g < 0 the function <I> has a zero for w = iEo where 

Eo= EF exp {-1/lgl ). (20) 

When g > 0 the function <I> has no zeroes near the 
Fermi surface (and just the region of energies lw I ~ Eo 
is of interest to us). 

It is clear from (18) that when g < 0 the function 
cp2(w) has a pole in the complex plane on the physical 
sheet; in a similar way it follows from (19) that all cps 
for evenS will have the same pole. However, such a 
pole contradicts the spectral representation for the am
plitudes. 121 We must thus choose the unimodular func
tion Ds(w) such that this pole is eliminated. At the same 
time we also eliminate the zeroes of cps for odd S. Such 
an elimination of zeroes is not required by the presence 
of a spectral representation. However, the unitarity 
condition (1) depends analytically on S so that it is 

natural to assume that the solution will also be analy
tical in S. In the Appendix we give such a solution (it 
gives the answer also for half-odd-integral S). For 
integral S near the Fermi surface we get when lka±l « 1 

S _ w + ieo 1 + ika 
+- 'l's w- ie0 1- ika ' S = 2k + 1; (21) 

w- ieo 1 + ika 
s+ = <ps . . ' s = 2k. 

w-!-!Bo 1-!ka 

When g > 0 there are no poles or zeroes in cps(w) so 
that factors such as (w- iE)(w + iEr1 do not appear. In 
that case we get for lka±l « 1 

(22) 

From Eqs. (2) and (13) we get easily the following 
expressions for the scattering amplitudes 

A=-~- {-<1>-S+(<I>)-1} 
2ik <I>+ s ' (23) 

1 S+(<D) 
B=2tkll>-!-S. 

Let us consider in more detail the caseS= 1, a= 0. 
When g < 0 we get from Eqs. (12), (18), (21), and (23) 

1 { (z + 1/&ing) 2 w + iBo } 
A= -i.ik- (z-t'1/.ing) 2 -!-(ng) 2 !J>.:.:.;;-- 1 ' 

B = b __ z_+ 1 /zing w + ie0 

(z-!- 1/zing)'-!-(ng)' w-ieo 

When g> 0 

A= b ing 
(z + 1/zing) 2 + (ng) 2 ' 

z +'/zing 
B=b (z+'/.ing)'-1-(ng)', z=1-gln(w/EF)· 

When g > 0 we have lz I » g in the whole energy 
range, so that in this case 

A= ing b 
z2 ' 

B=-b-
z 

(24) 

(25) 

(26) 

Equation (26) is the same as the result obtained by 
Abrikosov. 112 1 The scattering cross section is equal to 

u=4n{IAI 2 -!-S(S-!-1)IBI 2} =8nb2 /lzl'· (27) 

It is clear that one obtains the same result also when 
g < 0, lw I» Eo. When g < 0 and lw I« Eo we have again 
lzl » g; we get from (24), expanding in glzl-1 

i ing b 4n 
A=--~-b, B=--, u=--. 

Po lzl 2 z Po2 

(28) 

Let us now consider the region g < 0, w ~ Eo. We 
note that for negative g we can write the quantity z in the 
form 

z = -gln (w/eo). (29) 

When lw- Eol << Eo we can expand the logarithm in a 
power series: z = -g(w- Eo)/E0 • Then we have 

1 { (w-eo-ineo/2) 2 w-!-ieo ) 
A = 2ip0 (w-e-;- ine0/2) 2 + (neo) 2 w - ieo - 1 f 

B = _ _ n_ eo(w- eo- ine0/2) w + ieo 
2po (w- Eo- ineo/2) 2 + (neo) 2 w - ieo (30) 

For w = Eo we get, for instance, 

3i -1 1 2n 
A= -6po -' B =- 3po ' u = p.2. (31) 

We turn now to a discussion of finite temperatures. 
When T "' 0 the function cps does not satisfy the unitarity 



782 S. L. GINZBURG 

condition (14). We shall show, however, that in the casE~ 
when 11- g ln (1TT/2yEF) I» g, CfJS up to terms of order 
g4[1- g ln(1TT/2yEF)r 4 satisfies the unitarity condition 
and Eqs. (21) and (22) give the solution of the problem 
with the only correction that we must substitute E1 for 
Eo, where iE 1 is the root of the equation <I>= 0 for finite 
T. We put 

S+=<ps(w)Ms(w)Ds(w), 1Dsl 2 =1. (32) 

We shall not consider the quantity S- since S- is connec
ted with S+ by Eq. (13). From (32) and (14) we have 

(Im <lJ)2 + •j.(2S + 1- 2n)2 _, 
IMslz= (Im<lJ)2+'/d(2S+1)2-4n(1-n)]I'Psl •. (33) 

Moreover, as inr 1- 3 1 , we put 

Ms = exp (2i'l's), 

k ~ dw' 
'l's= -- ~ lnJMsl 2. 

4n_EF k'(w'- w) 

(34) 

We choose the function Ds from the same considerations 
as in the case T = 0. 

One shows easily that when the temperature increa
ses the zero of the function <l>(w) approaches the point 
w = 0 along the imaginary axis and at some temperature 

Tc = 2yec/ it 

vanishes. We put for g < 0, T < T c 

S (S) - M w + ie, 1 + ika S = 2n + 1; 
+ - s<ps w - ie1 1 - ika ' 

(35) 

S (S)- M w - ie, 1 + ika S = 2n. (36) 
+ - s<ps w + ie1 1 - ika ' 

Here iE1 is the root of the equation <I>= 0. When g < 0, 
T > T c and also when g > 0 

S - M 1 + ika (37) 
+ - s(jls 1 - ika · 

The analysis of Eqs. (36) and (37) for arbitrary w and 
T is difficult. We consider again some particular cases. 
Let us consider Ms(w) for S = 1. From (10), (14), (18), 
and (34) we have 

'¥,=-~ r dw' ln[(Imll>)z+'/,(1+2n)z 
4n_E k'(ro'-ro) (Im<D) 2 + 1/ 4 (1-2n)2 

F 

(lm<D) 2+'/4 (3-2n)2 J 
X (Im 11>)2 + 1/, [9- 4n(1- n)j.J · (38) 

It is clear that when lw I » T the integrand vanishes 
so that the integration is only over the region lw I ~ T 
but it is clear from (11) that we may assume that <I> in 
that range of energies is equal to 

nT 
L=ln--. 

2yEF (39) 

Let us consider the case when 11- gLI » lgl which 
occurs for g > 0 for all temperatures and when g < 0 
when T » Tc and T « Tc. One then sees easily that 

JM.J 2 = 1 + 0 [(-g-1']·. 
1-gLI 

(40) 

Thus, when 11- gLI » lgl the value of >~~sis zero up 
to terms of order g4(1 - gL)-4 • We shall neglect these 
small quantities and assume M1 to be equal to unity. 
The same result is also abtained for arbitrary S. As a 
result we get for 11- gLI » lgl Eqs. (36) and (37) with 
Ms replaced by unity. 

The remaining calculations are completely analogous 
to the corresponding calculations performed at zero 
temperature. We give some of the formulae for the am
plitudes for a = 0 in some particular cases. When 
T « lw I, we obtain, of course, Eqs. (24)- (28). When 
T » lw I we get when g > 0 or g < 0, but T » T c 

ing b (41) 
A= b (1-gL)2' B=1-gL. 

When g < 0 and T « Tc (lw I« T « Tc ~ E1) 

i ing 
A==--b---, 

Po (1-gL) 2 

b 
B=----. 

1-gL (42) 

A comparison of the results obtained in the present 
paper with the results ofr 3 1 can most conveniently be 
made by the method used by the author inrs 1• Repeating 
verbatim the calculations made inr 8 1 one shows easily 
that the results of the present paper are the same as 
those obtained inr 3 1• However, our formulae are apprec
iably simpler while the method of solving the problem 
which is proposed in the present paper is very conven
ient to generalize to the case of superconductivity, as we 
shall do in the near future. 

In conclusion the author expresses his gratitude to 
S. V. Maleev for a large number of interesting discus
sions. 

APPENDIX 

All considerations in the Appendix will be given for 
the zero-temperature case. Let us consider the func
tion, which has a structure very close to the correspond
ing function inr 6 1 : 

( 1+S <D) Ks(ll>)= f - 2-+2 

( 1+S Ill)/ (s <D\ r s <D\ x r ---- r - +- , r\ 1 +---; . 
2 2 2 21 2 2 

(A.1) 

Bearing in mind the explicit form of <I> one shows 
easily that JKs( <I>) satisfies the condition of unitarity for 
s+ and therefore differs from s+ by a unimodular factor. 
In contrast to CfJS the functions Ks has no poles in the 
complex plane on the physical sheet. Indeed, Ks(<I>) has 
a pole when <I>= ±(2n + S + 1) where n is an integer; at 
the same time it follows from the explicit form of <I> 
that <I>± (2n + S + 1) has no zeroes for complex values 
of the energ;y. On the other hand, Ks(<l>) is an analytical 
function of S. For integral S the function Ks(<l>) can be 
expressed in terms of elementary functions: 

Ks(<D) = (jls(<D) tg 1/z n<ll, S = 2k; 

Ks(<D) = -<p8 (<D) ctg 1/2 n<D, S = 2k + 1. 
(A.2) 

For S = 1, 2 we get 
Ill n<D 

K 1(1l>) =- <D _ 1 ctg 2 , (A.3) 
<D2 -1 n<D 

K2(<D} = ll>(<D- 2) tg2. 

Using Eq. (12) for <I> at zero temperature one shows 
easily that ltan(JT<I>/2) is a unimodular function. To de
termine S+ we must take into account that far from the 
Fermi surface S+ must have the usual form 
(1 + ika+)(1- ika+r1. We determine S+ as follows: 

S+ = K8 (<I>) 1 + ika+' <Do= __ i_ + ~. (A.4) 
Ks(<Do) 1- ika+ ng 2 

One shows 'easily that Ks(<l>o) is unimodular; Ks(<l>o) is 
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introduced in order that far from the Fermi surface the 
expression obtained goes over into the solution for 
EF=O. 

Bearing in mind that lgl « 1 one gets easily from 
(12) and (A.4) 

:rt«D :rt«Do 
tg2ctg-2-= 1, g> 0, 

:rt«D :rt«Do (!) - ieo 
tg-ctg--=--.-, g<O. 

2 2 ro+1eo (A.5) 

The terms dropped in (A.5) are of order exp(-lgl-1), 

i.e., they are exponentially small. One obtains from 
(A.2) to (A.5) easily Eqs. (22) and (21) of the main text. 
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