
SOVIET PHYSICS JETP VOLUME 27, NUMBER 5 NOVEMBER, 1968 

DYNAMICS OF GENERATION OF A PULSED MODE-LOCKING LASER 

V. S. LETOKHOV 

P. N. Lebedev Physics Institute, U.S.S.R. Academy of Sciences 

Submitted November 13, 1967 

Zh. Eksp. Teor. Fiz. 54, 1392-1401 (May, 1968) 

The dynamics of generation of ultrashort pulses in a laser with mode-locking by external loss modulation 
and Q switching is considered theoretically. Th1~ approach is bE~sed on an analysis of the behavior of a 
light pulse moving inside the resonator and varying its duration and intensity as a result of amplifica
tion, dispersion of the refractive index, and loss modulation. It is shown that the evolution of the pulse 
duration consists of two stages. During the first stage the pulses are shortened as a result of the in
creased number of the locked modes, and during the second it broadens as a result of the dispersion of 
the medium inside the resonator. The theory explains the results of a number of experiments and points 
the way towards obtaining ultrashort light pulses of giant power using external loss modulation. 

1, INTRODUCTION 

MucH progress has been made recently in the field of 
generation of ultrashort pulses of light by the method of 
axial mode locking in a solid-state laser. 1 > In the first 
experiments they used external periodic modulation of 
the loss of a laser operating in the spike regime, attain
ing thereby the locking of approximately 20 modes 
(pulse duration 5 x 10-10 sec). [2 ' 31 In cw generation the1 
number of locked modes increases, and the duration de
creases by one more order of magnitude ( ~ 4 x 10 -u 
sec).[41 The next significant step consisted[51 of reali'l:
ing simultaneous locking of a large number of modes 
and Q-switching of the laser with the aid of a saturable 
solution. The pulse duration in such a laser reaches 
~ 5 x 10-12 sec.[61 

The theory of locking of the large number of modes 
of a solid-state laser in the stationary generation re
gime and the limiting duration of the pulses were first 
presented in [71 • It was shown that an important role is 
played by the dispersion of the medium inside the reso
nator in the limitation of the number of locked modes In 
the continuous operation regime. The estimate obtainE!d 
for the limiting duration ( ~ 10-11 sec) agrees with ex
periment. [41 

An effective method of obtaining ultrashort pulses of 
giant power is to use a nonstationary regime, such as 
the regime with instantaneous Q-switching. However, 
only a total of 20 modes could be locked in the existin~r 
experiments with nonstationary generation. [2 ' 31 The 
purpose of the present investigation was to consider 
theoretically the dynamics of generation of ultrashort 
pulses in a laser with external loss modulation and Q 
switching. The proposed theory explains the results of 
the experiments[2 ' 31 and points the way towards obtain
ing ultrashort pulses of giant power with external loss 
modulation. However, the results do not hold for a laser 
with self -phasing of the modes by a nonlinear absorber. 2> 

1>The first successful experiment on laser mode locking was per
formed Pl with a gas laser. 

2> A number of questions involved in steady-state laser generation 
with mode self-locking is considered in [8 •9], However, the processes 
in such a laser are essentially nonstationary, and the time evolution of 
the pulse duration and the self-Q-switching are interrelated. These ef
fects were considered by us and the results were published briefly [1°]. 
A detailed exposition will be presented later. 
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It is shown be low that the evolution of the pulse du
ration consists of two stages. During the first stage, 
the pulse duration is reduced relatively slowly, as a 
result of the increase in the number of locked modes, 
and during: the second stage the pulses broaden as the 
result of dlephasing of the mode owing to dispersion of 
the medium inside the resonator. At some instant of 
time, the pulse duration reaches a minimum. The 
change of the pulse energy are of the average radiation 
power and is similar to the change of the radiation in
tensity in a Q-switched laser. The optimal case occurs 
when the maximum average power and the minimum 
pulse duration are reached simultaneously. To obtain 
ultrashort pulses with maximum power, it is proposed 
to increase instantaneously the Qat the instant when 
minimum duration is reached, for a time sufficient to 
allow the ultrashort pulse to radiate the stored energy. 

2. MODEL AND INITIAL EQUATIONS 

In (7J we used an oscillatory approach to the analy
sis of the behavior of each mode out of the aggregate of 
interactin!~ modes, taking into account the capture or 
the phasing of the modes even in the presence of a cer
tain detuning (dephasing). Such an approach is perfectly 
adequate when the stationary regime is considered. 
When the nonstationary regime is considered, and the 
duration of the entire generation process amounts to 
10-5 -10-6 sec, the approach used in [71 is not very suit
able and, furthermore, mode locking in the presence of 
a certain detuning, which is characteristic for nonlinear 
self-oscillating systems, plays here a negligibly slight 
role. The mode dephasing, for example as a result of the 
the dispersion of the medium inside the resonator, is 
most probably cumulative and in final analysis should 
lead to a gradual increase of the duration of the gener
ated pulses. We therefore used in the present article a 
different approach to the consideration of the nonsta
tionary regime, based on an analysis of the behavior of 
a pulse moving inside the resonator and changing its 
duration and intensity as a result of amplification, dis
persion, and loss modulation. 

We consider a multimode laser, in whose resonator 
there moves a single light pulse due to the locking of a 
large number of axial modes. In fact, usually two pulses 
move opposite each other inside the resonator. In the 
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case of external loss modulation, their interaction is 
negligibly small, and it is sufficient to consider the evo
lution of one pulse. During each passage through the 
resonator, the pulse is compressed by the external 
modulation of the transmission of the element inside 
the resonator, is amplified and broadened in the active 
dispersive medium, and is attenuated upon reflection 
from the output mirror as a result of the emergence of 
the radiation. 

The field at the fixed point inside the resonator E(t) 
is the superposition of the fields in different axial 
modes: 

E{t) = Re ~ Am(t)exp{iwot + icpm(t)}, (1) 
m 

where Am and cpm are the amplitude and phase of the 
field in the m -th mode, and w0 is the frequency of the 
mode closest to the center of the line. The difference 
between the mode frequencies is included in the phase 
of the field. For example, the phase difference of the 
field in two neighboring modes cpm+z(t)- cpm(t) ""'nt, 
where n = 2JTV/L is the frequency distance between the 
modes (v = c(no + woan/aw)- 1 is the group velocity of 
the light in the resonator, n(w) is the refractive index 
of the medium in the resonator, L is the resonator 
length, and c is the speed of light in vacuum). 

During each pass of the pulse E(t) through the reso
nator, the form of the pulse changes as a result of am
plification, loss modulation, and dispersion. If the 
transmission of the modulating element varies like3 > 

11 (t) = T/o(1 + p cos nt), then the change of the field per 
pass is: 

E1 (t) = TJ'"(t)E (t) = TJo''•(1 + '/•P cos Qt)E (t), (2) 

where p « 1. The approximation p « 1 has no funda
mental significance whatever, but greatly simplifies 
the derivations. 

The gain and the radiation output loss change the 
field in the following manner: 

E22(t) = K(t)rE2(t), (3) 

where K(t) is the radiation gain in the active medium 
per pass and r is the reflection coefficient of the out
put mirror. We confine ourselves here to the case when 
the spectral region of the locked modes is much smaller 
than the width 6.w of the amplification line. This as
sumption corresponds fully to the experimental condi
tions. In this case the amplification of all the modes is 
practically the same. 

Dispersion causes the phase of the m -th mode to 
shift during one pass by an amount 1/Jm = wmc -l Ln (wm), 
which depends on the mode frequency. As a result the 
field changes as follows: 

E3 (t)= ~Am(t)exp {iroot+iq>m(t)+i'l>m}. (4) 
,. 

The total change of the field per pass is 

E(t + T) = [K(t)l"l](t)]'l• ~ Am(t)exp{iwot + icpm(t)+ i¢m}, (5) 

where T = L/v is the time required for the pulse to 
pass through the resonator. 

3lThe evolution of the pulse at an arbitrary law of periodic modula
tion will be considered below. 

The gain of the active medium is given by the expres
sion K = exp {a0 N(t) l}, where a0 is the cross section of 
the radiative transition between the levels at the fre
quency w0 , l is the length of the active medium, and 
N(t) is the density of the inverted population of the 
active-particle levels, satisfying the equation 

aN +!!_~N~ = _ N(t) _!_(E2(t)), 
at T1 f%, 8n 

(6) 

where T 1 is the spontaneous lifetime of the particles 
at the upper levels, N0 is the density of the inverted 
population in the absence of the field and is determined 
by the pumping rate, () denotes averaging over the op
tical period, ~s is the gain saturation energy. For a 
three-level system (ruby) ~s = nwof2a0 , and for a four
level system (neodymium glass) ~S = nw0/2a0 when T 0 

» Ts or ~s =tiwofa0 when T0 « Ts• where T0 is the 
lifetime of the particle at the lower working level and 
T s is the characteristic time during which the gain 
saturation, determined by the average radiation power, 
takes place. 

If the self-excitation condition 

1'1Jo(1 + p)K(O) ;;;. 1 (7) 

is satisfied at the initial instant of time t = 0, then the 
lasing regime sets in. 

3. EQUATIONS FOR THE AMPLITUDES AND 
PHASES OF THE MODES 

The finite-difference equation (5) can be reduced to 
two differential equations for the amplitudes and phases 
of the modes. To this end, we transform the left side 
of (5) as follows: 

E(t + T) = ~ Am(t + T)exp{iwo(t + T)+ icpm(t+ T)} 

= eiOJot ~ Am(t + T)exp{icpm(t+ T)}, (8) 
m 

where wofn is an integer and QT = 2rr. The right side 
of (5) can be represented in the form 

[K(t)l"l]ol''•ei""t ~A,.(t)( 1 +£-.e-i0 t +£-.ei01 ) exp{icp,.(t)+ i¢m}. 
m 4 4 (9) 

Substituting (8) and (9) in (5) and equating coeffi
cients of the corresponding harmonics, we can readily 
obtain a system of finite-difference equations for the 
amplitudes and phases. To this end, however, it is nec
essary to clarify the character of the time variation of 
the gain K(t). In the region of the nonlinear develop.
ment of the generation, K is constant and is determined 
by the initial value. With increasing pulse energy, a 
small decrease of the gain takes place during each 
pass. For example, for neodymium glass, the satura
tion energy s is several J/cm2 , and the maximum 
pulse energy in a mode-locking laser is 10-3 J/cm2.[2 • 3 

51 Consequently, the amplitudes of the Fourier compo
nents of the function K(t) at the frequencies ±Q do not 
exceed 10-3 -10-4 • An approximation is therefore pos
sible, in which the changes of the gain within times on 
the order of T are neglected and only the slow varia
tions of the gain within times T s » T are taken into ac
count. Physically this means that we neglect the dis
tortions of the pulse waveform (such as the preferred 
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amplification of the leading front) on passing through 
the active medium. [11 - 14 l 4 > 

Thus, substituting (8) and (9) in (5) we get 

Am(t + T)exp{iq>m(t + T)} 

= ('l]orK)'I•(Am(t)exp{iq>m(t) + iljlm} 

+ 1/4 pAm-1 (t) exp{iq>m-1 (t) + ilj)m -1 + iQt} 

+ 1/,pAm+1(t)exp{i'l'm+1(t) + i'Pm+1- iQt}], (10) 

where m = 0, ± 1, ± 2, .... 
In considering ultrashort light pulses, when the num

ber of locked modes is large, the amplitude and phase 
differences between neighboring modes can be regarded 
as sufficiently small: 

1Am±1-Aml ~Am, l'l'm±1-'l'ml ~'I'm· (11} 

Then Eq. (10) reduces to two equations for the ampli
tudes and phases: 

Am(t + T) = ('l]orK) 'h(Am(t) + 1/,pAm-1 (I) + 1/,9Am+t(t)], (1:0 

The physical meaning of Eqs. (12) and (13) is perfectly 
clear. The amplitude equation describes the coupling of 
the neighboring modes as a result of loss modulation, 
and the phase equation describes the phase shift due to 
the dispersion of the medium. 

The finite-difference amplitude equation (12) is best 
transformed into a differential equation. The condition 
(11) allows us to go over to differentiation with respect 
to m. If the effective gain per pass K = 170rK differs 
little from unity, we can also go over to differentiation 
with respect to time. As a result we obtain for the 
mode amplitudes a partial differential equation of the 
parabolic type: 

8Am (t) p - o2Am (t) 
T-0-1- = [fx(1 + p)-1]Am(t)+ 4l'x~. (14) 

At a constant gain K(t), the solution of (14) is 

exp{(fx(1 + p)-1)1/T} { m2 } 
Am(l)=Ao exp ---- , 

l'rr.px'l•t/T px''•t/T 
{15) 

where approximately A0 ~ A0 (0). It is meaningless to 
determine Ao more accurately, since (15) has been de
rived under the assumption that t/T » 1. 

The phase equation (13) has a solution 

(16) 

where we put cpm(O) = 0. The phase shift of the field in 
the m-th mode 1/Jm = wmc-1 Ln(wm) in the region mn 
« w0 is determined, accurate to terms of second ordE!r 
in mn/wo, by the expression 

1P = wo !:__no+ mQ £(\no+ Wo !!!...) + m2Q'£( '!!!___ + Wo o'n ) (17) 
c c ow c ow 2 ow' 

4)This effect can appear in the case, not considered here, when the 
nonlinear development of the generation does not continue long enough, 
or even goes over into the stationary regime. This is possible, for example, 
at sufficiently high pump levels, if the gain of the medium is restored 
after the passage of each pulse. In this case the nonlinear distortions of 
the pulse waveform can accumulate during many passes. 

or 

lj),,. = 2nm(1 + mQ:l, (n)), (18) 

where 

( on roo 82n ) J ( on ) .Z(n)= -+-- no+roo-_ oro 2 ow' ow 
(19) 

and we have discarded the phase shift w0Lnofc which 
is the same for all modes. The final solution of the 
phase equation (16) is 

q>m(t) = mQ(1+mQ:l,(n))t. (20) 

4. EVOLUTION OF THE PULSE DURATION 

Substituting the expressions for the amplitudes and 
phases of the modes into the initial expansion (1), we 
can find the field generated at any instant of time and, 
in particular, consider the evolution of the pulse dura
tion. 

Let us eonsider first the region of linear develop
ment of the generation when the effective gain per pass 
K is constant and equal to the initial value. In this case 
the instantaneous amplitudes of the modes are deter
mined by (15). Substituting the expressions for the am
plitudes and phases (15) and (20) into the initial expan
sion (1), we get 

E() R . tA exp{[tx(1+p)-1]t/T}"" {· 
t = e e'"'' o . LJ exp zmQt 

l'npx'l•t/T "' 

+[ iQ22(n)t- ___!__] m'}. 
px'"t 

(21) 

The sum in (21) is a quasiperiodic function with max
imum at the point tk = kT, where k is an integer. Each 
maximum corresponds to a laser emission pulse. In the 
absence of dispersion (..e(n) = 0) the width of the pulses 
gradually decreases, since the number of modes in the 
sum, determined by the factor exp {-Tm7'pK 112 t}, in
creases wilth time like mph "'=' ../pK 1 72 t/T. In the pres
ence of dispersion, dephasing of the different modes 
takes place and accumulates in time. The dephasing 
tends to broaden the pulses and, starting with a certain 
instant, the contraction of the pulses gives way to 
broadening. For a quantitative answer it is necessary 
to calculate the sum in (21). In our approximation, 
where the number of modes is large, the summation in 
(21) can be replaced by integration. The resultant inte
gral can be calculated exactly: 

r [ n ]''• f y' 1 }ooexp{iym+m'(i~-a)}dm= 2 (a'+~') exp\.- 4 (a-i~) f 

X[(fa2 +~+a)'''+ i(l'a' + ~2- a)'"]. (22) 

Then the e.xpression for the field intensity I(t) 
= c(E 2(t))/B1T is given by 

I 0 exp{{(1 + p)x-1]1/T} 
I(t) = (px'"t/T)[(T/px'l•t)' + (Q22t)'J'" 

{ QZtZ } ( ) 
>:exp,- 2(px'l•t/T)[(T/px'l•t)'+(Q22t) 2] 23 

where I0 is the initial intensity of the central mode. 
When the sum in (21) is replaced by an integral, the 

periodicity of the maxima is lost. It can, however, be 
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readily reconstructed. If we introduce the number of 
passes through the resonator after the start of genera
tion, k = [t/T], where the square brackets denote the 
integer part of the number, then the intensity of the ra
diation in the time interval (k - Yz)T ::5 t ::5 (k + %)T, i.e., 
the intensity of the k-th pulse after the start of genera
tion, Ik(t), is given by 

h(t) loexp{[x(1 + p)- f]t/T}' 
[1 +(px'I•.ZQ¥T-1)2j'l• 

Xexp { Q•(t-:- kT)• } 
2(px'l•t/T}[(T/px'l•t)" + (Q•.Zt)•] ' 

where (k- %)T s t < (k + Yz)T. 

(24) 

Expression (24) pertains to the case of linear devel
opment of the generation. It can be extended, however, 
to include the case when the gain K begins to depend on 
the time as a result of the saturation of the gain under 
the influence of the exponentially increasing average 
radiation power 

1 t+T 
lav(l}=r ) l(t')dt'. 

I 

Formally this complicates the solution, since the coef
ficients in the right side of (14) begin to depend on the 
time. But it is physically clear that a change of 5-10% 
in the gain K at the derivative o2Am/om2 has little ef
fect on the rate of increase of the number of locked 
modes. At the same time, a similar change of K greatly 
changes the coefficient .JK(1 + p)- 1 in the term with 
Am(t), and consequently greatly influences the change 
of the intensity. Taking into account the change of K(t) 
only in Am(t), we can easily solve (14). The intensity 
of the k-th pulse is then given by the more general ex
pression 

where 

1 I 

Jh(t) = Ioexp{y ~ a(t')dt' }[1 + (px'I•'?J.:Q•t•T-l)•]-'1• 
0 

xex {- Q•(t-kT)• } 
' p 2 (px'l•t/T}[(T /px'l•t)• + (Q•.Zt}"] ' 

1 
a(t)= ln[x(1 + p)] = croN(t)l-ln--

Tlor(1 + p) 

(25) 

The first two factors of expression (25) describe the 
evolution of the peak power (envelope) of the pulses. 
The third exponential factor describes the form of the 
pulses. Let us consider first the evolution of the pulse 
duration. The duration of the k-th pulse at the 1/e level 
is equal to 

1:h = ~ { 2px'l•k [ ( px~l•k )" + (2nQ.Zk)• J }"' . (26) 

It follows from (26) that the minimum of the pulse dura
tion is reached at the instant of time 

(27) 

after a number of passes kmin = tmin/T given by the 
expression 

(28) 

The minimum pulse duration T min is determined by 
the expression (26) with k = kmin: 

-rmln = ~ r( Sn y3" g.z )''• 
n 9 px''• 

(29) 

We note that the minimum duration obtained in the 
present paper is somewhat higher than the minimum 
duration obtained in [7 J for the stationary generation 
regime. For example, at T = 2.5 x 10-9 sec p = 0.1 

( ) -18 ' ' £ n ~ 10 and K ~ 1, expression (29) yields T • 
3 -11 mrn 

~ X 10 sec, and from expression (18) of [7 J we get 
0.8 x 10-11 sec. This discrepancy can be naturally at
tributed to the fact that mode capture takes place in 
the stationary regime even in the presence of a certain 
mode dephasing. Formally this is the result of the non
linearity of the oscillation equations, which is neglected 
in the present case when the nonstationary regime is 
considered. The mode locking effect in the presence of 
a certain dephasing (detuning) ensures also establish
ment of a stationary duration. 

During the time t « tmin• when the role of the dis
persion is negligibly small, the light pulses are com
pressed in accordance with the law Tk 
= T hr (pK 112k/2)112• When Tk « T, the compression 
process becomes very slow. Physically this is perfect
ly understandable, since the modulation of the transmis
sion during the time T cannot noticeably influence the 
wave form of the pulses with duration Tk « T. This is 
valid, of course, for an arbitrary law of periodic modu
lation of the transmission 17(t). Indeed, the waveforms 
of the k-th and (k + 1)-st pulses are connected by the 
relation 

(30) 

Assuming that the change in the waveform per pass is 
small, we go over to the differential equation 

dJh(t) I dk = [TJ(t) -1]Ik(t), (31) 

the solution of which is Ik(t) = l 0 (t) exp{{17(t)- 1] k}. 
When Tk « T, the waveform of the pulse is given by 

I,.(t)- exp{.!. d"T] kt•} (32) 2 dt2 • 

and the duration is determined by the expression 

-r• = ( - ~ d'TJ )-'I• 
K 8 dt2 0 

(33) 

In the particular case of sinusoidal modulation, expres
sion (33) coincides with (26) in the absence of disper
sion. 

We note that inasmuch as the character of the pulse 
compression remains unchanged under an arbitrary law 
of transmission modulation 17(t),5 l all the results ob
tained above for the case of sinusoidal modulation 17(t) 
= 170 (1 + p cos nt) remain valid also for an arbitrary 
modulation law 17(t), provided '11oPil 2 is replaced by 
ld2 17/dt2 l at the point of the maximum of the function 
'1'/(t). 

In the region t » tmin• the pulses broaden in ac
cordance with Tk~ 41T£k.JpK 1 /2k. To obtain light pulses 
of minimum duration, it is necessary to synchronize the 

5)There is only the physically insignificant requirement that the 
function 11 (t) be continuous and doubly differentiable. 
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instant when maximum average power is reached and 
the instant of smallest duration. 

The average radiation power Iav(t) is given by Eq. 
(25), which is averaged over the time interval (t- T ~~~. 
t + T/2): 

_ Io x { crol t N(t')dt'-_!_ln 1 1. (34) 
lav,(t)- (2:n:px'ht/T}'"e p T Jo T TJol"(1 + P} f 

The change of the average power is determined by si
multaneously solving Eqs. (6) and (34). We shall not 
go into a detailed analysis of this question, since it is 
physically clear that the change of Iav(t) is analogous 
to the evolution of the power in a laser with instantane
ous Q switching. [15• 161 During the first and most pro
longed phase, an exponential increase takes place in.the 
average power, from the level of the spontaneous no1se 
to a level almost sufficient to saturate the gain, but no 
noticeable saturation takes place. The duration of the 
first phase of development of the generation is called 
the delay time T d· [151 During the second phase, satura
tion of the gain of the medium takes place (emission by 
the majority of the active particles), and the maximum 
average power is reached. It is clear that to obtain 
powerful pulses with minimum duration it is necessary 
that the delay time T d be approximately equal to the 
time necessary to reach the minimum duration tmin· 
Since tmin. determined by (27), is relatively large 
( ~ 10-5 sec), the initial gain per pass (K- 1) should be 
quite small ( ~ 10-2). In this case the number of gener
ated pulses in the train is unavoidably large, since its 
order of magnitude is several times 1/(K- 1). When 
the initial gain is increased, the number of pulses de
creases and the pulse energy increases accordingly, but 
the duration also increases, owing to the decrease in 
the generation development time. 

These two contradictory conditions can be circum
vented by additionally increasing the Q at the instant 
when the minimum duration is reached. In this case the 
number of pulses in the train greatly decreases, and 
accordingly the power increases appreciably, and the 
duration remains practically minimal. 

5. COMPARISON WITH EXPERIMENT 

In the experiments of [2 , 31 , the characteristic gen
eration development time tgen (distance between spikes 
in [2, 31 , delay time after Q switching in [21 ) is much 
shorter than the time necessary to reach minimum du
ration tmin• when the significant role is assumed by 
dispersion. On the other hand, in the region tgen « tmin 
the number of locked modes is determined, in accord-· 
ance with (26), by the expression 

(35) 

In the spike mode, apparently, tgen ~ 10-6 sec. Then, 
when p..fK ~ 1 and n = 3 x 108 rad/sec we have m ~Hi, 
which agrees with the experimental value m ~ 20 in 
[2 , 31• In the regime of simultaneous Q switching/21 we 
apparently have t en~ 10-7 sec. Then m ~ 5, which 

. gt . t 1 1 4 . [2 ] also agrees w1th the exper1men a va ue m ~ m . 
Thus, the light pulse durations in the experiments of 
[2 , 3 1 were limited by the generation development time. 

A more detailed comparison of the present theory 
with experiment can be carried out in the laser de-

scribed in [41, by observing the transient process of 
gradual pulse shortening. With the aid of this la~er. i~ 
is also possible to verify the dependence of the hm1tlng 
duration on the dispersion in the stationary regime, as 
described by the theory. [71 

6. CONCLUSION 

We considered in this paper the dynamics of the gen
eration of ultrashort light pulses by the mode locking 
method in a laser with instantaneous Q switching. The 
developed approach is applicable also to the case of a 
laser with ·self-capture of the modes by means of a 
saturable filter, which has gained widely in popularity 
following the work by De Maria et al. [51 The results of 
such an analysis are briefly reported in [101, and a de
tailed consideration of the dynamics of the generation of 
ultrashort pulses will be presented for this case later. 
It is appropriate to note here several qualitatively new 
features that characterize a laser with self -capture of 
modes by means of a saturable solution. For example, 
the shortening of pulses in self -capture of modes oc
curs more rapidly than in the case of mode locking by 
external modulation. This follows from the expression 
for the pulse evolution, which is analogous to (31), but 
it employs a transmission 71(t) that depends on the pulse 
waveform Ik(t). To reach a minimum duration it is 
necessary to have a very small excess of the initial 
gain above threshold. In the case of self -capture the 
minimum duration depends strongly on the time of 
spontaneous collapse of the filter T 1, and after the min
imum duration is reached the evolution is determined to 
a considerable degree by the dispersion of the medium. 
In addition, at sufficiently small values of T 1 

(< 10-12 sec), a regime of induced "collapse" ("self
collapse") of a filter is possible, of the type of a 360° 
pulse, arising as the result of coherent interaction be
tween the light pulse and the particles of the solution, 
if the pulse duration is comparable with the transverse 
relaxation time T2 of the filter particles. 

The author is deeply grateful to Academician N. G. 
Basov for support and to A. F. Suchkov for useful dis
cuss ions. 
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