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We consider the acceleration of charged particles in a randomly polarized field of transverse plane elec
tromagnetic waves propagating in the direction of a uniform ma1?;netic field. It is shown that in the reso
nance case, in wnich the characteristic field frequency is equal to the particle gyro-frequency, the mean 
kinetic energy of the particles can be increased appreciably. It is proposed that the effect may be im
portant in cosmological situations. 

CHARGED particles can be accelerated significantly by 
a resonance mechanism:ll, 2 l a transverse plane mono
chromatic wave propagates along a fixed magnetic field 
with phase velocity equal to the velocity of light in vac
uum c and the frequency of the wave is approximately 
the gyro-frequency for the appropriate particle in the 
fixed magnetic field. It is obvious that this situation will 
not generally exist under natural conditions. In order to 
estimate the effectiveness of the acceleration mechanism 
it is necessary to consider an electromagnetic wave with 
random polarization. In this case the accelerated parti
cles will have a random energy distribution in which one 
expects a preponderance of particles with high energies 
to appear close to the resonance region. A characteristic 
time for the variation of the field, which then serves as a 
correlation time for the random function that describes 
the wave, must be approximately equal to the Larmor pe
riod of the particles. In this case the mean energy of the 
particles increases, that is to say, the plasma is heated 
as a consequence of the cyclotron resonance. A similar 
effect has been considered in cyclic accelerators by 
Burshtein, Veksler, and Kolomenskii.l3 J 

We shall neglect particle collisions, assuming that the 
plasma is of low density. This requirement is also nec
essary if we are to take the velocity of propagation of the 
wave equal to the velocity of light in vacuum. Under 
these conditions there is also no dispersion so that the 
wave is a function only of the time phase 1:! = t - z. The 
role of dissipation in the resonance system being consid
ered is played by the radiation reaction in the electro
magnetic field. We shall also neglect effects that are 
only important in very intense fields. The radiation re
action effect has been considered in l 4 , 5 l. Both of these 
assumptions are obviously valid for the majority of cases 
that are encountered in cosmological situations. 

Let the electromagnetic field be described by the vec
tor potential A: 

A= F(8)- 1/e(Br], (1) * 
where the fixed uniform magnetic field B is directed 
along the z-axis, the vector F lies in the xy plane, the 
radius vector r is expressed in light seconds, and e 
= t -z. 

The equation of motion for particles in the field de
scribed by Eq. (1) is 

*[Br] =B X r. 
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dpn e dF 
--=--u-

dt me de ' (2) 
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dt me {3 

Here, p is the particle momentum in units of me, Pll 

and Pl are the projections of this momentum on the z
axis and the xy plane respectively, u is the particle ve
locity divided by the velocity of light in vacuum, and 
0 = eB/me is a fixed vector. 

From Eqs. (2) and {3) we obtain an integral of the mo
tion 

Y = ~- Pll = ~(1-uu) = const, 

where {3 is the particle energy in units of the rest en
ergy mc2 • 

(4) 

Assuming that de = dt{1 - u11) = Ydt/{3 in Eq. (3) we 
transform to a differential equation in terms of the time 
phase e: 

dp.L [ U J e dF 
~- yP.L =-me de. 

The solution of this equation is 
. Q r f . Q . Sl \ 

Px = sm--yO· .JIJxstn--y-8- j 11 cos-1.-o1 d8 + 
"" 

u '!( Q n) [n J +sin-yO· ~I fxcos---y8+/11 sin--y8 dO+P.Losin -};(0-0,)+ao_, 
flo 

(5) 
where the vector f = -(e/mc)dF/de is proportional to 
the electric field of the wave E and has the dimensions 
of frequency while the subscript zero denotes the values 
of quantities for e = e0 • We note that if the function f(e) 
is written in the form of a superposition of Fourier har
monics then, as is evident from Eq. (5), expressions for 
the transverse momentum will contain a characteristic 
resonance denominator w 2 - (0 /Y) 2 • 

The particle energy is determined only by the square 
of the transverse momentum. Using the identity {32 

= PTI + Pl + 1 and the integral of the motion {4) we find 

~ = (P.L' + Y' + 1) /2Y. 
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Furthermore, for reasons of simplicity we assume 
that at time t = 0 the particle is at rest at the origin of 
coordinates. Thus 

So = 0, p j_O = 0, Y=1 (6) 

and the square of the transverse momentum is twice the 
kinetic energy of the particle: 

2w = 2{~ -1) = h 2o 

Let f be a vector whose components fx and fy are 
independent stochastic stationary functions of the phase 
time e with normal Gaussian density distributions 'Px 
and 'Py with the same dispersion a: 

1 
(Jly = - exp {- f 2/2cr2) 

l"2ncr Y ' 

and with corresponding autocorrelation functions Px and 
Py: 

a 
Px = py =Pi= cr2 S a(w)cos w(81- 8z)dw. 

a, 

Physically this assumption means that we are consid
ering an electromagnetic wave which is a superposition 
of two independent linearly polarized waves whose planes 
of polarization are perpendicular to each other and whose 
intensities are random functions of the argument e with 
the same statistical characteristics. According to the 
Wiener-Khinchin theorem the function a2a(w) is the power 
spectrum for the quantity fx or fy, that is to say, it is 
equal to the ensemble average of the square of the corre
sponding Fourier component of the quantity eEx/mc or 
eEy/mc: 

00 

S a(w)dw = 10 
0 

We will now seek the distribution of kinetic energy 
over the statistical ensemble of particles characterized 
by the initial conditions in (6). In general this distribu
tion will depend on the time phase e. We first write an 
expression for w: 

a z e 2 

2w = [ S (fycos~:l8-fxsinQ9)d9] + [ S (f~sinQO+fxcosQO)dO] o 
0 0 

(7) 
Since the dispersion for the quantities fx and fy is the 
same, the integrands in Eq. (7) 

q1 = /y cos QO- fx sin QO, qz = /y sin QO + fx cos QO 

are also independent Gaussian random functions of e 
with the same dispersion (cf. for example [sJ) and auto
correlation function Pq, defined by the relation Pq 
= Pf cos n(e 1 - e2 ). Thus, the functions q1 and ~are 
stationary. 

The integrals that appear in (7) are also Gaussian sto
chastic functions of the time phase e ; however they are 
not stationary. We shall call these functions s 1 and s2 • 

These functions have the same dispersion: 

S"' a(ro) 
T = cr2 {[1- cos(w- Q)O](w + Q) 2 

o (w'- Q')2 

+[1-co~(w+Q)9](w-Q) 2}dwo (8) 
It is evident from Eq. (5) that s 1 and s 2 are the pro

jections of the vector Pl on orthogonal axes which are 
rotated about the z axis by an angle ne with respect to 
the x and y axes. These projections differ from Px and 
Py in that they are statistically independent. This last 

feature has a simple physical significance. The compo
nents Px and p are coupled quantities since there is a 
magnetic field ~. By introducing the functions q1 and ~ 
in place of fx and fy and the functions s 1 and s 2 in 
place of Px and Py we have converted to a reference 
system that rotates about the z axis with an angular ve
locity n; thus we have eliminated the fixed magnetic 
field. It is clear that in this reference system the pro
jections s 1 and s2 of the vector Pl are not statistically 
coupled quantities. This statistical independence makes 
it possible to describe the joint probability that the val
ues of the components of the transverse momentum s 1 

and s 2 lie within the intervals ds 1 and ds2 respectively; 
this probability is given by 

P{s~, s2)ds1ds2 = 1 I 2n"t exp { -pj_2 I 2-r)ds1ds2o 

We can now easily determine the distribution of trans
verse momentum p~ and thus the particle kinetic en
ergy. The density distribution is given by 

R(w) = r-1exp{-wl-r)o (9) 

The mean kinetic energy T can be interpreted as the 
temperature of the particles that move in the wave and 
are characterized by a phase difference e. When the 
power of the harmonic field a(w) is not small close to 
the gyro-frequency n this temperature can reach rather 
large values. We shall assume that the function a(w) is 
non-zero only within some frequency range w0 - .!lw ::S w 
::S w0 + .!lw about the frequency w0 and that it is constant 
over this range. Making use of this assumption in the in
tegration in Eq. (8), we have 

.6w [1- cos{roo- Q)O cosilw9]
-- (wo- Q)sin{wo- Q)O sinilw9 

T=2acr2 
{Olo- Q) 2 - (Llw) 2 

.6w [1- cos(ro0 + Q)O cos Llro 8]- { O>o + Q)sin{wo + Q)Osin Ll w9 
+---· (wo+Q)2-(Llw)2 

0 '"t'""'[ sin(w + Q)O , sin(w- Q)B J } 
+2 J w+Q ,. w-Q dw · 

WG-Llill 

Assuming that the interval o!lw is small, I Wo ± n I 
» .!lw, in the nonresonance case we find 

[ roo2 +Q' 
T = 4acr2 -----Llw

{wo2 - Q2)2 

_ sin LlwB ( w02 + Q2 ) cos ·Woll cos QO - 2w0Q sin ·woB sin Q8 J 
0 

8 (wo'- Q')' 

(10) 

For particles that have large phase differences in the 
wave .!lwe » 1r the temperature is independent of the 
time phase: 

Wo2 + gz 
T = 4acr2Llw-(-2--;:;-;--)2 0 

(t)o - ~,-
(11) 

This quantity is of the order of the square of the ratio of 
the wave field to the fixed magnetic field T"' (E/B)2• 

The highest acceleration is obviously expected in the 
resonance case w0 = n. In this case the mean kinetic en
ergy of particles that are characterized by a time phase 
e is 

[ cos LlwB - 1 "'t sin s 
-r=2acr2 ----+8 J --dl; 

L\w 0 6 

Llw (1- cos 2Q8 cos L'l·wB)- 2Q sin 2Q8 sin AwO 8 <"~t"'"'>6sin s J +---- +- J --dl; 0 

4Q2 - ( hw )2 2 (2!>-Aro)a S 

Now let .!lw « 2n. In this case, when .!lwe « 1r we find 
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T = aa 2aw[e 2 + (1- COS 20e)/202); furthermore, if Oe 
» 1T then T = a 2aawe2 • Assuming that aaw = 1 and a 2 

= (eE/mc)2 we find 

t = (eE I mc)2()2. (12) 
In the other limit awe » 1T, using the asymptotic ex

pression for the sine integral we find 

'I'= 2acr2 (n8 12-11 a(J)) ~ na2a0 = n(eE I mc) 28 I ~ro. (13) 
Assuming that aw ~ o. m and awe ~ 0.1 we find that 

the mean kinetic energy of particles as given by Eq. (12) 
is of the same order as that for the nonresonance case 
given by Eq. (11): T ~ (E/B)2 • The only important differ-· 
ence arises in a very narrow range aw. Thus, even 
when aw ~ 10-2 0 and awe~ 0.1 it follows from Eq. (12) 
that T ~ 102(E/B)2• In the other limit awe» 1r, we use 
Eq. (13); introducing the values aw~o.m and awe~ 10 
we find that T ~ 103 (E/B)2• 

An important feature in the derivation of Eqs. (9) and 
(10) for the energy distribution was the assumption of 
statistical independence for the quantities s 1 and s 2• 

This assumption is justified only when the quantities fx 
and fy are noncorrelated random functions with the 
same dispersion. However, if we assume that each of the 
quantities fx and fy is autocorrelated, then in general i.t 
will be reasonable to assume a correlation between fx 
and fy, which are projections of the same vector. Fur
thermore, a random wave can have a dominant direction 
of polarization, a situation that is frequently observed for 
cosmic radio emission. In this case the dispersion of the 
quantities fx and fy is different and this feature also 
leads to a violation of the statistical independence of s 1 

and s 2• Without stopping to resolve the problem based on 
this more general formulation, we present here an ex
pression for the case of one linearly polarized random 
wave. At resonance, with oe » 1T, the energy density 
distribution is given by 

R(w) = (2mw)-'hexp (-wi2T), 

where the mean kinetic energy for aw/0 « 1 is given by 

aa2 ( ''t sin 6 C08 ~roe - 1 ) 
'~'=-- A J --d!;-l---'--

2 0 6 ~(t) 

The mechanism considered here can operated under 

much less stringent limitations than the conventional ex
act resonanc,e acceleration mechanism. Thus, we do not 
require a monochromatic wave; a weak homogeneity in 
the fixed magnetic field is allowed and lack of coincidence 
between the direction of this field and the direction of 
propagation of the wave can be tolerated. In addition any 
difference in the velocity of the wave from the velocity of 
light in vacuum does not have a strong effect on the re
sults that have been obtained. 

For these reasons it is proposed that stochastic reso
nance acceleration can be effective in a number of cos
mological cases. For example, it can be important in the 
explanation of effects such as the heating of plasma in 
the emission of supernovae and the acceleration of elec
trons that is characteristic of this process; also, the 
heating of the solar corona and the acceleration of parti
cles in the interplanetary medium. It is possible that this 
mechanism ~Llso serves as an injection mechanism for 
the Fermi a<:celeration of charged particles associated 
with moving magnetic inhomogeneities in the interstellar 
space. 
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