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The complex differential impedance Zd(w) of a semiconductor with a nonuniform current distribution 
in the shape of a column produced as a result of thermal instability is calculated. The case of a thick 
column whose radius is much greater than its wall thickness is considered. At low frequencies Zd(w) 
is determined by the oscillations (or at w = 0, by the shift) of the column wall and is sensitive to the 
frequency w. The contribution of the wall motion to Zd(w) vanishes already at frequencies which are 
small with respect to the reciprocal relaxation time of the energy in a homogeneous semiconductor 
plasma. The shape of the static current-voltage characteristic is determined. 

1. INTRODUCTION 

IN semiconductors in which the current-voltage charac­
teristic would be S- shaped if the current were uniformly 
distributed over the cross section, stationary states with 
negative differential conductivity (ad < 0) are unstable 
(we are referring to conductors with sufficiently large 
cross sections). As a result of this instability, an in­
homogeneous distribution is produced in the conductor_. 
and the current becomes "pinched" r 1 ' 2 J (if the conduc­
tor carries a specified total current). There are many 
known mechanisms producing an S- shaped characteris­
tic. A mechanism of interest in semiconductor physics 
is the superheat mechanism. in which the ambiguity of 
the characteristic is due to the dependence of the elec­
tron mobility on their temperature at a fixed electron 
density. Under conditions when the electron-temperature 
approximation is applicable and the electron gas can be 
regarded as incompressible. this mechanism is perhaps 
the simplest model for theoretical analysis of the resul-­
tant inhomogeneous current distribution. 

Volkov and the author r3J considered (in connection 
with the superheat mechanism) different stationary 
inhomogeneous transverse distributions of the current 
and their stability. The distribution of a current with 
axial asymmetry. which depends monotonically on the 
radius p (current-pinch column) is of interest because 
it is stable against perturbations that do not change the 
total resistance of the sample (as distinguished, for ex­
ample, from current distributions in the form of flat 
layers of finite thickness). The energy conservation 
equation which determines the electron temperature 
T(p, t), has the same form as the equation of heat con­
duction with a nonlinear source 

ar 1 a 1 ar) -nc,-+----1 px- + a(T)E,"-P(T)= 0. at p ap \ ap 
(1) 

Here p is the distance from the axis of the sample, 
which for simplicity is assumed to be in the form of a 
cylinder of radius R; n is the electron density; a(T), 
K(T), and nee are the specific electric conductivity, 
thermal conductivity, and heat capacity of the plasma; 
P(T) is the power transferred to the lattice vibrations 
per unit volume; Ez is the field component parallel to 

the current. The condition on the lateral boundary of the 
sample can be stipulated in the form aT/op = 0. This is 
equivalent to assuming that there are no specific surface 
mechanism for the energy transfer from the electron 
gas to the lattice (other than the volume mechanisms 
defining P(T)). 

The equation for the stationary distributions can be 
represented in the form 

d'B I dp2 + p-1d8 / dp + dU I de = o, 
T 8 

8 = ~ dT'x(T'), U(8) = ~ d8'[cr(8•)E,2-P(8')]. (2a) 

In order to find the static current-voltage character­
istic of the sample with inhomogeneous current distribu­
tion, it would be necessary to integrate Eq. (2) (in the 
case of alternating fields-(1)), find T(p) and the current 
density h(P) = a(T(p))Ez· It is known that Eq. (2) can 
in general not be integrated without resorting to numer­
ical calculations. On the other hand, when the tempera­
ture varies only in one direction, the equation for the 
temperature (which differs from (2) in the absence of a 
term with d® / dp), can be easily integrated r3J. It is 
therefore natural to investigate a definite limiting case 
of axisymmetric distribution, close to uniform distribu­
tion. namely a current pinch of large radius Po· 

In the case of one-dimensional distribution. there ex­
ists a solution in the form of two homogeneous stable 
phases-cold and hot-with a narrow transition layer 
between them. We define as the phase a region in the 
cross section of the sample having a practically uniform 
temperature distribution, equal to one of the three roots 
of the equation dU/d® = 0 possible for a given field Ez 
(the temperature ®, of the cold phase is equal to the 
smallest root, and that of the hot phase ®3 to the largest 
root). The thickness of the transition layer (wall) Zw is 
of the order of the energy scattering length, 
lw ~ (KT/n) 12 , where Tis the energy scattering time. 
The hot and cold phases coexist in the case of a flat 
boundary only at a definite value of the field Eo, at which 
U(® ,) = U(®3) r3J. 

Such a one-dimensional temperature distribution 
correspond3 to a distribution with cylindrical symmetry 
T(p) in the form of a thick column of one stable phase, 
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surrounded by another stable phase, for example a hot 
pinch column in a cold plasma. In the limiting case of a 
very large column radius and negligible curvature of its 
surface, the properties of the indicated two distributions 
of the temperature and the current coincide. 

In the present paper we find the form of the static 
current-voltage characteristic and the complex differen­
tial impedance Zd(w) of a conductor in which superheat 
instability has produced a current pinch with a wall loca­
ted at a large distance from both the axis of the sample 
(Po» lw) and from its boundary (R- Po» Zw)· It is 
important that the radius of the pinch is assumed to be 
large but finite. This makes it possible to trace the 
variation of the static characteristic and of the dynamic 
properties of the conductor with increasing p 0 and 
''compression'' of the pinch wall. 

Obviously, the current pinch of large radius (Po» lw) 
exists in fields Ez close to Eo (see above), and the static 
current-voltage characteristic I(Ez) approaches the ver­
tical Ez ~ Eo, which is characteristic of a flat boundary 
between phases, with increasing total current I. We 
shall find later the manner in which this approach takes 
place. 

The main change of the electron temperature in a 
sample with a large- radius pinch occurs in the narrow 
region of the wall. On going away from the wall to the 
interior of the pinch or to the interior of the cold 
plasma, ®(p) approaches exponentially its values e (0) 
and ® (R), and, as follows from (2), the characteristic 
lengths of exponential variation of ® (P) are equal res­
pectively to 13 ~ (- U"(® 3)r 1 h and l 1 ~ (- U"(e 1)r112• The 
differences ® 3 - ® (0) and ® (R) - e 1 are therefore ex­
ponentially small quantities. Namely, 

(E>s- e (0)) I e, - exp (-poI z,), 
(8 (R) - 81) I 81 ~ exp [- (R -Po) I l,]. (3) 

We shall neglect exponentially small quantities, but 
we shall retain in the calculation of the impedance the 
relatively large quantities of the order of ZwiPo and 
( Zw!Po) 2 • It is easy to understand that the latter are the 
results of the curvature of the surface of the pinch. It 
is precisely the curvature, and not the inhomogeneity of 
T(p) deep inside the pinch or far from the wall, which 
determines the difference between the properties of dis­
tributions of the temperature and the current in the form 
of a column of finite radius, and the properties of dis tri­
butions in the form of two phases with a flat boundary 
between them. This effect recalls the influence of the 
curvature of the surface of a liquid on its equilibrium 
with vapor. 

We shall find that in the static case and at low fre­
quencies the electric conductivity of the sample is de­
termined by the displacement (oscillations) of the pinch 
wall. It is therefore easy to see the analogy between our 
problem and problems of domain-wall motions in the 
magnetic susceptibility of a ferromagnet r•J or the di­
electric susceptibility of a ferroelectricrsJ, and also the 
problem of the impedance of a sample with a Gunn 
domain rsJ. 

Since we are considering in this article only the dis­
tributions of the current and of the temperature, which 
do not depend on z, all the results are valid not only in 
the absence of the magnetic field, but also in a longi­
tudinal field. In the latter case a = Gzz and K ~ Kxx· 

2. DIFFERENTIAL COMPLEX IMPEDANCE 

Assume that besides the constant field Ez there is 
applied to the sample a small alternating field 
l.iEz(w)exp(-iwt). We denote the amplitudes of the ac 
components of the current density and of the tempera­
ture by l.ijz(p, w) and /.iT(p, w). The differential electric 
conductivity of the sample is (lz-length of the sample): 

zd-i(w) = 2n f dpp 6!,(p,w) = 2n1 dpp{O'(T) +E,d0'6T(p,wL}. 
I, 0 dE,(w) l, 0 dT 6E,(w) 

(4) 

It is necessary to substitute here in lieu of T the sta­
tionary distribution T(p). The equation for l.iT(p, w) is 
obtained by linearization of (1). After making the follow­
ing change of variable and of the unknown function 

p 

r= ~ dp(nc.tx)'f,, 

1] = x(dln r I dlnp)'f,{JT(p, oo), 

we get 

(if- iw)1J(r) = F(r). 

Here 

- 1 d( d) H= --- r- + V(r) 
r dr dr ' 

_ x d2U x )'/, d d ( dlnr)-'1, v(r)= ----- -- r -•;, 
nee d82 nee ( p) dpp dp d ln p ' 

F(r) = 20'E,(ptr)'f•(x/nc.)'f•{iE,(oo). 

(5) 

(6) 

(7) 

(8) 

(9) 

The "potential" V(r) has the form of a well at p "" p 0 , 

with sufficiently abrupt edges (Fig. 1). Outside the wall 
Z(r) > 0 and is constant with exponential accuracy. 

FIG. l. Schematic representation 
of the "potential" V(p ). 

v 

We denote by 1Jn and En the eigenfunctions and the 
eigenvalues of H, and assume that 1Jn satisfy the same 
conditions as 1J(r) (and also T(r)). The functions 7Jn 
constitute a system of "elementary perturbations" of 
the stationary distribution of the temperature in the col­
umn. The ground state function 1Jo(r), which does not 
reverse sign and is concentrated in the potential well 
V(r), corresponds to a change of the radius of the col­
umn, i.e., to a motion of its wall. We separate in the 
response 1J (r) the part connected with this motion: 

l']o(r) ~ dr ~oF 
(10) 

To calculate 1Jo and Eo, we compare the equation for 
1Jo 

(H -eo)l']o = 0 

with the equation for the function 

'¢o = x(d ln r I dlnp) 'h(dT I dp), 

(11) 

(12) 
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which is of the form 11 

(H +% / ncejJ2)'¢o = 0. (13) 

Eq. (13) can be easily obtained by differentiating (2) with 
respect to p. By virtue of the hermiticity of H and of 
the smallness of dl/!o/dr and 1Jo on the boundary p = R, 
we get from (11) and (13) 

eo=------- (14) 
~ dr r'¢o1]o 

Since 1/!o and 1Jo do not reverse sign, we get Eo< 0 (in­
cluding, in particular, the case of a thin pinch with 
radius ~ lw). 

In the case of a thick pinch, the main change of T 
takes place in the region of the wall, accordingly the 
function 1/!o has the form of a peak localized near p = Po, 
and attenuates exponentially with increasing distance 
from the wall. Therefore the main contribution to the 
integrals in (14) is made by the region of the wall and 
Eo a: p~2 • The functions 1Jo and 1/!o behave differently near 
the center of the column, but are both exponentially 
small there. When p ~Po the "perturbation" K/ncep 2 in 
(13) is small, and with this accuracy we have 1] 0 = 1/!o and 

~ ~ I 

eo=-po-zO d9ld9!dpl )0d9(ncel%)id9ldpif. (15) 
8t 9t 

It is possible to substitute in the integrands the deriva­
tive de/dp of the stationary distribution, calculated for 
the case of a flat boundary between phases Lll: 

ld9ldpl= {2[U(8a) -U(8)]}'/'. (15a) 

In order of magnitude [Eo[ ~ (lw/Po)2 V(O) (Fig. 1). We 
cannot expect at least one discrete eigenvalue En (if it 
exists at all) to be small. Therefore, in the remaining 
part of the response 1J (r), 

~ 1Jn(r) ~drr1JnF (16) 
n(,CO) en - iw ~ dr r1Jn2 

we can neglect at low frequencies (« V(O)) the contribu-· 
tion of the discrete levels compared with (10), inasmuch 
as the corresponding frequency denominators are not 
small. 

For the same reason, the function (16) is of the same 
order both inside and outside the wall. Since the latter 
one is narrow, this gives a small (~lw/Po) contribution 
to the interval (4). The value of (16) outside the walls is 
significant, but here V(r) i:::< canst and c5T/c5Ez can be 
determined in elementary fashion. The contribution 
from (16) to z;-{(w) is equal to the sum of the differential 
electric conductivities of the column Zct~(w) and the sur·· 
rounding part of the sample V(i:(w) (with "cold" plasma), 
regarded as homogeneous phases with cross sections 
S3 = 7Tp~ and S1. The corresponding specific differential 
electric conductivities are equal to (i = 1, 3) 

C1di(w) = cr{1 + 2Eo2[ (da I dT) I nee] (<-1 - iul)-'}r~ 1· , (17) 

where T(Ti) = nce/Kli is the energy scattering time. 

I) The idea of using the equation for the derivative of the stationary 
distribution dates back, apparently, to the paper by Zel'dovich and 
Barenblatt on the stability of a flat flame front [1 ]. 

After substituting (10) in (4) we get finally 

zd-•(w) =' Zdt-1 (w) +Zda-1 (w) + H,-1 (1 + iw l[eol)-1, 

where 

R,-t = -z,-•[cr(T3)- cr(T1)]2npo3 I l, 

83 8a 

l •=- 0 de 1 d81dp 1) jzEo' ~ d9cr(9). 
e, e1 

(18) 

(19) 

(20) 

The length l is of the order of thickness of the column 
wall. 

Thus, the equivalent circuit of a sample with a cur­
rent column is made up of the parallel-connected im­
pedances of the column (Z3), the surrounding plasma 
(Z1), and the "impedance of the wall." The latter is 
made up of the resistance Rw < 0 and the inductance 
Lw = Rw/Eo. 

The radius of the pinch can be connected with the cur­
rent I, using the fact that the density of the current is 
almost homogeneous both inside the pinch (j 3) and out­
side (j 1): 

I = it (E,) nR2 + [ia(E,) -it (E,)] np02• (21) 

3. CONCLUSIONS 

Differentiating (21) with respect to Ez and comparing 
with Z -1(0), we get dpo/dEz, and from it the dependence 
of Ez on po: 

(E,- Eo) I Eo= l I po. (22) 

The same result can be obtained also directly from Eq. 
(2) for the stationary distribution T( p). 

The statie differential electric admittance Z -\0) of a 
sample with a column goes through zero when 

(E,- Eo} I Eo= l /Po= [2(cr(T,) - cr(T,) )12 I C1dtR2J'i' (23) 

(the equality holds true if the right-hand side is small 
compared with unity). At smaller values of Ez- Eo, the 
admittance Z -1(0) < 0 (the drooping section of the char­
acteristic), and for large values Z -1(0) > 0. It follows 
from (18) that Z -1(w) has no zeroes in the upper half­
plane of w, and consequently the column is stable in the 
specified-cttrrent regime in the case when Z -1(0) < 0, 
i.e., on the drooping part of the current voltage curve. 
It is unstable regardless of load if Z -1(0) > 0. 

When Po exceeds the value given by (23), i.e., 

1/ nR'-- h (Eo) )Y(3/2'1,)E0 [a (T3)- a ( T1) ]';,a:fi (l/ H)'i', (24) 

the absolute magnitude of the "wall" conductivity IR~I 
» Z1 1(0) + Z3-1(0). In this case the static characteristic 
of the sample with the current column is practically 
vertical: an increase of the current takes place as a 
result of an increase of the column radius. 

Owing to the small value of the characteristic fre­
quency !Eol ~ (l/Po) 2 T- 1 (here Tis of the order of the 
relaxation time of the energy of the electrons in the 
homogeneous plasma), the impedance Z(w) experiences 
dispersion even at low frequencies w << T- 1 • Figure 2 
shows schematically ReZ -\w). It becomes positive at 
the frequeney 

wo =leo [[z-t (0) I 'h(Z,-1 (0) +Za-1 (0) )-'/, ~ (l I po)'izp 

X[(aa--at) I (ad,R2I.po2 +ada- crdt)]'iz, (25) 

which is proportional to the small parameter ( l/p 0 ) 312 • 
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~,.--T-'-------L,--1 FIG. 2. Frequency dependence of 
r·' w the real part of the differential con­

ductivity of a sample with a current 
pinch. 

With increasing frequency w, owing to the "inertia" of 
the column wall, which determines the inductance Lw, 
the oscillations of the wall become negligible. The con­
tribution of the oscillations of the column wall to 
ImZ -1(w) vanishes when 

''' > (I I Po)T-1 [ (a,- a,)/ (adtR2 I po2 +ads- Gdt) ]. 

At higher frequencies, the differential electric conduc­
tivity of the sample is equal simply to Z11 + Z31 (it ex­
periences dispersion when w ~ T- 1). 

Vertical or near-vertical static current-voltage 
characteristics, connected with the pinching of the cur­
rent, were observed in a large number of semiconduc­
tors (n-InAs at helium temperatures, in compensated 
germanium and silicon at low-temperature impurity 
breakdown). But investigations with an alternating sig-

nal, insofar as we know, have not been carried out under 
these conditions. 

The author is grateful to A. F. Volkov, 0. V. Konstan­
tinov, V. I. Perel', and R. A. Suris for a discussion of 
the results. 
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