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The charge singularities in quantum electrodynamics which appear as a result of positronium forma­
tion are investigated. Terms exhibiting such singularities in the proper mass of the electron and the 
vacuum polarization are computed explicitly. It is shown that in perturbation theory dispersion rela­
tions should be written without taking into account poles related to composite particles. 

1. INTRODUCTION 

AS is well known, the occurrence of composite parti·· 
cles in nonrelativistic quantum mechanics leads to 
singularities with respect to the coupling constant in the 
corresponding Green's function, thus making it impos­
sible to use perturbation theoryC 1.J. It is a characteris­
tic feature that the singularities with respect to the 
coupling constant do not appear at all energies, but 
only in a region immediately adjacent to the pole pro­
duced by the composite particle. Outside this region 
the Green's function remains an analytic function of the 
interaction constant. 

In quantum field theory the two -particle Green's 
function can occur as a building block of some Feynman 
diagram. The question arises as to how the Green's 
function singularities due to the presence of composite 
particles reflect themselves in the properties of the 
diagram. In particular, is it still possible to use per­
turbation theory for such diagrams, taking into account 
the fact that the two -particle Green's function cannot 
be expanded in a perturbation theory series for some 
region of its arguments? 

Concretely, we consider quantum electrodynamics. 
The two -particle Greens's function will refer to the 
electron (e-) and the positron (e+), and the singulari­
ties in which we are interested are due to the formation 
of positronium. At the same time we shall have to con­
sider the two -particle e- e- (or e + e +) Green's function 
which does not have pole singularities on the physical 
sheet of the energy, but still cannot be expanded in a 
perturbation theory series. 

Thus we shall be interested in finding out how the 
singularity with respect to a = e 2/ 47T in the e- e + or 
e- e- Green's function manifests itself in the diagrams 
containing these functions as blocks, and whether it is 
possible to compute such diagrams in the usual manner 
according to perturbation theory. 

In brief, the results of the paper are the following. 
All diagrams which contain as blocks the e- e + or 
e-e- Green's functions are themselves nonanalytic 
functions of a in a certain region of the external 
momenta where perturbation theory is not applicable. 
This region of external momenta contains, however, 
only momenta situated in a neighborhood (at distances 
~a 2m 2 ) of the singularities of the Feynman diagram 
under consideration, singularities defined by the well-

known Landlau equations C2J and coming from the Landau 
diagrams with "positronium" (for e-e+) or "antiposi­
tronium" (for e-e-) lines of mass ~2m. For the 
simplest diagrams the singularities in a appear only 
when real positronium can be formed in the intermedi­
ate state, and are closely related to threshold singu­
larities which appear when a new reaction channel opens 
up. In bound state problems (e.g., the levels of a hy­
drogen atom), no positronium singularities appear. 

As an illustration, we compute the parts of the 
proper mass of the electron, and of the vacuum polari­
zation, which are non-analytic in a due to positronium. 
In conclusion we discuss briefly the relation between 
formalisms which utilize off-shell and on-shell quanti­
ties in perlturbation theory. It turns out that in the 
presence of composite particles a formalism operating 
with quantities defined off the mass shell has the ad­
vantage that it allows the use of perturbation theory. 
In formalisms using only quantities defined on the 
mass shell. (dispersion relations and unitarity) this is 
not possible. 

2. SINGULARITIES IN a IN QUANTUM ELECTRO­
DYNAMICS 

The singularities of the relativistic two -particle 
Green'sfunctionofthe e-e+(G) or e-e-(Gl) with 
respect to a, and related to positronium or antiposi­
tronium, are analogous to the singularities of the non­
relativistic Green's function in a Coulomb field. The 
relativistic Green's function satisfies the equation 

G = G0 + aGoiG, ( 1) 
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where Go is the product of the one-particle Green's 
functions of the e- and e +, and I represents the in­
teraction. For analyzing the positronium singularity 
it suffices to consider the one -photon exchange only, 
since the other terms in I only produce insignificant 
displacements of the positronium levels. Then I does 
not depend on a. Following Cutkosky and Leon L3J and 
Weinberg 1

:
1J, we introduce the eigenvectors <l>N and 

the eigenvalues of the homogeneous equation 

Gol!JJN = T]N!JJN, N = 1, 2, ... , (2) 

expand G in terms of <l>N and obtain (cf. =3 ,•J) 

G( k k')= G ( k k')+~ QJN(p,k)iDN(p, k') UT]N2 (3) 
p, '' o p, ' LJ (!JJ I I I QJ ) 1 - a 

N=t N N fiN 
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Here p is the total momentum, and k and k' are the 
relative momenta of the e- and e •. In Eq. (3) <l>N and 
fJ N ( p2 ) do not depend on a. The total dependence on 
a is exhibited in explicit form. The positronium levels 
are determined from the equation a= 7JN-1 • A com­
parison with the well-known formula for the levels of 
hydrogen-like systems yields 7JN = m/N( 4m 2 - p 2 ) 112 • 

It follows from (3) that the whole nonanalyticity in a is 
concentrated in the factor 1/( 1 - a7JN) ~ 
~ 1/( 4m 2 - p2 - a 2 m 2/N2 ). In other words, the non­
analyticity in a is completely related to the positron­
ium pole, and to the dependence of the positronium 
mass on a. The residue at this pole is analytic in a. 

The Green's function G cannot be expanded in a 
perturbation theory series for JaTJNI > 1, i.e. 

j4m2-p2j <a2m2 /N2, 1V=1,2, ... 

This is, of course, a well-known fact, which follows 
directly from the nonrelativistic theory. 

(4) 

The results also remain valid for the two-electron 
Green's function G1, if one replaces a by -a. The 
pole appears on the second sheet (antipositronium), but 
the region of non-expansion in powers of a remains 
the same. 

We now turn to an arbitrarily complicated Feynman 
diagram in quantum electrodynamics, containing either 
G or G1 as a whole (cf. e.g., Fig. 1, which represents 
the electron self-energy, or Fig. 2, which represents 
vacuum polarization). We substitute (3) into the dia­
gram, and consider the contribution of the N-th term. 

b 

FIG. I. The electron proper mass 

FIG. 2. Vacuum polarization 

We carry out all the integrations over internal mo­
menta, with the exception of the last one, which is over 
the positronium momentum p. In the complex Po plane 
the singularities of the integrand will consist of the 
positronium pole at p2 = MN2 =4m 2 - a 2m 2/N2 , cuts 
for p2 ::=: 4m 2, and the singularity produced by the re­
mainder of the diagram, Po = s ( qi), the position of 
which depends on the external momenta qi of the dia­
gram (cf. Fig. 3). 

lift/ 

c 

® 
FIG. 3. The singularities in the 

complex Po plane; Cis the integration 
path. 

So long as the point s ( qi) is not close to the posi­
tronium singularity, we can deform the integration con­
tour in the po-plane and avoid the positronium pole by 
a distance ~m. Then the denominator p2 - MN2 can 
definitely be expanded in powers of a and the whole 
diagram can be represented as a series in powers of 
u. It becomes impossible to expand with respect to a 
when s(qi) comes into the vicinity of the positronium 

pole (i.e., into the region (4)), from the other side of 
the integration path. If s ( qi) coincides exactly with 
the positronium pole, the integral ceases to exist, and 
the Feynman diagram acquires a singuliarity as a 
function of its external momenta for qi = ql"). The 
position of this singularity is determined by the well­
known equations and diagrams given by Landau [2J, and 
is such that in the Landau diagram there must exist a 
line of mass MN, corresponding to the positronium 
pole. Assuming the derivatives of s(qi) with respect 
to qi to be of order of unity, we find that the region 
where the Feynman diagram cannot be expanded in 
powers of a is 

jq;- q;(o) j~a2mjN2. ( 5) 

We consider as examples the self-mass of the elec­
tron and the vacuum polarization. The simplest Landau 
diagrams for them are illustrated in Fig. 4 (the double 
line denotes the positronium). The corresponding 
singularities are at q2 = ( m + MN )2 and q2 = MN2, 

respectively. The domain of inapplicability of pertur­
bation theory is situated near these values, at a dis­
tance ~a 2m 2/N2 • It is obvious that all singularities 
in a are directly related to thresholds in the energy 
for real production of positronium in the intermediate 
state. More complicated Landau diagrams correspond 
to the production of positronium plus several photons 
in the intermediate state and are of higher order in a. 

FIG. 4. The simplest Landau diagrams for 
the electron proper mass and vacuum polariza­
tion, involving positronium lines. 

Diagrams with three or four external lines will have 
singularities produced by positronium of exactly the 
same nature. Owing to the large mass of positronium, 
there are no anomalous singularities, and only the 
simplest Landau diagrams, corresponding to produc­
tion of positronium and some other particles in the 
intermediate state, remain. The domain where per­
turbation theory is not applicable will refer to energies 
near the production threshold. 

It is important that positronium singularities do not 
manifest themselves at all in bound state problems for 
an electron in an external field (hydrogen atom), since 
here the electron energy E < m, and for positronium 
production E should be of the order 3m. This result 
can also be seen directly from the corresponding 
Be the -Sal peter equation, by rotating the path of inte­
gration with respect to the relative energy by 90° and 
thus transforming to an Euclidean equation [ 5J. The 
kernel of the Euclidean equation can be considered to 
contain only Euclidean integrations, and one can see 
that in the denominator p 2 - MN2 corresponding to 
positronium, p 2 < 0, and the denominator can be ex­
panded in powers of a. 

3. THE SINGULARITIES IN a OF THE VACUUM 
POLARIZATION 

In order to illustrate the general considerations 
given above we compute the terms containing singular­
ities in a in the electron self-energy and in the vacuum 
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polarization. We start with the vacuum polarization 
tensor rraJ3 ( q) = IT ( q2) ( gaf3 _ qa q/3 /q2). 

The totality of diagrams in Fig. 2 corresponds to 
the contribution 

II"P(q) = (2~;.i S d"k d"k' y"v"'G, •• ""'(q, k, k')ve•w, (6) 

where the spinor subscripts of G refer to the first 
( w') and second ( IJ.IJ. ') particles. In the region of 
interest q2 ~ 4m2. It is clear that the principal part of 
the singularity is given by the nonrelativistic region 
I k I « m. In the region of large k there appears at 
most another a (ultraviolet divergences being removed 
by renormalization). Therefore in the first approxima­
tion one may assume that the e- and e + move slowly, 
and then 

(7) 

where G(q, k, k') is the four-dimensional Green's 
function corresponding to scalar particles which inter­
act with an attractive Coulomb potential. Substituting 
(7) into (6), we obtain 

II (q2) =&tag (e, 0, 0). (8) 

The function g ( E, x, y) is the nonrelativistic three­
dimensional Green's function in an attractive Coulomb 
field for a particle of mass ?'2m and energy d q2) 
= (q2 - 4m 2)/4m. Making use of the known formulas 
for this function [sJ we find that the part singular in a 
in g ( E, 0, 0) is 

am2 

g,(e,0,0)=-:;;;-'¢(1-iv), v=am/1q2 -4m2. (9) 

Here zj;(z) = d lnr(z)/dz. It follows that the part of 
n which is singular in a has the form: 

II,(q2) = -2a2m"¢(1- iv). (10) 

It can be seen that the proper mass of the photon 
has poles at points corresponding to positronium (ill 
= N, N = 1, 2, ... ). The photon Green's function is 
given by the usual expression 

D(q2) = (II(q•) _ q•)-• (11) 

and will have poles at slightly displaced points, corre­
sponding to the displacement of the positronium level 
due to the contact potential produced by the photon pole. 
Perturbation theory becomes invalid for lv I > 1, 
where one would have to add to the standard perturba­
tive expression of n in n-th order of a the correction 

n-1 

!1I1(nl=-2a2m2('¢(1-iv)+C+~ ~(k)(iv)k-1). (12) 
k=2 

The correction has the order aZ and is large in the 
immediate neighborhood of the positronium poles and 
at the scattering threshold ( 11 - 00 ), where it behaves 
like a 2vn - 2• 

4. THE SINGULARITIES IN a OF THE ELECTRON 
PROPER MASS 

We now pass on to the electron proper mass 
L (q) (Fig. 1). The part of the mass operator L1 re­
lated to the Green's function e e (Fig. 1a) can be 
written in the form 

(~ 1 )""' = .~ r d'p d'k d'k' y"v"G•vv• ""o(P, k, k')yv~w 
(2n) 8 J ' 

X (w (m- p + q)-•vahw· I (q- 1i2P- k) 2 (q- 1I2P- k') 2• (13) 

We again take into consideration the fact that the es­
sential contribution is made by small k: I k I « m. In 
addition the eondition for the appearance of a singular­
ity requires q2 ~9m2, p2 ~ 4m 2 and ( p - q) 2 ;:::: m 2. In 
the frame where q = 0 it follows that Po ~ 2m and 
consequently I pI « m. This allows us to set 
(q - Y2P - k) 2 = (q - Y2P- k') 2 =4m2, and m + p 
- q = m ( 1 - y 0 ). For G1 one can write down an ex­
pression of the type (7), but involving two projection 
operators ?'2( 1 +Yo) and the function G1 correspond­
ing to repulsion. We obtain (in the frame where q = 0) 

~dq:) = (1- Yo) 3a2i ~ d'p g,(e\p•)' 0, 0) ' (14) 
8n2m m2-(p-q)• 

where g1 ( E, x, y) is the repulsive Coulomb Green's 
function. Substituting the expression for the singular 
part of g1 ( E, 0, 0) we find the part of L 1 singular in 
a in the form 

A A a3i S '¢ ( 1 + iv) 
~,.(q) =(3m- q)-32 a 2 d'p 2 ( )2 , nm m-p-q 

( 15) 

where v(p2) = am/(p2 - 4m2) 112. The integral in (15) 
diverges, but the part which is singular in a is finite. 
It can be found by using a series representation for the 
zj; -function. 

The contribution from all diagrams in Fig. 1b is the 
same, and is given by ( 15), but with a replaced by -a. 
The final result for the part Ls of the proper mass of 
the electron which is singular in a is 

..... A a6 
~.(q) = (q- 3m)----cr(q2), 

8n l'3 
(16) 

where 

.., 1 -( - lt) 
cr(q2)= ~ N' SN-··o +sN2 ln(sN +l'1 +sN2)+i6 (17) 

N=1 

and ~N = ( 'Yz) 112 am/N(q2 - 9m2)112. Perturbation 
theory becomes invalid for J ~N I > 1. However, the 
corrections to perturbation theory are unusually small: 
~as. 

In a completely analogous manner one could find the 
part singular in a of other quantities, e.g., for Comp­
ton scattering. It is similar to Ls, extremely small 
(~a 7 ) and scarcely presents any practical interest. 

5. DISPERSION RELATIONS AND PERTURBATION 
THEORY 

We consider the interesting problem of a dispersion 
relation in the presence of composite particles. For 
simplicity we consider the photon Green's function 
D(q2) defined according to (11). In the vicinity of q2 
~ 4m2 the part Ds ( q2) singular in a can be written 
in first approximation in the form 

a2 
D,(q2) ~ - (4m2)-2I1,(q2) = --'¢(1- iv). (18) 

8m2 

Far from the point q2 = 4m 2, Ds can be expanded in a 
convergent series in powers of a. One might think that 
the whole function D( q2 ) can be expanded in this region 
into a (perhaps only asymptotically) convergent per­
turbation theory series: 
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n=O 

n<n' ( q2) can be represented as a sum of Feynman 
diagrams, each being an analytic function of q2 with 
singularities dictated by the Landau rules. As can be 
seen from (18), for q2 =4m 2 n<nJ (q2 ) has an integrable 
pole or square -root singularity. This singularity is not 
related to the production of composite particles, but 
is a consequence of the vanishing photon mass. If, as 
is usually done, one starts from a theory with photon 
mass A. I 0, the nonintegrable singularity of Den' (q2 ) 

at q2 = 4m2 disappears. In order to see this, we re­
place the Coulomb Green's function g in (8) by the 
Green's function for a Hulthen potential 
V0e-A.r ( 1 - e-"-r)-\ for A.- 0 and Vo = aA.. This does 
not exactly correspond to the introduction of a photon 
mass A., but is more like the introduction of an assem­
bly of photons with masses which are multiples of A.. 
Nevertheless it is natural to assume that the results 
do not depend on method of going to the limit A.- 0. 
Then the function </! ( 1 - iv) in (10) will be replaced by 
the expression 

""( 2 2J..N-i'/q2 -4m2 ) ( i -) L; -- _ -"' 1--'/q'-4m• , (20) 
N=l N J,JV•-iN'/q2 -4m2 -am ;,. 

which goes over into 1/J ( 1 - iv) for A. - 0. Expanding 
(20) in a series in a will preserve the expressions 
A.N- i(q2 - 4m 2 ) 112 in the denominator, and for A. I 0 
these never vanish. Therefore for A. I 0, nm' ( q2 ) is 
analytic in q2 with a cut along q2 ~ 0, with a branch 
point at q2 = 4m2 which is integrable at that point. We 
emphasize that n<n' has no poles corresponding to 
positronium, since it is simply a sum of a finite num­
ber of Feynman diagrams. Assuming that n<nl ( q2 ) de­
creases as J q2 J - oo, we can write a dispersion rela­
tion 

1 rimD<n>(s)ds 
D<nl(q')=-J . 

no s- q• 
(21) 

The imaginary part Im n<n> can be obtained from the 
Feynman diagram by means of the Landau-Cutkosky 
rules, i.e., using generalized unitarity in n-th order of 
perturbation theory. 

Using (19) we sum the n<m (q2) and obtain 

1 1 ~ r Imn<n>(s)ds 
D(q•)=--+-~ J 

q• n n=l 0 s - q• 
(22) 

for J q2 - 4m 2 / > a 2m2 • 

At a first glance, Eq. (22) looks paradoxical. The 
function D ( q2 ) is represented as a dispersion integral 
which does not contain any positronium poles. But we 

know that in fact such poles should be present: they 
are explicitly exhibited in Eq. (18). Therefore the 
correct dispersion relation for D ( q2 ) must look as 
follows: 

1 1 r ImD(s)ds ~ CN 
D(q')=--+-J +~ ---

q• n 0 S- q2 N=IMN2- q2' 
(23) 

where MN are the positronium masses. The apparent 
contradiction between (22) and (23) can, of course, be 
explained by the impossibility of interchanging the 
order of summation and integration in (22). The sum 
over n in (22) converges, but ~n Im nm>( s) diverges 
in the region J s -4m2 /~ a 2m 2 • The difference be­
tween the sum of integrals in (22) and the integral in 
(23) is exactly equal to the sum of pole terms in (23). 
This can be seen directly by taking an individual term 
in the sum (20). 

We come to the conclusion that in the presence of 
composite particles the Feynman diagram method 
which operates with off-mass-shell quantities, and the 
axiomatic dispersion approach in conjunction with 
unitarity, are not equivalent insofar as perturbation 
theory is concerned. The method of Feynman diagrams 
continues to work far from the singularities produced 
by virtual composite particles. The dispersion method 
requires the knowledge of the discontinuity across the 
cut throughout the whole energy range, including the 
domain where perturbation theory is manifestly inap­
plicable. Therefore this method is incompatible with 
perturbation theory in the presence of composite 
particles. 

In concrete computations of Feynman diagrams one 
can, of course, use dispersion relations in the form 
(22). Practically this means that in dispersion rela­
tions combined with perturbation theory there is no 
need to take into account the contribution from poles 
produced by composite particles. 

S. Weinberg, Phys. Rev. 131, 440 (1963). 
2 L. D. Landau, Zh. Eksp. Teor. Fiz. 37, 62 (19 59) 

[Sov. Phys. JETP 10, 45 (1960)]. 
3 R. Cutkosky and M. Leon, Phys. Rev. 135, B 1445 

(1964). 
4 M. A. Braun, Yad. Fiz. 7, #4 (1968) [Sov. J. Nucl. 

Phys. 7, #4 (1968) ]. 
5 G. C. Wick, Phys. Rev. 96, 1124 (1954). 
6 L. Hostler and R. H. Pratt, Phys. Rev. Lett. 10, 

469 (1963). 

Translated by M. E. Mayer 
141 


