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The problem studied is the spectrum of an electron in a shallow potential well, of arbitrary radius, 
in the presence of a constant magnetic field. The treatment is carried out exactly for potentials of 
special form, but qualitatively the results are suf:Eiciently generaL A brief discussion is given of 
certain low-temperature effects to which these loeal states can lead in homopolar semiconductors. 

1. INTRODUCTION 

IT was first shown by Bychkov [ 1J that a potential well 
in the presence of a constant magnetic field always 
leads to the appearance of a bound electron state. The 
shape of the well was considered to be of 15 form; this 
can be justified in the case of good metals, where, in 
consequence of the strong shielding of the impurity 
potential, its radius a is considerably smaller than the 
other important dimensions of the problem, in particu
lar the characteristic magnetic length Po = /CiVeH. 
Scattering of an electron by a 15-form potential well 
was also treated by Skobov [zJ and by Demkov and 
Drukarev [3 J; scattering by a linear dislocation of small 
radius was treated by Kosevich and Tanatarov [ 4 J . 

In semiconductors, where the local states may mani
fest themselves in an important way in galvanomagnetie 
phenomena, even at not very large magnetic fields the 
value of Po may be found to be of the order of or even 
smaller than a. Potential wells of large radius, for 
electrons in homopolar crystals, can also be produced 
by strain fluctuations of the lattice. The case a » p0 

and the 15-form potential were studied in detail in the 
fundamental work of Kubo, Miyake, and Hashitsume [5J. 
Although local states were not considered in this work, 
the method presented there presumably makes it possi
ble to obtain them for both limiting cases. 

Local levels can lead to an independent effect in a 
strong magnetic field only in a case in which there are 
no local states in the well without the magnetic field; 
that is, when 

( 1) 

where Vo < 0 is a characteristic value of the potential 
in the well and where m * is the effective mass of the 
electron, which for simplicity will henceforth be con
sidered isotropic. The dimensionless parameter K 

determines the "strength" of the well with respect to 
the formation in it of localized states in the absence of 
a magnetic field (for potential wells of simple form, 
K ""' 2). 

The present paper investigates the intermediate 
case a = 0 (po) when K < Kcr· Although in this case it 
is feasible to treat only potentials of special form, the 
results obtained are qualitatively correct under suf
ficiently general suppositions about the form of the 
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well, so that the local levels are determined by inte
gral properties of the potential. 

2. THE CASE a = O(po) 

The Hamilltonian of the system under consideration 
has the form 

1 ( e \2 
H=-. -. 1'--A J+V(r)=Ho+V(r). 

2m , c / 
(2) 

We shall be interested in the density of the electronic 
spectrum corresponding to (2), 

p(E) = ImSpC(E) /:rt, (3) 

where G(E) = (E - iO - H)-1 • For the resolvent G 
we can write the integral equation 

C = C0 + C0VC, (4) 

where G0 = (E- iO - Ho)-\ and for (4) the Neumann 
series 

C = C0 + C°FC0 + C•VC0 VG 0 + ... (5) 

In the calculation of p (E) for E* = E - {J.H < 0 (local 
levels) or close to the bottom of the continuous spec
trum, 0 < E* « {J.H ( fJ. is the Bohr magneton), in the 
case of strong magnetic fields and of potential wells 
V ( r) with K < Kcr, we can choose as a basis for 
Sp G states belonging to the first Landau band; that is, 
the functions 

_ exp {i(kxx + k,z)} { 1 ( Y- Yo ) 2 } (6) 
ljJ k k o - '. 'I T."/ exp - -;;- --- , 

x' Z' .nJ~p ~" 3 ~ Po 

where Yo = p~kx; V is the volume of the crystal. An 
estimate of the error that results from neglect of the 
states with n f 0 is made in the next section. 

Let 

V(r) = ~·0\V(z) exp {-(x2 +y2) /a2}. (7) 

Since for n = 0 the matrix elements of G0 depend only 
on kz and are 

(E'- ;o- n'k.Z/2m')-'b"·"·· ~ c~, o"·".', 
it follows that 

(8) 

p (E)= p0 (E)+~ Im { 2; ( e-1x'of)/a') ] co W CO 
n "x hx"-x ''z ~<;: h/<z ltz (9) 

+ )', ( e-(x'+Y')!a') ( e·-(x'+y')/a') ] GO ]I' GO W CO + } ; kA' R.\.1<~ l'l.'l:'ll,.llz,hz' h: ilzkz' kz' k/hz kz ••. 
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Po (E) is the density of the spectrum in the absence of 
the potential well; 

(10) 

[ ( x• + y' )] -yn_ a 
exp ---a,- ' k,k,;= -y;i, i1 + V 

X exp { :• \:2~ [ -( 1 + 1 ~22) (kx2 + k/2)+ 2kxkx']} ; (11) 

V = (po/ a) 2• (12) 

We shall calculate the sums that occur in (9), 

(13) 

On going over to an integration with respect to ki, 
y~h oo 

~ ... -+-) dki ... 
ki 2n -oo 

and on making the substitution % a[(1 + 2y)/(1 + y) )11~i 
= ki> we get 

1 
An=-::-:-----:~ 

[2n(1 +2v)]"'2 (14) 
2y2 n x\ dkn exp{- ( 1 + -- )~ k;2 + (k,k, + ... + kn-lkn + knk!) }. 

· 1 +2v 
i=t 

where kn is the n -dimensional vector ( k1, k2, ... , kn); 
the integration is carried out over the whole n
dimensional space. 

We shall reduce the positive definite quadratic form 
in the exponent of the exponential function in the inte
grand to canonical form. The reduction is conveniently 
carried out by means of an orthogonal transformation, 
since then the Jacobian of the transformation is unity. 
The desired characteristic values are the roots of the 
equation 

det II aim- A6imll = 0, (15) 

where 11 aim II is the matrix of the quadratic form. As 
a result of some transformations we get 

( 2y2 2nl \ 
A-1=- 1+----coS-J 

1+2v n.' 
l = 0,1, .. n -1, (16) 

that is, 

n-1 2nl ]-'I• 
A"= [ li { 1-2(1 +2v)cos-;;-+(1 +2v)') . 

l=O 

(17) 

It is easy to show that for arbitrary n 

An= (1 + :y)n- 1 = [ 1: 2y ]\ [ (1: 2y) 2 r+... . (18) 

Substitution of (18) into (9) allows us to state the 
final result: the desired spectral density p (E) for 
E* < 0 and for 0 < E* « JJ.H is written as the sum of 
the spectral densities Pl ( E*) of the one-dimensional 
problems obtained in the absence of the magnetic field 
for potentials VoW(z). ( 1 + 2y)-1; that is, 

N 

p(E)=~ pz(E'). 
l=i 

It is not difficult to reason that N is equal to the 
multiplicity of the degeneracy with respect to kx of 

(19) 

the spectrum of Ho for given kx and given number of 
the Landau band; that is, N = V273/27Tpg, For E* < 0, 

N 

p(E)=~ tJ(E'-Ez'), (20) 
!=I 

where Ez* is the local level in the one -dimensional 
potential well VoW ( z ){ 1 + 2y) -l. The condition K < Kcr 
guarantees the uniqueness of such a level for each well 
l, if the radius of W ( z) is also of order a. The same 
condition permits use, for finding El*, of the well
known formula (see [sJ) 

2m'Vo2 ( r )' 
Ez' =- li'(1 +Zy)'! }oo W(z)dz • (21) 

For Cl! < Po and even for Cl! = 0 (Po), the level Ef is 
important, but the rest are squeezed to the bottom of 
the continuous spectrum, and for even a small broaden
ing (see Sec. 4) they fuse with the continuous spectrum; 
this leads only to a small shift of its edge. For 
a » Po, the local levels fill the E* interval ( Et, 0) 
densely; but in the limit a -- 00, all N local levels 
"creep" on to the level Et. This was to be expected, 
since in this limit V(r) = VoW(z), and the Schrodinger 
equation permits separation of variables. This picture 
is illustrated in the figure, which shows the change of 
the depth of the local levels as a function of a/ Po for a 
given potential. 

The results obtained become graphic if, instead of 
(6), we consider wave packets, localized in a plane 
perpendicular to the magnetic field, along both axes, 
and constituting stationary states of Ho in consequence 
of the degeneracy with respect to kx. It is possible to 
construct packets of such form that their centers are at 
sites of a square lattice with distance f2ii p 0 , and their 
radii are equal to 2po: 

eik,z J i(y + Yl) (x- Xm) } 

'i'rm = V'l•yz,;; exp t --2po'--

{ (y- Yz) 3 +(x- Xm) 2 } 
Xexp --- . 

4po2 
(22) 

where 

xz = Yz = }'2npol; l = 0, ±1, ... , ± 1/, V'l•/ i2n.po. 

If a « Po, a single state (22) is significantly perturbed 
by the potential, and practically a single localized 
level is split off from the continuous spectrum; the 
others are shallow in accordance with the smallness of 
the overlapping of the wave functions of the other states 
with the potential. For a >>Po, on the contrary, there 
are a multitude of 1/Jl,m's within the range of the po
tential; therefore many levels split off from the con
tinuous spectrum, filling the interval ( Et, 0) densely. 
In this case the one-dimensional character of the 
problem is obvious. 
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To investigate formula (21), we shall suppose that 
V ( r) is spherically symmetric; that is, W ( z) 
= exp {-z2/ a 2 }. Then 

lt fiZ y 
E1' = --x2 

4 2m'p02 (1+2y)21 

For a » Po, the ground level ( l = 1) is 

E • • lt h• 
1 ~Eo= ----x2 

8 m•az ' 

that is, for given strength K of the well the value of 
I Ef I decreases with increase of a. For a « Po, 

n: m•az 
E1' =--(uH) 2--x2 

8 ... /i2 ' 

(23) 

(24) 

(2 ~i) 

that is, the value of I Ei I increases with increase of 
a. Formula (25) agrees with the results of[lJ and [3], 

if we introduce the concept of scattering length for a 
o-form potential. Thus for constant H and for con
stant K < Kcr• the depth of the ground level is greatest 
for a = 0 (po). (If V ( r) = Vo exp ( -r2/ a 2 ), then the 
optimum value of a is -1 2po.) This is a very important 
property of potentials with a = 0 (po), since the mani
festation of a localized level depends to an appreciable 
degree on its depth. 

3. THE CASE a« Po· DISCUSSION OF THE 
APPROXIMATIONS CHOSEN 

In order to estimate the error that arises in the 
calculation of local levels if we take account only of the 
first Landau band, we consider the case a << p0 , whic:h 
permits exact solution. The potential V0 exp ( -r2/ a 2 ) 

can in this case be replaced by an operator of first 
rank, introduced by Lifshits C7 J: 

( 2 )'I• ( ,z ) q>= - exp --
na2 a2 

(26) 

(the brackets in (26) denote the scalar product), since 
when a is much smalle:r_: than the characteristic length 
over which 1/J changes, A 1/J :::; Vo exp ( -r2/ a 2 )1/J. It is 
not difficult to show that (3) in this case has the form 

Fo 
p(E}= Po(E)+-=Im{ ~ (G,.o)zl (ljJ>.,q>) lz 

y8 ' 

x[t- F~~G,.•I(¢>.,<p)lzr}. 
ys ' -

(27) 

"- designates the combination ( n, kx, ky). For Et < 0 
the spectral density in the absence of the perturbation 
is Po (E) = 0, and the Gu 0's are real; therefore the 
local level Eloc*, which in this case is unique, is de
termined by the equation 

By means of quite cumbersome calculations, (28) can 
be transformed to the form 

1- l'n 2:exp{- Eloc } ~ [ 1-<D( v --~+~) J 
4j2 y 2yj.tH n~o 2yj.tH y 

{ Cn }( Eloc 11 )-'I• xexp 11- ---+- = 0. 
y3 2y~tH y 

(:!9) 

For n << y, Cn :::; Y 24; it thereafter increases slowly 

to 7'6; cl> ( x) is the probability integral. If in the sum 
(29) we keep only the first term and if we suppose that 
Eloc * « }lH, then we get Eloc* an expression that 
agrees with. (25). 

The exaet value of I Eloc* I exceeds I Ei I, since all 
terms of the sum (29) have the same sign; Eloc * can 
be determined from (29) by the method of successive 
approximations. Even the first approximation, obtained 
by substitution in the terms with n ;;:: 1 of the value of 
Ef instead of Eloc *, insures good accuracy when 
K < Kcr (in the case considered, Kcr = 2). If K << Kcr, 
then Eloc* practically coincides with Ei. If we extra
polate equation (29) to the case a = 0 (Po), then for 
a =Po and K = 1 the value of I Eloc* I is found to be 
about 30% ~;reater than I Ef 1. When K :::; Kcr• taking 
account of the first Landau band becomes insufficient; 
this is clear from the fact that when K > Kcr, when the 
local level appears in the absence of a magnetic field, 
Eloc * depends only slightly on a and does not ap
proach zero when a -0. 

4. LOCAL STATES IN SEMICONDUCTORS 

In concluding this paper, we shall discuss briefly 
certain effects to which these local states can lead in 
semiconduetors. For the appearance of such a local 
state it is necessary, first of all, that its width shall 
be smaller than the binding energy; that is, the dis
tance of the local level from the continuous spectrum. 
If the local levels are due to impurities, then the chief 
cause of broadening of them is overlapping of the wave 
functions of different centers (similar concentration 
broadening; leads to the occurrence of an impurity band 
in semiconductors). When roc 113 << 1, where r 0 is the 
radius of the local state and c is the concentration of 
the impurity, the concentration broadening is much 
less than I Eloc* I. In homopolar crystals, where the 
electrons .interact appreciably only with long -wave 
acoustic vibrations, as long as this interaction is not 
too strong the phonon broadening of the local levels at 
low temperatures is also small. 

The most interesting manifestation of local levels in 
hom apolar crystals is connected, it seems to us, with 
the case in which the potential well occurs in conse
quence of strain fluctuations of the lattice. In this case 
there is a possibility of the appearance of coupled 
electron-phonon states, which at large radii of the 
states may turn out to be energetically favorable (in 
contrast to the condenson states without a magnetic 
field, considered by De1gen and Pekar [aJ). 

We indicate also an obvious low-temperature effect, 
consisting in the rapid increase of the longitudinal 
magnetoresistance at a value of the magnetic field at 
which the broadening of the local levels becomes less 
than their depth. 

I take this occasion to express my thanks to I. M. 
Lifshitz, A. M. Kosevich, and I. 0. Kulik for discussion 
of the results of the research. 
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