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We consider thermal-oscillation anomalies and the probability of Mossbauer absorption in the phase 
transition region in ferroelectrics. For transitions of the displacement type, the anomalies can be 
expressed in terms of the dielectric characteristics and some constants defining the low-frequency 
spectrum of the crystal. An anisotropy of the oscillations below the transition point is obtained. 
Estimates are presented for order-disorder transitions. 

1. INTRODUCTION 

IN an earlier paper llJ, henceforth cited as I, we con
Sldered the thermodynamics and low-frequency oscilla
tion spectra in phase transitions of the displacement 
type in ferroelectrics. In the present paper we use the 
methods developed in I to describe the thermal oscilla
tions and the mean square displacements near the 
transition. These quantities can be investigated experi
mentally by x-ray or neutron diffraction [2 J, but the at
tainable accuracy is apparently insufficient for the 
study of the temperature dependences. Thermal oscil
lations in ferroelectrics were investigated recently in 
a number of experiments with the aid of the Mossbauer 
effect L: 3 • 4J, and anomalies were observed in the De bye
Waller factor near the transition. A theoretical discus
sion of these experiments was limited so far to general 
considerations concerning the possible influence of the 
critical oscillation [sJ, without attempts at a quantita
tive calculation. 

The more detailed analysis presented in this paper 
shows that important factors in the observed effect, 
besides the temperature dependence of the critical 
frequency, are also the piezoeffect and the difference 
between the first-order and second-order phase 
transitions. The resultant expression for the anomalous 
part of the mean displacements contains, besides the 
known dielectric, striction, and elastic constants, sev
eral other constants characterizing the critical oscilla
tions and the degree to which the given ion takes part 
in them. These same constants determine the spectra 
of the low-lying excitations (I), so that it is possible to 
obtain with the aid of the Mossbauer effect information 
concerning these important characteristics of the 
crystal. The temperature dependence of the anomaly 
above the transition is inversely proportional to the 
square root of the dielectric constant .:::, and below the 
transition it is expressed in terms of E and the spon
taneous polarization P. 

As in I, we are considering an ideal crystal. By 
way of an example we discuss essentially the case of 
perovskites with a transition from the cubic phase to 
the tetragonal phase, although the general formulas 
are applicable to any transition of the displacement 
type, and particularly a non-ferroelectric transition. 
In Sec. 4 we present certain considerations and esti
mates for the Mossbauer effect near the order-disor-
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der phase transitions. In this case, the character of 
the anomaly in the Debye -Waller factor depends on the 
relation between the natural width of the Mossbauer 
line and the relaxation time of the ions in the cells to 
the equilibrium distribution. 

2. GENERAL FORMULAS FOR THE PROBABILITY 
OF THE MOSSBAUER ABSORPTION 

The general expression for the probability of the 
Mossbauer absorption W in terms of the De bye -Waller 
factor =sJ is obtained by using a harmonic approxima
tion for the lattice oscillations. In the region of the 
phase transition, the anharmonicity effects are impor
tant, and we therefore derive a somewhat more general 
expression for W than usual. 

The probability of absorption of a quantum of fre
quency w in the Mossbauer effect is given by the ex
pression ~ 6 ' 7 J 

Xexp{- iq(ur(O)-~)}). 

( 1) 

Here wo is the resonant frequency, r is the natural 
width of the nuclear level, q is the wave vector of the 
quantum, UH(t)- IT is the Heisenberg operator of the 
displacement of the nucleus relative to the equilibrium 
position ( ua) = u: 

H is the usual phonon Hamiltonian of the crystal, see, 
for example, (I.1) and (I. 7). The symbol ( ... ) denotes 
statistical averaging: 

( ... ) = Sp (( ... )e··IWJ (Sp e·lllf)-'; 

j3 = 1/T; ao is the total absorption cross section. 
In the considered case of transitions of the displace

ment type, the times characterizing the motion of the 
absorbing ion are of the order of the reciprocal of the 
optical frequencies, and are much shorter than the 
emission times r-' .::::_ 10- 9 sec. Therefore the expres
sion in the angle brackets in (1) can be averaged, be
fore integration with respect to t, over the time, after 
which the time-average can be replaced, on the basis oft 
the general statistical theorems, by the statistical 
average. As a result we get 

(2) 
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where the thermal Debye-Waller factor is given by the 
expression 

t = 1\exp {iq(u,- u)})l. (3) 

In formulas (1) --(3) we neglected the presence of 
the spin of the nucleus and the associated effects of 
quadrupole and magnetic splitting. These splittings can 
be comparably in magnitude with the line width, but are 
always smaller to the optical frequencies. Allowance 
for these splittings leads to a replacement of (1) by a 
sum of several terms with frequencies that depend on 
the spin state of the nucleus. Integrating this equation 
over a frequency region that is large compared with 
the line width but small compared with the optical fre
quencies, we find that the total probability of the Moss
bauer transition, just as in the case described by (2), 
is equal to a0 f 2 • 

The factor f in (3) can be easily calculated in the 
harmonic approximation which, as already mentioned, 
is not applicable directly to the transition region. 
However, for transitions of the displacement type, the 
anharmonicity is small, (I); this makes it possible to 
obtain for the thermal factor a successive -approxima
tion series, just as for the thermodynamic quantities. 
Expanding (3) in powers of the exponent, we get 

f=l-_2~\(n--li)'>+-t<(u-u)'>-.... (4) 
2 ld ' 

where u denotes the projection of UH on the direction 
of q. 

The second term in (4) is expressed in terms of the 
temperature Green's functionc 8 • 1J G(k, iwn) as follows: 

( 5) 
kn 

The third term is expressed in terms of the two
phonon Green's function K, which satisfies the Be the
Salpeter equation =a~, which can be written symbolically 
in the form 

(6) 

where r is the amplitude of two-phonon scattering. 
By the methods of Sec. 4 of I we can verify that the 

ratio of the second of (6) to the first is proportional to 
the ratio of the temperature T to the atomic energy 
Eat, i.e., to the anharmonicity parameter. Therefore 
the second term of (6) can make a noticeable contribu
tion to (4) only at very large q, when the total proba
bility W ~ exp [- q2 ( u - ii) 2 ) is extremely small. For 
not too large q, it is sufficient to retain the first term 
of (6), as a result of which the third term of (4) becomes 

1/,[ 'iu<!~T ~Ga~(k, ;,.,,) J. (7) 
?>k 

The remaining terms of the expansion (4) are cal
culated in similar fashion. As a result we get 

f = C'Xp [-1/zqaqp.( (na- ltc;) (lip.·-- It~})], 

((lla- It,) (llr•.- lip,)) =(llallp.) -Italic.= T "': Ga~(k, ic,l,). (8) 

Expression (8) has the usual form =6=, but the mean 
value and G in (8) correspond to the Green's function 
with allowance for anharmonicity. This formula, as 
well as the analogous results of I, can be obtained by 
using the "linear anharmonic approximation" :9 ::. in 
which the formulas of the harmonic theory are used, 
but a temperature dependence is introduced into the 

Green's function phenomenologically; in the first ap
proximation in TEit• such a procedure is correct. 

3. ANOMALIES OF THERMAL OSCILLATIONS IN 
TRANSITIONS OF THE DISPLACEMENT TYPE 

The matrix Gaf3 in (8) can be taken for the case 
under consideration from (1.26): 

G(k, iw,) = [ .Pt co,2 +A-~ (w,2 1f!b + Vb + Qb) 
b,l!' 

r (b) 4:rtzbzb, \-I - J -1 
Xi ,,,,'+So +Sw+---g') (wn2 lf!b•+ Vb,++Qb.+) 

\ l'c 1 

(9) 

The indices b and b' number here different cptical 
coordinates (eritical xc and all other XH), wr, = 2n T 
are the discrete frequencies of the temperature dia
gram techniqueCaJ, the constants iJ.b and Zb charac
terize respectively the effective masses and polariza
bilities of the optical branches, v c is the volume of the 
unit cell, g~ 13 = nanf3, and n = k/k. The constants s~b) 
are proportional to the squares of the optical frequen
cies as k - 0, and for the critical coordinate the 
matrix s1c) lS the inverse Of a dielectric -constant 
matrix of the clamped crystal E: 

s,}'l == 8 0 = 1-/e, A= 4:rcz.,2/u,. (10) 

The matrices A, V, and S for small values of k are 
given by formula (1.9) and are proportional to k 2, while 
the piezoelectric matrix Q, in accordance with formula 
(1.2 5), is proportional to k and to the polarization P. 

If the temperature is not small compared with the 
De bye temperature ® D• then the main contribution to 
the integral with respect to k in (8) is made by the 
region of large k, on the order of the reciprocal lattice 
constant a-\ the contribution of the region of small k 
is suppressed with a statistical weight ~k3 • However, 
this main contribution is a smooth function of the tern
perature and has no singularities near the transition. 
As discussed in I, the critical phenomena are insig
nificant only in the region of small wave vectors 
k ~ a-1 E-112• Therefore to find the anomalous part of 
the displacements from the function G (k, iwn) in (8) 
it is possible to subtract the function G00 ( k, iwn), 
which is regular near the transition, and which is ob
tained from G by putting So= Q = 0. The correspond
ing anomalous part of the displacements Will be denoted 
by ( UaU{3) c: 

(uauB),.=T L(G(k,iw,)-G00 (l<,il•tn))ap.. (11) 
nk 

In the integral (11), the region of small 
k ~ a -1 E- 1/ 2 is already Important. Therefore we can 
use in (9) the expansions of the matrices contained 
therein for small k. Then, as in Sec. 4 and 5 of I, we 
can neglect the contribution of all the normal branches 
XH, and also the longitudinal critical branch Xck 11 n. 
In addition, if we do not consider the case of extremely 
small T, the temperature frequencies Wn = 2mrT in 
(9) and (11) are much larger than the critical frequen
cies wc ~ (A.E-1 ) 12 , and it is sufficient to retain in the 
sum over n in (11) the classical term with n = 0. As 
a result we get 
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Here, just as m I, the matrices V, S, and Q without 
an index correspond to the critical branch, and Ri\ in 
accordance with formula (1.30), denotes that we project 
the matrix R on the subspace orthogonal to n, and that 
we use in this subspace the matrix inverse to the ob
tained one: 

(13) 

where Aa(3 ( ~) is the cofactor of the matrix element 
Ra(3 + ~nan(3. 

We shall show that in the region below the transition 
temperature To it is possible to express the anomal
ous part of the displacements (12) in terms of the die
lectric constant d T). For concreteness, we consider 
henceforth the case of perovskites with a phase transi
tion from the cubic phase to the tetragonal phase. 
Then the matrices A, V, and Sin (12) are given by 
formulas (1.9), and the matrix Q vanishes when 
T >To in accordance with (1.25). 

We introduce in the integration with respect to k in 
(12) a new variable x = I k I ( E/ A) 112, after which the 
integral becomes 

(n~u~)c = ---/'---~ ( !_ r ~ dx ~ dn Sp [x ( 1 + x2<p) ;-' <p;-1 XJ. ( 14) 
24n3 p \ e 0 

Here p = .1! /vc is the density, dn denotes integration 
over the angles of the vector n, and the matrices x 
and cp depend only on the angles of n: 

X= (a1g1 + a,g' + aag")-! (u,g1 +Vag"), 

<p = s,g' +sag"- (u,g1 +Vag") X; 

<J=t 

ea are unit vectors of the principal axes of the crystal; 
ai> vi, and Si are constants introduced in (1.9); x is 
the transpose matrix of X· 

Thus, above the transition the anomalous part of the 
displacements increases on approaching T0 , decreas
ing in absolute magnitude in inverse proportion to the 
square root of the dielectric constant. 

In the tetragonal phase, the permittivity Exx = E11 
along the tetragonal axis x is as a rule smaller than 
the transverse permittivity Eyy = Ezz = E1. Therefore 
the transformation of the variables in the integral with 
respect to k is more conveniently done with the aid of 
E1: x = I k I ( E1.A -1 ) 112 , after which (12) is written in 
the form 

T ( I. )'/, 00 
\ [ ( (. , ~ /ry) (u.n~>c = 8n3p e:;: ~ dx .l dn a- . XV ..L iqP I np 

x (ol.+o 11 ~+x'.~)-'(·x~-iqPJ/!)}-1 -{a--~(s)l'vP] .( ) 
e II t V np up 16 

Here P is the polarization, and in the coordinate sys
tem connected with the axes of the crystal the matrices 
have, in accordance with I, the form 

V= (
v 1 + Van 12 0 0 ) 

0 v1 + v.,n 22 , 0 ,, , 
0 0 v 1 ,v0 n"3 

. ((qn- 1/2 q,,) n1 0 
q = q12n2 1/. q,,n1 

ql,na 0 

0 l + 0 II ~ + x's = 
ell 

= 0 1 + x2 (s1 + S0 n 22) 0 ; (
eJ)B 11 + x2 (.s, -t- s,n/) 0 0 ) 

0 0 1 + x 2 (s1 +Sana') (17) 

a = az gl + amt + aaga is the matrix of the elastic co
efficients, qik are the striction constants, and the 
components ( ... lt are obtained in accordance with 
the rule (13). 

Thus, an anisotropy of the oscillations, ( u~)c 
I ( uy) c• appears below To. The temperature depend
ence of the displacements is determined by the tern
perature variation of the permittivities E and of the 
polarization P. If the transition is close to a second
order transition, so that the relations E ~ ( Tc - Tr1 

and P ~ ( Tc - T) 112 are sufficiently well satisfied for 
E and P below To, then the anomaly of the displace
ment is proportional to I T c - T 1112, just as above the 
transition. 

If the elastic, striction, and dielectric properties of 
the crystal are known, then expressions (12), (14), and 
(16) contain four unknown constants, and these can be 
chosen to be, for example, Ast, vtsi.\ sasi.\ and vavt'
In the low-frequency spectrum of the crystal there 
enter, besides these constants, also two others, the 
quantity A itself, and the mass constant J.L[ 1J. The re
duction in the number of constants is due to the dis
carding of the terms with n I 0 from the sum over the 
frequencies wn, which corresponds in turn to the 
classical description of motion, when the factors con
taining the kinetic energy in the equilibrium distribu
tion function are separated from the terms containing 
the potential energy, As a result, the mass character
istics contained in the kinetic theory drop out from the 
mean values of the displacement. 

In the general case, the integrals (12), (14), and (16) 
must be determined numerically. To illustrate and ex
plain the physical picture, let us consider, just as in I, 
the hypothetical case of an isotropic crystal, in which 
aa = va = sa = 0. As noted in I, for the considered 
cubic crystals, such an estimate is apparently fairly 
accurate also quantitatively. The calculations are 
more conveniently carried out in this case in a coordi
nate system, in which one of the axes is directed along 
k and another is perpendicular to k and to the tetra
gonal axis. The integration with respect to x in (16) 
yields for the anomaly of the total mean square of the 
thermal displacements 

T ( I. )'!. r [ P2e1. 1 £2 + 11 2 q,."n1' \ \Ux'+u'+a,2)c=-- -- \ dz ·--(--+--:,-.-) 
Y 4rrp e.~.w . ·0 rrp • "JfR, 4a1- ")IR~ · 

(18) 

Here 

z = n1, nJ.' = 1- z2, ~ = :: ( -i"- + qanJ.2 ). 

ll_l_ . ? l't 2 

YJ = -(fJt2-!-· (j_nnt-) 1 qa = q,f- fJ12- qv,, ll-' = St ---, 
a1 at 

" ., E_L P2c_1_ 'f"-') ') , P2B_L '744'1.n, 2 
II,= n,- + nL· -:-·---(a:>-+ a1rr), RJ. = l- --_ - ~-- -

f- ::1p .<)1 -ta 1 

Expression (18) consists of two parts: a striction 
part, proportional to P 2, and the "properly critical 
part" -the last term. These terms make different 
contributions to the anomaly of the displacement. On 
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b 

going over to the ferroelectric phase, each of the 
quantities E11 and EJ. is smaller than the value of E 

of the high-temperature phase, therefore the stiffness 
to the critical oscillations below the transition increases 
jumpwise, a fact leading in the absence of terms with 
P to a jumpwise decrease of the amplitude of the os
cillations and to an increase of the Mossbauer yield. 
With further lowering of the temperature, E and the 
oscillation amplitudes continue to decrease, so that 
the observed temperature dependence of the Debye
Waller factor would have the form shown in Fig. a. 
However, the term with P 2 describes the growth of the 
oscillation amplitude as a result of the piezoelectric 
coupling between the acoustic and the critical branches, 
which decreases the elastic moduli. Therefore the re
sultant sign of the jump of the Debye-Waller factor of 
the point of transition depends on the ratio of the quan
tities vfsf1 and P 2 E l. at T = T0. The subsequent tern
perature variation is also determined by the competi
tion of these two terms. It can be shown that the de
scribed picture with contributions of different signs 
remains in force also when account is taken of the 
anisotropic terms sa, va, and aa. 

The experimental results, especially in =3:, ap
parently indicate that the normal situation is that 
shown in Fig. b, where the jump in the factor f at the 
transition point is negative, i.e., the striction jump is 
larger. This is followed by a drop of the amplitudes 
and by an increase of f, i.e., the second term in (18) 
increases with decreasing temperature more rapidly 
than the first. 

It would be of interest to obtain more experimental 
material, so as to understand the degree to which such 
a situation is general. For the time being we can only 
note that, for example in the case of Ba Ti03 , the m
crease of the second term of (18) relative to the first 
with decreasing T is natural, since the values of P 
and EJ. in this material vary sufficiently little below 
To, whereas E 11 decreases rapidly =10J, so that the 
ratio E1./ E11, which enters in R1, increases rapidly. 

We present also an expression for the anisotropy of 
the oscillations below To in the case when sa = va 
= aa = 0, In the notation of (19) we have 

.,, , _ T f i. .'" \! J P'Fj_ ( ((;11,-fJIIj_)'-:!(;n.j_ +qn1)' 
(n,,-1 .. - (u_, ),. --- \ -- - 1 rLL-- -·- -

8np · li"F1. ·., np yH, 

1/,.,'n•' ) Vt' - - l + ---~ + --, ( (:!- 3n 1')l'll1 - yl(J _ . (20) 
1a1:!1 Nj_ ll'a 1-

The determination of the sign of expression (20) calls 
for more careful estimates. It can be noted. however, 
that R1 increases with increasing E.:/ E 11 • so that 
Equation (20) is positive at not too small a value of 
vfsf1. Inasmuch as it is customary to assume that the 
Ti ion in Ba TiOa is the most strongly coupled with the 
critical oscillation ~ 10=. the result cited in -- 2= concern-

mg the sign of the anisotropy of the oscillations of Ti 
agrees with the result expected from (20). However, 
the magnitude of the anisotropy, ~50%, given in =2= 
seems too large. Estimates with the aid of (20) give 
for the anisotropy a value on the order of 0.01-0.1. 

4. ORDER-DISORDER TRANSITIONS 

In order -disorder transitions ~ w] , the ions or the 
groups of ions have several symmetrical positions of 
equilibrium in the cell, which are statistically uni
formly populated above the transition, and an asym
metry of the population appears below the transition, 
as in the well-known Ising model. The total potential 
in which the ion moves can be strongly anharmonic in 
this case, so that the picture of the transition differs 
from the case of transitions of the displacement type. 
We shall show that in this case, too, the probability of 
the Mossbauer effect can have anomalies in the transi
tion region. 

Earlier, in going over from (1) to formulas (2) and 
(3), we used the fact that the line width r is much 
smaller than the characteristic frequencies of the ion 
motion, which are the optical frequencies in the case of 
a transition of the displacement type. In our case, the 
characteristic time is the time T within which the dis
tribution of the ions in the cells relaxes to the equili
brium value. The Mossbauer effect will be sensitive 
to the transition only if the emission time r-1 is 
larger than or of the order of T. In ferroelectrics, the 
order of magnitude of can be estimated experimentally 
from data on the dispersion of the dielectric con
stant=11·12=. The values of T and r-1 vary in a wide 
range and can be commensurate. 

For simplicity, we disregard as before the quadru
pole and magnetic splittings. and confine ourselves to 
the case of small q, when the exponentials in (1) can 
be expanded in powers of qu: 

r ~ 

11·= ~0 \ dlexp{i(w-w.,)t-1'111} (21) 
2n • 

X[1-+- 1/al/~((11-x(O)u~(t))- (11a(O)nB(O)/)]. 

For a qualitative description of the phenomena con
nected with the transition, we assume that the correla
tion function of the coordinates decreases t in accord
ance with a simple exponential law, with a relaxation 
time T = 12~: 

((uo:(O)- iia) (u~(l)- u~}> = (uo:(O)u~(IJ>- ilo:u~ 

= ((uo:(O)u~(O)) --- iio:ii~)p-1 •. 

Formula (21) then yields 

W = ~ rl I' . , ,. '+ q"q~((~ta(O)uB(tJ)/- ii-xi.l,,) 
:( (l1)-li)LI) 2 -, [~ 

X ( ~ ~~~~~;;~:; +tfTy;-- (;.,- 0>~) 2 + p')]. 

(22) 

(23) 

In the case of large relaxation times, rr .» 1, the 
terms in the round brackets of (23) cancel out. In this 
case, the atom does not have time to jump from one 
potential well to the other during the emission time, 
and the result. naturally, Wlll not be sensitive to the 
transition point. In the case when r, ~ 1, the fre
quency dependence of the probability is a superposition 
of two lines of different width. On approaching the 
transition point. the area of the narrow line, as will be 
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shown below, decreases somewhat, and the area of the 
broad line increases. Finally, in the case when rT 
« 1, the first term in the brackets is much smaller 
than the second in the frequency region I w - Wo I 
<.< T-1• Then, just as in the case of transitions of the 
displacement type, the probability of absorption is 
expressed in terms of the correlation function of the 
ions and has a singularity at the transition point. 

To clarify the character of this singularity, we shall 
use the model considered in =12' 13=, and discuss first 
the case of a nonferroelectric transition. The 
Hamiltonian of this model is of the form 

For simplicity we consider one-dimensional motion, 
xr is the coordinate of the ion relative to the center of 
the cell. U ( x) = U ( -x) is the anharmonic potential of 
the ion in the cell, the potential V ( r) is spherically 
symmetrical and has a large but finite radius of action 
ro. The first-order phase transition consists of the ap
pearance of an average displacement relative to the 
center at T = Tc. The transition occurs at high tem
peratures, so that the motion of the ions can be re
garded as classical. 

Using the methods ofC 13 • 14J, the sought value of the 
correlation function can be written, in first approxima
tion in r~ 3 , in the form 

((x-x) 2)= U ~ dx,(x, -x)2exp [ -~U(x<J+ ~Vo.fx, 

-r~ ~f(r-r')(.r,-:r)(x,•-x)]}{~ lfdx,exp[ -BU(xr) 
rr' •· 

·+~V,;rx,:-{- 2:1(r-r')(x,-.r)(2,·-.r)]} 1
• 

r,r' 

Here Vo = l..) V(r), and the effective interaction V, 
r -

which is analogous to the Debye potential c14J, takes 
into account the correlation of the particles in the 
first approximation: 

(2 5) 

(26) 

The index ( ... ) o denotes that the averaging is carried 
out at V = 0. 

In the region of the transition, [3 V ( r) is a small 
quantity of the order of r~ 3 : 13 = . Expanding (2 5) in 
powers of t3V, we get 

-- '( 
( (:r- .r)')= :r2 (T)- xu2 + 2-(\(.r- Jn)'')o 

-- "-' ~v, 
-(:r'-~,,')'] . ,-----_- , (27) · 7 1-BF.(r2 -.r02 ) 

where x0 = XTT) and x 2 ( T) = ( x2 )0 , In this approxi
ma~e temperature of the transition is Tc 
= V~x ( Tc). Therefore in the region of small k and 
i T - Tc :, the denominator of the Green's function in 
(27) takes the form 

~-~ k2r02 T - Tr· .To2 

1- Bl-k(x2 - Xo2 ) =----:;-+a--~- + --=;, 
b T,. :r-

rl ----
a= 1-+- T, r/T h1 x2 (T) h· -r,. (28) 

Thus. the sum over k in (27) has the same form as 
in (12). (14), and (16), and the anomaly of the quadratic 

displacement is proportional to IT - Tc 1112• The 
expression in the square brackets of (27) is positive, 
and therefore the Mossbauer-effect probability always 
has a minimum at the transition point, in accordance 
with the decrease of the stiffness for the long -wave 
fluctuations near Tc. In the case of large ro under 
consideration, the second term in (27), below the 
transition, is proportional to T - Tc and is larger than 
the third term by the ratio d: Vc· Therefore, in the 
region of applicability of the employed approxima
tion=13J, Tc »IT- Tc I>> v~r-;,6 Tc, and the Moss
bauer absorption probability below Tc is larger than 
at the same value of ! T - Tc I above the transition, 
and increases linearly with Tc - T. 

In ferroelectrics, the order-disorder transitions 
are characteristic of uniaxial crystals. In these cases, 
the influence of the long -range dipole -dipole interac
tion is appreciable =12•13=. Thus, when T > Tc the cor
relation function in the region of small k is given by 
the expression =13= 

Here E is the dielectric constant, which is proportional 
to ( T - Tc) -\ eeff is the effective charge of the ion, 
and it is assumed that k is much larger than the re
ciprocal dimension of the sample L -1. This formula 
differs from the analogous expression in (28) in that it 
has additional terms n~ in the denominator, which 
suppress the correlation effects at small values of k. 
As a result, the anomalous part of the quadratic dis
placements near Tc will have a singularity weaker 
than a root singularity, namely ~iT - Tc I ln iT - Tc [: 

r • ;:, - (.~-')" r,. :>rfi ( i,;;z -. ' In __ (', J . (30) 
!' = j2( T.) Ll + r( --;;T-- ~;,;-R; --;;::) -e-

We note that in the case of order -disorder transi
tions, when the anharmonicity is not small, the singu
lar part of f does not contain the small factor TE~t• 
which arises in the case of displacement-type transi
tions (12). Therefore the singularity, generally speak
ing, should be more noticeable, This can compensate 
in part the weaker character of the singularity (30), 
but a comparison with experiment calls for more 
careful estimates. 

5. CONCLUSION 

It is seen from the foregoing discussion that inves
tigations of the Mossbauer effect in the region of phase 
transitions are of great interest. In the case of transi
tions of the displacement type, which can be quantita
tively described, these investigations make it possible 
to measure the microscopic constants. In the case of 
order-disorder transitions. the Mossbauer measure
ments can give qualitative information concerning the 
relaxation times and the parameters of the transition. 

Great interest attaches also to Mossbauer measure
ments in the region of nonferroelectric structural 
first-order transitions in crystals. The dielectric 
properties have no anomalies in this case. It is there
fore not always clear whether the transition is close 
to a second-order transition. as in the case of dis
placement-type transitions in ferroelectrics, or else 
the phases above and below the transition differ 
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greatly, and the anomalies inherent in second-order 
transitions are missing. 

It is seen from the foregoing that the characteristic 
minimum in the probability of the Mossbauer yield is 
connected precisely with the correlation effects. and 
with the decrease of the stiffness of the system to the 
long-wave correlations. On the other hand, in the case 
of a "normal" first-order transition, this probability 
should in general have only a jump at the transition 
point, and a kink in the temperature dependence, but it 
should not have drops on approaching the transition. 
Therefore relatively simple Mossbauer measurements 
can yield useful information concerning the character 
of the transition. 
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