
SOVIET PHYSICS JETP VOLUME 27, NUMBER 4 OCTOBER, 1968 

QUASICLASSICAL APPROXI1HATION IN IONIZATION PROBLEMS 

L. P. KOTOVA, A. M. PERELOMOV and V. S. POPOV 

Institute of Theoretical and Experimental Physics 

Submitted July 27, 1967 

Zh. Eksp. Teor. Fiz. 54, 1151-1161 (April, 1968) 

The paper is devoted to the development of a complex trajectory technique (description of the tunnel 
effect in the quasiclassical case with the help of trajectories corresponding to imaginary "time"). 
The following problems are considered: ionization of a bound level in collisions with a charged parti­
cle: ionization of atoms by a constant electric field in the presence of a magnetic field; evaluation of 
the adiabatic corrections to the probability for the tunneling through a potential barrier of arbitrary 
shape. 

1. INTRODUCTION 

THE method of complex trajectories (called MCT in 
the following) was first formulated for the solution of 
the problem of the ionization of an atom in the field of 
a strong light wave. lLz. 3 J However, the MCT has a more 
general significance and is in principle applicable to the 
calculation of the probability of tunneling w through an 
arbitrary barrier V(r, t) which changes with time (but 
satisfying, of course, the usual conditions for the use of 
quasiclassical methods. i.e .. being sufficiently broad 
and smooth). The essence of the MCT consists in find-· 
ing a sub-barrier trajectory which formally satisfies 
the classical equations of motion but corresponds to 
imaginary '"time." The MCT is the natural generaliza­
tion of quasiclassical approximation to the nonstationary 
case. which is particularly clear from the Feynman 
representation of the wave function as an integral over 
paths. l'' 53 In the quasiclassical case the actionS is 
large (S/1:1 » 1) and the main contribution to this integ;­
ral comes from a narrow beam of trajectories close to 
the classical one. In problems connected with tunneling 
transitions there are no real trajectories of a classical 
particle going from the initial state (bound level in the 
atom) to infinity. This is also the reason why one has 
to go to imaginary "times" (strictly speaking this 
procedure must be regarded as an analytic continuation 
of the Feynman integral for d. (r. t) to the saddle point}. 

In the original formulation of the MCT it was as­
sumed that the external field acting on the system is 
periodic in time. [l.:Jl This is not necessary. however. 
In Sec. 2 we use the MCT in the problem of the ioniza·­
tion of a bound state (deuteron. atom. ion. etc.) in the 
collision with a charged particle. Since this problem is 
stationary it may be solved by the usual quasiclassical 
methods. [B.;J However. the consideration of sub-barrier 
trajectories is useful since it makes the problem more 
perspicuous. Formulas (17) and (18) are obtained for 
the probability of ionization of a bound state in the case 
of arbitrary masses. These formulas reduce in special 
cases to expressions for the probabilities of various 
processes: deuteron disintegration in the Coulomb field 
of the nucleus. ionization of negative ions in the colli­
sion with electrons. etc. 

In Sec. 3 we consider the ionization of an atom in the 
presence of a magnetic field, and in Sec. 4 we discuss 
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the adiabatic corrections to the probability for tunneling. 
The calculation is exact up to a factor in front of the 
exponentiaL which permits us to restrict ourselves to 
the consideration of the sub-barrier trajectory which 
minimizes lm S (in the following this trajectory will be 
called extremal). 

2. IONIZATION OF A BOUND LEVEL IN COULOMB 
SCATTERING 

Let the particle M be a bound state of two particles 
m 1 • m 2 with binding energy E: 

(1) 

(11'" = m,m2/(m, + m 2), 1:1 = 1). The collision of M with 
charged particles can lead to the process M- m 1 + m 2 • 

An example for such a process may be (1) the disinte­
gration of a light nucleus with small binding energy (for 
example, the deuteron or H3 ) in the scattering by the 
Coulomb field of a heavy nucleus, (2) the ionization of 
an atom or an ion in the collision with electrons. We 
shall call all these processes ionization of a bound level 
in Coulomb scattering, although in the first example 
(for deuterons) this terminology is usually not employed. 
We find the ionization probability w with the help of the 
MCT. restricting ourselves for simplicity to the case 
where the Coulomb interaction between m 1 and m 2 van­
ishes at large distances (here m 1 is the mass of the 
charged particle and m 2 is the mass of the neutral par­
ticle). Because of this limitation our results refer to 
the ionization of negative ions (processes of the type 
He- + e- He + 2e) and to the disintegration of the deu­
teron. 

It is convenient to begin with the case where the mo­
tion of the compound particle M occurs in a given ex­
ternal field. Such is the case for the scattering of 
deuterons on nuclei with large Z. u Below. we shall 
therefore 0 for definiteness, speak of a "deuteron· 0 

although the masses m1 and mz are not assumed equal 
to one another. The main contribution to the disintegra­
tion probability comes from the extremal trajectory 
corresponding to a head-on collision. Owing to the 

llThe probability for the disintegration of the deuteron in the Cou­
lomb field of a heavy nucleus was calculated in [6 - 8 ). The connection 
with the results of these papers is discussed below. 
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Coulomb repulsion from the nucleus, the deuteron is 
stopped at the return point x0 = Ze2/E (Z is the charge 
of the nucleus) and then begins the sub-barrier motion, 
which is of main interest for the disintegration process. 
Going over to an imaginary ''time'' T = -it in the sub­
barrier motion and taking account of the fact that in this 
case the potential V(x) = Z/x changes sign, r31 we get the 
known expressions for the trajectory: r91 

x = Xo cos2 (6 / 2), T = 'hxovo-1 (6 + sin 6), 

:i:=dx/dT=-votg(l/26), ImS(6) =tJ(6-sin\;). (2) 

Here E = Mv~/2 is the kinetic energy of the incoming 
deuterons T/ = Ze2 /:nv0 is the Coulomb parameter for the 
deuteron, ~ is a variable which determines the sub­
barrier trajectory, where 0 :s ~ < 1T ( ~ = 1T corresponds 
to the case where the deuteron falls into the nucleus), 
and S is the reduced action. C3' 91 At the point of return 
of the deuteron the energy-momentum laws are satis­
fied; C?J moreover, in the zero-range approximation for 
the nuclear forces one must take account of the continu­
ity of the coordinates at the instant of disintegration 
(xd = Xp = xn)· Setting the energy of the ~utron En = 0 
[this corresponds to the minimum of Im S, cf. (9)], we 
have the following equations for the determination of the 
point of disintegration: 

,.. 2 l;o E 2 ~;, 
r~ lg 2 + e = ~t tg T, 

so 61 
p Lg:! = pdg 2, 

1 ~o 1 61 , 
-v cos2 -;;-- = 1; cos2 ? , E 1 = E - e. 
I~ _, •1 '-' 

(3) 

The sub-barrier motion of the proton is also described 
by (2), where we must replace Xo and Vo by x1 = Ze2/E1 
and v1 = -v'2Edm1 . Here E1 and P1 are the energy and 
momentum of the proton at infinity, and I; o and ~ 1 are 
the values of the parameter ~ for the deuteron and the 
proton at the disintegration point. 

Equations (3) have the unique solution ( ~ 1 > ~ o) 

The probability for a tunneling transition of the deuteron 
from a bound state to a state in the continuum is equal 
to (up to factor in front of the exponential) 

(5) 

where 

sd = -i~ (\;o ·-sin so), 

Sp =iT],(£,- sin sr), 111 = Ze' I fzu,, (6) 

(Im Sd is negative since the deuteron moves into the 
depth of the barrier). Then 

w ~ exp{- 2Ze2 (__1:_-~)}, (7) 
fzv ' sin st sin so 

where, by definition, 

z· = (m 1o + m0E) [2m1m,(m 1 + m,)c] 'h. (8) 

Besides the total disintegration probability, one is also 
interested in the energy spectrum of the outgoing parti­
cles. To this end one must consider the sub-barrier 
trajectories with En"' 0 (En is the energy of the neutron 
after the disintegration) and expand S(En) for small En· 

Omitting details of the calculation, we find 

dw(En) = const·e-a(E)EndEn, 

a(E) = tJ•(2£,-sin2s!) /2E,. 

(9) 

(10) 

With increasing En the probability drops rapidly, i.e., 
the extremal trajectory corresponds to En = 0. 2 > The 
energy of the outgoing protons Ep is found from the re­
lation Ep + En = E - E. In the case of equal masses 
(m1 = m 2 ) the expressions (7) to (10) agree with the re­
sult of Lifshitz [cf. formulas (2.12), (2.13), and (3.4) 
in C?J ]. 

However, it is seen from (4), (7), and (8) that the 
transition to the case of arbitrary masses does not re­
duce to the replacement of some mass by a reduced 
mass. The reason for this is that the masses m1 and m 2 

enter in (3), and the position of the disintegration point 
for the deuteron depends essentially on them. We note 
that the exact formula for w (with the correct coeffi­
cient), obtained by Landau and Lifshitz, raJ also refers 
only to the case of equal masses. 

Let us now show in which way the MCT differs from 
the method ofr71 . According to Lifshitz, the sub-barrier 
"trajectory" corresponds to complex values of the 
coordinate x; in particular, the disintegration point of 
the deuteron lies in the complex plane. In our method x 
remains real, but the timet becomes imaginary. For 
stationary problems both approaches are equivalent. 
However, it has been shown r3 J that the transition to an 
imaginary time also allows one to solve nonstationary 
problems (for example, the problem of the many-photon 
ionization of an atom or ion by a. strong light wave, 
where the potential V(x, t) =- Fx cos wt depends ex­
plicitly on time). 

Let us formulate the condition for the applicability 
of our formulas. First, it is necessary that Im S » 1, 
where S = Sp + Sd· Since Im S decreases with increasing 
E, this is a restriction on the energy E from above. 
From (7) we obtain for E » E 

w ~ exp{-c (-=-)2
}, C = i.~ l/ 2( 1 + m,)m'. 

E 3 137 V m2 < 
(7a) 

Hence, the quasiclassical method is applicable for 

e <S; E < C'he, (11) 

and it is necessary that C » 1. This is guaranteed by a 
large Z (heavy nuclei) and a small binding energy E. 

For example, for the deuteron E = 2.2 MeV and 

8 Z (m )'i, 
c = 3137 --;- = 0.4Z 

(m is the mass of the nucleon). Second, in writing down 
the conservation laws (3) we have neglected 3 > the radius 
of the deuteron r 0 = n/lz;:LE, which requires Ld, Lp 
» ro. Here Ld and Lp are the widths of the barrier 
for the deuteron and the proton: 

La=x0 -xa=x0 sin2 (\;o/2), LJ>=x,sin2 (6tf2). (12) 

2) As shown in [7 ], Im S(En) has another minimum forE < 2E, 
which is located in the region En< 0. We do not consider the cor­
responding sub-barrier trajectory since it corresponds to another reac­
tion: the capture of a neutron by the nucleus. A sub-barrier study of 
the (d,p) reaction on heavy nuclei was carried out by Ter-Martirosyan 
[I o I ( cf. also [II ,I 2]). 

3lThis approximation was also used in [7 - 10 ). 
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For E » E we obtain from (2) and (4) 

Ze2e m1 Ze2e ( m1) 
Ld=---, Lp=-- 1+- , 

E2 mz E2 1 mz 
(12a) 

which implies that the conditions Ld, Lp » ro are 
equivalent to (11) and do not impose new restrictions on 
the deuteron energy E. Finally, it is necessary that the 
disintegration point xd lie outside the nucleus: 

xd = xocos2 ([;o/2) > R. (13) 

This leads to the inequalities 

Ze2mz 
--; M > R for E = e, 

Ze2 

E>R for E~e, (13a) 

from where for mz ~ m, 

E < Croe I R. (14) 

Since R ;o:; (1 to 2)ro, this condition is weaker than (11). 
Thus our consideration is valid in the threshold region 
of E, from E = E to the values given by (11). For larger 
values of E the exponent in (7) becomes comparable 
with unity and the quasiclassical method is no longer 
applicable. 

Near the threshold (E - E) we have 

{ 2Ze21/ m1 } ( 2Ze2) 
w ~ exp -- v~- = exp -- ' 

h 2(E-e) hvt 
(15) 

where v, is the velocity of the proton at infinit):. This 
behavio_E of w is explained by the fact that Im Sd - const 
but Im Sp- oo (the width of the barrier for protons is 
increased without limit). 

Up to now we have neglected the recoil of the nucleus, 
regarding it as infinitely heavy. Let us now consider the 
general case where all three masses m 1 , m 2 , and M' 
(M' is the mass of the nucleus) are finite. Going over to 
the system of the center of inertia of the deuteron­
nucleus system and writing the conservation laws for 
the disintegration, we obtain equations analogous to (3), 
Their solution has the form 

tg-= 1 - - t - 1 so [{ M) m1e ]''• s1 [( m1) Me ]''' 
2 I + M' mzE ' gz- +M' m2 (E-e) · (Hi) 

The probability for disintegration is 

(17) 

where 

( 1C:) 

and E and En are the kinetic energy of the incoming par­
ticles and the neutron in the c.m.s. The value En = 0 
is the most probable, as before. For M' - oo formula 
(17) goes over into the earlier expression. 

Formula (17) includes also another limiting case, 
when the particle M' moves and M is at rest. This oc­
curs, for example, in the ionization of atoms and ions 
by electrons. In this case m, = M' = m (the mass of the 
electron), mz ;o:; M (the mass of the atom). Since we do 
not take account of the Coulomb interaction between the 

particles m, and m 2 , our formulas refer strictly to the 
ionization of negative ions of the type He-, r, etc. De­
noting the energy of the electron in the l.s. by E and 
taking into account that Z = 1, m << M, we find 

dw(l~") = exp {- 2e2x [ ( _J_:_ _ ~) 
d 1:' 11 E + E \ ~in ~ 1 sin So 

M 1 £, sin2£,) En Jt 
+ 4~t\ ~in s• - 2 sin s• t·-=--z- I 

(19) 

where 

so = 2arc lv;Y7/E. (19a) 

and En is the kinetic energy of the neutral atom (He, I, 
etc.) remaining after the ionization. 

The exponential in (19) can be written in a form 
analogous to ( 5): 

w ~ exp{-2\m(S,-:-So)}, (20) 

where S1 = i K R( ~ ,/sin ~ 1 - 1) is the action for the two 
electrons after the disintegration of the ion; So = 

- i K R( ~ ol sin ~ o - 1) is the action for the incident elec­
tron as it moves into the depth of the barrier; 
R = e2 /(E + E). Since the masses of the incident particle 
and the bound electron are comparable (in the given 
case M' = m,), R < Ro = e2 /E (Ro is the distance of 
closest approach between the electron and the negative 
ion). For the same reason the quantity Im So cannot be 
neglected compared to Im 8,. In order to obtam the 
probability for tunneling w one must consider the simul­
taneous motion of the two electrons inside the barrier, 
as was done above. 41 

For E /> E the exponential in (19) takes the form 

(21) 

Introducing Io = e2/2a0 = 13.6 eV (Io is the ionization 
potential of the hydrogen atom) we rewrite (21) in the 
form 

(21a) 

The condition C » 1 is satisfied owing to the smallness 
of the binding energy of the negative ion as compared to 
I0 • Thus E •= 0.075 eV and C = 36 for the He- ion; and 
E = 3.07 eV and C = 5.7 for the r ion. The question may 
arise why the expression (21a) for C does not contain 
the small factor a = 1/137 [as in (7a) for Z = 1]. The 
point is that C ~ Za(m/E) 1 2 and for the atom ma 2 ~ 10 • 

Thus this small parameter enters already in the defini­
tion of Io. 

In the framework of the MCT we can also consider 
not-head-on collisions of particles where the sub­
barrier trajectory is no longer one-dimensional. [t•J 

The study of such trajectories allows one to find the 
angular distribution of the particles formed after the 
disintegration. We restrict ourselves here to the sim­
plest case of far collisions: p >> K- 1, where p is the im-

4lWe note that in the consideration of the ionization of negative 
ions by electron collisions [ 13 1 an approximation was used which re­
duces to the account of the sub-barrier motion of only the bound 
electron (for fixed position of the incident electron). This approxima­
tion is not applicable in the given problem because of the equality of 
the masses of the electrons. Therefore the expression for the ionization 
probability w obtained in [ 13 1 [cf. formula (20) (of [ 13 1) is incorrect. 
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pact parameter and K- 1 is the radius of the bound state 
(E = K2/2). Then the problem simply reduces to the 
ionization of a bound level by a uniform electric field and 
can be solved by the method developed in [3 J • Neglecting 
the curvature of the trajectory of the incident particle, 5 > 

we have an equation for the sub- barrier motion of the 
electron: r = R/R3 where r is the radius vector of the 
bound electron and R(t) = { vt, p, 0} is the radius vector 
of the incident electron. Introducing the characteristic 
frequency w = v/p and going over to the imaginary time 
T = -iwt, we have 

d"x =- i_!'_ T d"y = F (22) 
dTZ ro2(1-T2)'io' d-c2 ltl2(f-T2)'io' 

where F = p -2 (the origin of the coordinate system is 
put at the center of the atom, the x axis is parallel to 
the velocity of the incident particles). Using the boun­
dary conditions for the extremal trajectory, r3 J 

r( --co) = 0, r2 ( -To) = x2, x(O) = !i (0) = 0, (22a) 

we find an equation for the initial moment T0 : 

4A/sin 2A- (IJsin .1.) 2 - 1 = v', (23) 

where 

'to= sin A, v = ltlx/ F = pj [lo, Po= (&)-''•, (23a) 

The parameter y = w/wt has the same physical meaning 
as for the ionization of an atom by a light wave. Calcu­
lating the action S along the sub- barrier trajectory we 
find for the ionization probability 

where 

3 sinA-ACOSA 
g ( '\') = 2" --,--,-,--,-,--

r 1- '/.cos A (sin A/A+ A/sin A) 

(24) 

= { 1-•/"v2, v< 1_ 
'/zv-•, v '3;> 1 

(24a) 

For y « 1 formula (24) agrees with the ionization 
probability in a constant field F: w ~ exp(- 2Fo/3F). 
For y» 1 we have w ~ exp(-2wo/w) = exp(-K 2 p/v). 
This result can also be obtained with the help of non­
stationary perturbation theory. 

The approximation of a uniform field is applicable 
for p >> ro, where 

ro = x2 (2. sin l:.)2 

2F V 2 

is the width of the barrier. Using (23) we transform 
this condition to 

p ;J>E-•, if '\' }> 1 (p }>Po) 

e-'h~p~e-1 , if v~l (P~Po). (25) 

Since E > E, the uniform field approximation is mani­
festly correct in the region y >> 1. The adiabatic regime 
y « 1 presupposes E « E « 1. When this inequality is 
fulfilled, formula (24) holds in the whole region 
p » K-3/2, 

5)This is correct for p ::» E-1 . For definiteness we consider below 
the collision of a negative ion with an electron, where the atomic sys­
tem of units is used: e = m = h = I. The description of the motion of 
the incident electron with the help of the classical orbit is correct for 
p;;,. K' 12 = "-1 (E/E)' h. 

3. EFFECT OF A MAGNETIC FIELD ON THE IONIZA­
TION 

Let us consider the ionization of an atom under the 
action of constant fields-an electric field F and a mag­
netic field H. In order to apply the MCT we must solve 
the equation for the subbarrier motion, 

.. 1 z 
r=F+c[vH]-...,..r. 

* (26) 

The sub-barrier trajectory is easily found for Z = 0 
(thus we are in fact considering below the ionization of a 
level bound by short-ranged forces). Taking account of 
the boundary conditions 

r(to) = 0, ~2 (to) = -x2, lm r(O) = 0, (27) 

as usual for a 6 potential, r 3 J we find the trajectory 

i a 
x = -[a(sh To+ sh T)- b(To+ T)], y =- (ch To- ch -c). 

(t] (t) 

F cos a v, 
z=---(<02 --c2)-i-(To+T), -'to~'t~O. (28) 

2co2 w 

Here a and Vz are constants of integration, 
b = cFH _,sin ct, w = eH/mc is the Larmor frequency, 
T = iwt, and To is the initial moment of the sub-barrier 
motion; they axis is taken along F, the x axis is per­
pendicular to the (F, H) plane, and a is the angle be­
tween F and H. 

Use of the condition Im r(O) = 0, which singles out the 
extremal among the classical trajectories, yields 

b/a = sh To/To, v, = 0. (29) 

Substituting (28) and (29) in the condition r2 (to) = -K 2 ' we 
arrive at a transcendental equation for the determination 
of To: 

To2[ 1 - sin2 a ( cth To - 1/-cn)2] = y2, (30) 

where 

v = ltl I"'' = xH I cF, ltlt = FIx (31) 

(in atomic units c = 137). Then 

{ v(1+'1<sY2 sin2a+ ... ) for v<1 
To= To(\', a) = I f ...t.. /2) (32) v/lcosa or v'3;>1 (a-r- :rt 

The meaning of the parameter y is clear from the equa­
tion 

(33) 

where r 0 = K2 /2F is the width of the barrier in the uni­
form field F and rL = c K/eH is the Larmor radius. 
The magnetic field which bends the trajectory of the 
electron hinders the tunneling. This effect is noticeable 
for rL ;S; ro, i.e., for y:;::: 1. 

The action S along the extremal trajectory is 
0 

S= ~(1 /2 i·2 1 c-1At;-rp- 1 / 2 x 2 )dt = iF0g(y, a);:>.F, (34) 

'· 
1 + 1/ 2 sin2 a [1- 3 cth To(cth To- 1/-ro)] 

g(v.a) = [ . z h 11 ']'I 1- sm a(ct To- To) ' 
(35) 

[for y « 1, g(y, a) = 1 + (1/30)y 2 sin2 a]. The probabil­
ity for ionization of the s level with binding energy 
I= K2/2 is equal to 

F { 2Fo } w(F, H) = ltloiA I' Fo exp - ?,F g(v, a) , (36) 
-----

*[vH] = v X H. 
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The function g(-y,a) which determines the probability for ionization 
of an atom in the presence of electric and magnetic fields 

where Wo = 1/ti, and A is a numerical coefficient in the 
asymptotic wave function of the bound state: 

(37) 

(for the 6 potential A = 1). In (36) we have neglected the 
effect of the magnetic field on the factor in front of the 
exponential. The function g(y, a) is shown in the figure. 
The inclusion of the magnetic field decreases the proba­
bility of ionization except in the case H II F [for a = 0, 
To= y, and g(y, 0) = 1). 

For an estimate of the numerical value of the 
parameter y we write (31) in the form 

'\'=(HI Ho) (Po/ F), Fo = x', Ho = cx2• (38) 

For the hydrogen atom in the ground state F 0 = 5.14 
x 10 9 V/cm and Ho = 2.35 x 10 9 Oe. Thus values y ~ 1 
are attained, for example for F ~ 105 V/cm and 
H ~ 105 Oe. At the moment of leaving the sub- barrier 
region the electron has the momentum p directed along 
the vector F x H, where 

p = x sina(1/To- 1/shTo) [1- sin2 a(clhTo -1/T0) 2]-'I•. (3£1) 

The point of leaving the sub- barrier region is not the 
point where the particle is stopped. In this respect our 
problem differs from the motion in a potential field. 
The presence of a magnetic field leads to a "twisting" 
of the sub- barrier trajectory, which to some extent is 
analogous to the case of a light wave with electric 
polarization. lll For a plane electromagnetic wave 
F = H, andy= K/c = (2I/mc 2 ) 1 '2 « 1; therefore the 
effect of the magnetic field of a wave is negligibly 
small. In the case of a constant field one must have 
H » F, in which case the effect of H becomes impor­
tant. 

4. ADIABATIC CORRECTIONS TO THE IONIZATION 
PROBABILITY 

The transition to a variable field complicates con­
siderably the calculation of the tunneling probability w. 
However, sometimes it is of interest to determine w 
for w « Wt (w is the oscillation frequency of the bar­
rier, and Wt is the frequency of tunneling through the 
barrier at rest). If the trajectory in the constant field 
is known, then the determination of the adiabatic correc­
tions to the probability w reduces to quadratures. 

Let 

U(r, t) = V + bV, liV ~ 1-1V, 1-1<{; 1. (40) 

Then the correction to the barrier penetrability has the 
form l3 J 

(41) 

where 
0 

liW,=- ~liV(r0 (t))dt, ,, 
1 [ c iJ/iV } liWz=T liV(to)6to-J-a.;-r1dt. 

t, 

(42) 

Using (42) one can find the general form of the adiabatic 
correction to the barrier penetrability. Let 

V(r, t) = Vo(r) + wtY1 (r) + 1/ 2 (wt) 2V2 (r) + .... (43) 

Setting 

r(t) = r0 (t) + wr, (t) + 1/,w2r,(t) + ... , (44) 

where ro(t) is the extremal trajectory in the constant 
field V0 (r), and r(t) is the corresponding trajectory in 
the field V(lr, t), we find 

(45) 

where 
0 

!1 = ~ V,(r0 (t))tdt, (46) 
t, 

0 { ' 
/ 2 = ~ Vdro(t))t'+ r12 (t)+ (•1 0°r,,) V0 (ro)}dt. 

t, 

(47) 

Thus the determination of the corrections ~y 2 inclu­
sively, requires the knowledge of the trajectory r 0 (t) 
and the first correction to it, r 1 (t). The latter satisfies 
the equation 

(48) 

We illustrate the application of these formulas by the 
example of the ionization of an atom by elliptically 
polarized light (the Coulomb interaction is neglected). 
In this case V(r, t) =- F(x cos wt + Ey sin wt), therefore 
Vo =- V, =- Fx, and V1 =- EFy. Then (to= iK/F): 

ro(t) = {1/zF(t2 -- fo2), 0, 0}, 
r,(t) = {0, 1/eeFt(t2 -fo2),0} 

J, = 0, I,= 1/,,J'2to"(1- 1/se2). (49) 

The ionization probability w(F, w) for y « 1 has the 
form (y = •:.J/Wt) 

w(F, w) ~ exp {- 2 Im (W + 1\W)} 

{ 2F0[ 1( e2) ]} = exp - -- 1 - -- I 1 - ~ \'2 + . .. · 
3F 10 , 3 

(50) 

This expression agrees with the expansion (for y « 1) 
of the exact formula for w in the case of elliptical polar­
ization of light as obtained inl1 J. However, the calcula­
tion of 6W by (45) to (47) is much simpler than the 
corresponding calculation in the case of arbitrary values 
of y. 

In conclusion the authors express their deep grati­
tude to E. M. Lifshitz and K. A. Ter- Martirosyan for a 
discussion of this work and a number of important re­
marks. 
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