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We calculate the Doppler line contour deformed by the absorption of intense radiation when there are 
independent mechanisms for thermal broadening and spectral diffusion caused by a change in velocity 
during collisions. We show that when the second mechanism is dominant the spectral decomposition of 
the transition probability narrows not only when the gas is compressed. but also when the light intensity 
is increased. and as a result the absorption spectrum saturates in an unusual manner. 

INTRODUCTION 

THE change in the contour of a Doppler line under the 
influence of collisions occurs partially due to a change 
in velocity during collisions. and partially due to its 
phase interruption. The two effects have been studied 
both separately and together but always for vanishingly 
weak radiation (the absorption of which is. essentially. 
also of interest). In Rautian and Sobel'man's latest sur­
vey Lll of the results referring to the theory of the 
Doppler effect when there is no saturation. they eluci­
dated rather fully and from a unified point of view the 
literature devoted to the pressure narrowing of a 
Doppler line (Dicke effect) both for strong and for weak 
collisions. The only exception was the calculation made 
recently by the author r" J which could apparently. owing 
to a different formalism. not easily be compared with 
other calculations especially as in that paper the main· 
interest was focused on the relaxation process rather 
than its spectrum. On the other hand. neither of these 
facts is important; the general framework of the theory 
of Markov processes r "·' 1 enables us not only to obtain 
more simply all known results referring to the form of 
Doppler spectra but also to advance further- into the 
realm of high light intensities saturating the line. 

In the present paper we demonstrate this using as an 
example collisions that change greatly the velocity. 
although we could extend the calculations also to a more 
general case. The main and rather unexpected result is 
that the power of the light plays the same role as the 
collision frequency. so that the spectral decomposition 
of the transition probability and of the stationary popu­
lation of states can be narrowed not only by a compres­
sion of the gas but also by an increase in the intensity of 
the monochromatic wave with which the spectrum is ob­
served. The latter then undergoes a more complex 
change: the saturation. starting somewhat earlier. 
masks the effect of the narrowing of the transition 
probability and as a result of the combination of the two 
effects the spectrum broadens up to a certain limit 
which is independent of the power of the field. Only 
after the Doppler width narrowed by the radiation has 
become less than the thermal width does saturation 
again take on its normal character. 

1. GENERAL FORMALISM 

The Hamiltonian of an atom interacting with a plane 
monochromatic wave which is in close resonance only 
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with two levels of the spectrum E, and Ez has the form 
Cn = 1) 

H = ![ E1 , - 1/zwt exp ( -ikr + iwt) \\ 
• -'JzWtexp(ikr- iwt) E2 ' 

( 1.1) 

where w, = D1zEo is the frequency of the interaction of 
the atom with the light (D 12 is the dipole moment of the 
transition) which is proportional to the wave amplitude 
Eo. k = w0/c, Wo the frequency of the transition Ez- E 1 , 

c the velocity of light. and w its frequency. 
The velocity of the atom v is a Markov variable which 

remains constant along a mean free path and which 
changes instantaneously and uncorrelatedly at the mo­
ment of collision so that each subsequent value of the 
velocity is completely independent of the previous value 
and its probability is given by a one-dimensional 
Maxwell distribution: 

1p(u) = 1/a/ n exp (-au2 ). (1.2) 

The Hamiltonian (1.2) depends, however, not directly on 
v but on the coordinate of the atom, r = f vdt. It is a 
function of the process (Brownian motion) taking place 
in the interval (0. t) but not a unique function of the 
velocity realized at the given moment of time, indepen­
dent of the prehistory. It is therefore impossible to 
apply directly to this problem the formalism developed 
in lc .. 1 J. 

However. changing from the density matric of the 
atom p to the variable 

O"tz=ptzexp(i~0 ~udt-iwt), n=pu-pzz, (1.3) 

we can write the Schrodinger equation i/J = lHp] in the 
form 

(1.4a) 

( 1.4b) 

where t.. w = w - wo and y = WoV / c is a Markov random 
variable. Thanks to our choice of representation (which 
varies randomly in time). the Hamiltonian in (1.4) turns 
out to be a function of the Markov variable y. and apply­
ing to (1.4) the formalism developed for uncorrelated 
perturbations r3 J we can thus easily get for the partial 
density matrix 

n'(t, y) = -iWt0"!2(t, y) + iWt0"21(t, y)- [n(t, Y)- n(t)] /-to, 
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iJ,, (t, y) = -i(y- Aro) cr,,(t, y)+ i ~1 n(t, y)- [cr,,(t, Y)- (J,,(t)]/To, 
(1.5) 

or 
. - 1 -

X(t,y)= G(y)X(t,y)+-X(t), (1.6) 
To 

where To is the time of free flight between collisions that 
change the velocity (but not its phase) and 

(
- 1/To - iro1 + iro1 ) 

G = - iw1/2 i (y- Aro) -1/To 0 , 
+ iw1j2 0 - i (y-Aw) -1/To 

X=(~:)=(~•)· 
Xa cr21 

(1.7) 

while 

X(t) = ) X(t, Y)l!'(Y)dy =) x( t, ro: v) ll'(v)dv. (1.8) 

These integra-differential equations can with equal 
justification be used also in some other problems, in 
particular, for calculating the absorption of a spectral 
line widened due to the Doppler effect for non-moving 
atoms (in a crystal). The problem of the absorption of a 
strong microwave field by a non-uniformly broadened 
line in magnetic resonance when spin diffusion is taken 
into account reduces also to such a problem. 

2. STATIONARY TRANSITION PROBABILITY 

It has recently been shown [4 J that one can obtain a 
statement about the level of stationary absorption of 
strong monochromatic radiation and about the non­
equilibrium population of states arising under its influ­
ence from the usual formulae of the model for transi­
tions 

N = WonolV, 
--:1-+:-2:c:l=v ,--=r ' 

no 
n, = _1_+_2W-,-,T-, (2.1) 

if we define the stationary probability W s for transitions 
as follows 

00 

1/T+2W, 
~ e-t/Tfi (t) dt (2.2) 

where n(O) = 1, p 12(0) = P21(0) = 0. Here no is the equili­
brium population of states and T the time for the relaxa­
tion of phases and populations under the action of colli­
sions which do not affect the velocity of the particle. 

To obtain the information which is of interest to us 
from Eq. (1.6) we introduce the Laplace transform of 
X(t) 

"' (£,) 
L = ~ X (t) e-t!T dt = ~: • (2.3) 

through which we can in a natural way express the prob­
ability (2.2): 

2W,=1/~-1/T when X(O)=(~). (2.4) 

In exact correspondence with (2.3) we can define also a 
partial transform L(y) by means of which L can be ex­
pressed by a simple averaging over y: 

co 

L(y)= Sx(t,y)e-tiTdt, L=S L(Y)li'(Y)dy. (2.5) 

If we bear, moreover, in mind that 
00 1 
S X(t,y)e-t/Tdt=-X(O)+-yL(y), (2.6) 
0 

we find, taking the Laplace transform of Eq. (1.6), that 

' [ 1 -] ' [· 1 ']-l (2 7) L(y)=-P(y) X(O)+ToL, P(y)= G(y)-yE , . 

E is the unit matrix. Averaging this result over y and 
solving for L we get 

L=To[(i+ !. Pf-i]x(O), (2.8) 

where 

P= Hc(y)- ~· i rqJ(y)dy. (2.9) 

Using these results in (2.4) we find finally 
1 1 

2W,= , -y· 
'ro [(£ + 1' /To)~t-1J 

(2.10) 

3. GENERAL SOLUTION 

It is clear from (1.5) and (1.6) that the matrix 

P(yp = G(yl- ~· i; 

~ -1/To -iw1 iw, ~ 
= -iw1j2 i(y-Aw)-1/To 0 

iw1/2 0 -i (y-Aw)-1/To 
(3.1) 

depends only on the universal combination of the thermal 
relaxation 1/T and the frequency of change in the veloc­
ity 1/To 

1 1 1 -=-+-. 
To T To (3.2) 

The matrix which is the inverse of (3.1) averaged over 
the Maxwell distribution can thus also be expressed in 
terms universally in terms of To: 

P= To 

Here 

1-w.'Io 
iw 

-2[/u-il,] 

iT Lfo +ill] 

(1+~)/o-ift ~2 Io 

~/o ( 1 + ~2 ) Io + ift 

I z-f l!'(x)dx -I -z 
o()-})+w'+(z-x) 2 - o( ), 

""s (z-x)ll'(x)dx 
/ 1 (z)= -----=-1,(-z) 

-~ 1+w'+(z-x)2 

(3.3) 

(3.4) 

are integrals depending on three dimensionless parame­
ters: z, w, and q, which is the width of the distribution 
(1.2) as a function of x = ~ w T0 , 

1 [ x'] qJ(X)=--- exp --
qyn q' 

(3.5) 

where 
mo'l'o 

q =---;:::: · = ToAwv, z = Toilw, w = w1T0, 

cfu 
(3.6) 

where ~ wD is the Doppler line width. 
Equations (3.3) to (3.6) determine completely the 

matrix P defined in (2.9). Since the latter is known. we 
need for the final result only the purely algebraic 
operations indicated in (2.10). Performing those we find 
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Io- to(1 + w2)/02- tol12 
2W, = rot2T0 -;-;-~:--;-;:-;;--:-:~-:-:--;;';"--:-:-'--~7-:-;-;=-;-:--:-;-:--:-:::-;--::­

(1-- tofo) 2- (1 +to) w2/o(1- tolo)+ w4/ 02 + t0 (t0 + w2)112 

(3.7) 

where to = To/To. 
When there is no saturation, i.e., in a vanishingly 

weak field when we can put w = 0 both in Eq. (3.7) itself 
as well as in the integrals Io and I1 we get easily 
Rautian and Sobel'man's resultuJ which refers to this 
case 

tofo(1- tofo)-(tolt) 2 
2Ws= OOt'"ro · 

(1- tofo) 2 + (tolt) 2 
(3.8) 

Depending on whether the frequency of change in the 
velocity or the frequency of the broadening collisions is 
higher we obtain from this even more particular formu­
lae 

(3.8a) 

(3.8b) 

The first of these describes the Doppler contour which 
can be steeply narrowed when the pressure (1/To) is 
increased (Dicke effect). The second describes a trivial 
transformation through collisions that interrupt not the 
frequency of the vibrations but the phase, as a result of 
which the Doppler line takes on the collision form with 
a monotonically increasing width when the pressure is 
increased. 

Saturation has in these different limiting cases also a 
qualitatively different character. In the first case (when 
T- "")we get from (3.7) the following generalization 
of (3.8a): 

lo [1- y2/o]- lt2 

2W,=ro,'"ro [1 -y"IoP+v•I,•, y2=1+ro,'"ro2, (3.~1) 

where Io and I1 also depend on y 2 • However, in the case 
when the collisions disrupting the phase dominate (when 
To- 00 ) the correct generalization of (3.8b) has the form 

2W. = rot"Tlo (3.10) 
1- ro,2T2/o 

The influence of the power of the field (w~) on these two 
formulae and through them upon the stationary popula­
tion of the states and the magnitude of the absorption in 
(2.1) merits a separate discussion. 

4. SATURATION IN THE DICKE EFFECT 

To establish what kind of new effect occurs in Eq. 
(3.9) when y"' 1 it is useful to describe the structure of 
its solution in all regions of values of the parameters 
y, q. and z. Specifying the range of values in terms of 
the coordinates z/q = t:.w/ t:.wD and ln(y/q) (Fig. 1) we 
discover easily that a cut parallel to the axis of the 
abscissa gives a frequency dependence of the transition 
probability in units of the Doppler width t:.wD and the 
abscissa axis itself is the natural boundary between two 
opposite situations, differing in the inequality signs in 
the inequality 

y I q = l'1 I q2 + w• I q' ;:'§: 1. (4.1) 

When y » q, i.e., in the upper half-plane. we have a 
Lorentz frequency dependence which is steeply narrowed 
compared with the Doppler contour width through either 
pressure or radiation. When y << q, on the other hand, 
the spectrum of the transition probability is close to a 

Ln .1. q 

~ ) 
Z,! -I D I z,1 z -,I fl v 

I I 
I I 
I I 
I I 

-

I 

FIG. I. Separation of physical situations: the region of the occur­
rence of a Gaussian spectrum is indicated by horizontal shading and its 
width by the vertical lines lzl/q = I. The two line contours drawn here 
illustrate the structure of the spectrum W s(t:.w) in different sections: 
quasistatic in the lower half-plane and narrowed by pressure or radiation 
in the upper half-plane. 

quasi-static one, at least where it reproduces exactly a 
Maxwellian (i.e., a Gaussian) distribution. 

To verify this we bear in mind that when y/q « 1, 
i.e., in the upper half-plane, the following expansions in 
a small parameter are valid for the integrals Io and l1 1> 

1 f q2 1 - 3a2 3q' 1 - 10a2 + 5a• ] 
lo= 1-- +- + ... , 

y2(1 + a2) L 2y2 (1 + a2)2 4y" (1 + a•)' 
(4.2a) 

a [ q3 3- a• 3q4 5- 10a2 + a• J 
I,= y(1+a") 1 - 2y2 (1+a2) 2 + 4y• (1+a2)' + ... ' 

(4.2b) 

where a = z/y. Using them in (3.9) we can obtain after 
the appropriate calculations 

(4.3) 

This line has a complicated form: at its periphery, i.e., 
when z >> y it decreases as t:.w- 4 : 

On the other hand. in the center-when z « y-it has the 
usual collision contour 

q2 
2W,= rot'"ro----=-----

2y2[z2 + (q"/2y) "1 
but with a width 

q2 •ron2 

r = - = :::T:=:'-'==:====-
2y 2l' 1/to2 + ro12 

(4.4) 

which decreases not only when the pressure (1/To) is 
increased. but also when the power in the field (wi) is 
increased. When the radiation is weak the narrowing of 
this contour is due to collisions (Dicke effect) while for 
relative strong radiation it is due to the radiation. 

However. the narrowing of the frequency dependence 
of the transition probability does not yet mean that the 

IJThese senes are obtained by expanding the Lorentz contours in 
(3.4) in the vicinity of x = 0. Since .p(x) is nearly a cS-function, they 
converge rapidly. 
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absorption curve is in fact narrowed. Only the frequency 
dependence of ns reproduces a similar dependence of 
Ws(Aw), as can be seen from (2.1). As far as the ab­
sorbed power of the field is concerned, it has according 
to (2.1) and (4.3b) the form 

(4.5) 

when Aw 2 « 1/T~ + wf. This formula is correct for all 
values of wi if AwnTo << 1, i.e., provided even for a 
vanishingly weak field the line would already be nar­
rowed because of the Dicke effect. One sees easily that 
in that case saturation starts before the inequality 
WtTo < 1 changes sign. 

Indeed, the increase in absorption in the line center 
stops when the two last terms in the denominator be­
come of the same order of magnitude, i.e., when 

r = w,2T 

11 + w,'-ro2 

L'l.w n2 To L'l.wn2 1 
or "'''=---~---~-. 

2 T 2 To2 
(4.6) 

Due to the fact that WtTo is still less than unity the line 
width r is constant as before (""' AwbT~/2) and the last 
term in (4.5) increases in proportion to wf. Indeed, 
saturation occurs in the usual way: it spreads from the 
line center outwards. In the saturation region the ab­
sorption then approaches its natural limit Nmax 
= w0n0/2T, which is independent of Ws since the speed 
of absorption of energy is limited by the frequency of 
the thermal transitions. When w 1 is comparable to 1/To, 
the width of the saturation region, though it ceases to 
increase, turns out to be already appreciably larger 
than the initial one, which moreover begins to narrow 
(r- Awf/2wt), so that we find, retaining only the last 
term in the denominator of (4.5) 

No= WonoL'l.wn2 

4-ro [L'l.w2 + L'l.wn2T /2-ro] 
( 4 .7) 

Within the width of this line. absorption has its maximum 
possible value Nmax when Aw 2 >> Aw0T/2To, while for 
Aw 2 » Awb T/2To it is determined by the expression 
wonoAwi/4ToAw 2 , which is appreciably less than the 
maximum value (Fig. 2). Equation (4.7) gives thus the 
limiting absorption of energy which would, if there were 

N 

FIG. 2. Form of the saturation of a contour narrowed by pressure 
(a) and a static contour (b) forT~ 7 0 . 

no other relaxation mechanisms (for T- 00 ), remain un­
changed when the light power increases without limit. 

The existence of this limit is the re.sult of the super­
position of the effect of the narrowing of Ws(Aw) through 
radiation and the usual increase of the probability W s 
with wi in accord_ance with the correspondence principle. 
When the width of the Doppler contour, narrowed by 
radiation, r = Awn/2 w 1 becomes less than the thermal 
width (r « 1/T) the first cause disappears and only the 
second one remains: the probability again begins to in­
crease ~ wf and saturation takes on its normal charac­
ter as will be shown in the next section. 

Let us now turn to an analysis of the situation which 
is the opposite of the one considered, and which is real­
ized in the lower half-plane of Fig. 1 when q/y » 1. 
Instead of the expansion of (4.2) we have in that region 
the following approximate estimates for the integrals: 

n y;&" ( z' ) 10 =-rp(z)=-exp -- , 
y yq q' 

(4.8a) 

(4.8b) 

valid when .!z I « zr where zr is defined by the follow­
ing equation rel: 

y ( Zr )' Zr -ln-=- - +2ln-+ln1n, 
q q q 

(4.9) 

while for lz I » zr the expansion (4.2) becomes valid as 
before. 2 ' Hence, the periphery of the line (Aw » Awr) 
is saturated in the way already described above and we 
are only interested in the Gaussian center of the line 
when the power increases. 

We easily get from (4.8) and (4.9) the following re­
sult: 

- -,-,n_w.;;..h_o:..:rp:..:(:..:z )-:- ""' nwh:orp ( z) 
2W, = ·-

y[1- nyrp(z)] y 

w12 -y;:t' exp { -L'l.w2/ L'l.wn2} 

L'l.wn11 + w12To2 
(4.10) 

which is valid everywhere when Aw « Awr and until 
q » y = (1 + wfT~) 112 • In order that this be realized it is 
in any case necessary that q = ToAwn >> 1, i.e., when 
there is no saturation (y = 1) there can not be an aver­
aged Doppler line contour rp(z). The change in the 
probability with increasing wi proceeds then in the 
following sequence: initially (w 1 « 1/ To « Awn) the 
probability has its usual form 

(4.10a) 

i.e., it is proportional to the power of the field. Later 
(1/To « w1 << Awn) it changes to the following expres-
sion: 

wd;:t' [ L'l.w 2 J 2W,=---exp --- , 
Toi'l.wn L'l.wn2 

(4.10b) 

which is proportional to the field amplitude. i.e., to the 
square root of the power and finally when 1/To <--< Awn 

2)This is connected with the fact that the Lorentz contours in the 
integrals (3.4) can play the role of almost cS-functions as far as the Gaus­
sian curve (3.5) is concerned only in the limit lzl ~ zr, while outside this 
limit the situation is again changed to the opposite one since the Gaus­
sian curve decreases appreciably faster on the periphery. 
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« w 1 when the sign of the inequality q/y » 1 is changed, 
Eq. (4.10) must yield precedence to the previously in­
troduced (4.3), since an increase in the field leads to a 
shift from the lower half-plane of Fig. 1 to the upper 
half-plane, where the narrowing of the dependence of 
Ws(D.w) on the increase of w, begins. 

Saturation starts before this last stage, i.e., already 
when the center of the line has a Gaussian form and in 
fact-when Ws(O)T = 1. when 

i.e., when 
1 1 
--~--~1 
i'J.WDJ' tlUJDTO ' 

""''' ~~~1, 
tlWDJ' i'J.WD 

Hence, the saturation of the central Gaussian part of 
the spectrum is completely described by Eq. (4.10), 
which when substituted into (2.1) gives 

WonoWt2 -y;t 
N = ---:--c===:c=::-----:---:'-:-:----;::--:-~:=::-

!'J.wD 11 + w,"ro' exp (:'.w'/ l'!.wD') + w12 yn 1' 
(4.11) 

but with further increase of the power of the field, when 
the periphery of the spectrum (z >> zr) becomes in­
volved in the saturation, only Eq. (4.5) gives a correct 
estimate of the absorbed energy and this equation again 
confirms the existence of a limiting absorption (4.7) to 
which N tends when wi increases without limit. as can 
be seen from Fig. 2b. 

5. NORMAL SATURATION 

Qualitatively different results are obtained from Eq. 
(3.10). which describes the absorption of light by a non­
uniformly broadened line when there is no spectral 
diffusion (To=""). In a vanishingly weak field the spec­
trum is a group of resonance curves, each with width 
1/T, which is normally distributed. If the width is lar­
ger than the width of the distribution D.wn, we are es­
sentially dealing with the simplest uniformly collision­
broadened lines. Lorentz ian in form: if. on the other 
hand. D.wn >"" 1 the spectrum is mainly Gaussian. it has 
the form of an enveloping distribution and each of its 
components saturates independently from the others. 
The picture of the saturation differs correspondingly. 

In the first case. i.e .. when D.wnT <~ 1 we can use 
the estimate (3.2a) for I0 • retaining only the first term 
and bearing in mind that To= T, 1" = 1 + wfT2 • z = D.wT 
we get 

1 
lo = --- = ·- -:-:--:-= 

~z + y' z' + 1 + w121'2 
(5 .1) 

Hence we get from (3.10) 

2ll's = ltlt'!.T 

1 + .'1w21'2 

N = ___ (•lolloWt 21' (5.2) 
2 [1 + :'.w 2F + w12T2] ' 

as is always the case when homogeneously broadened 
lines are saturated. 

The situation is somewhat more complicated if 
D.wD T » 1. when the original spectrum is inhomogene-­
ously broadened. It is clear from (4.8) and (4.10) that 

FIG. 3. Saturation un­
der resonance conditions 
for homogeneous (a) and 
inhomogeneous (b) broaden­
ing of the spectrum. 

for all D.w « D.wr while for very weak radiation 

2W, = w,'yn-exp (- ll.w' ), 
ll.wD ll.wD2 

(5 .3a) 

in accordance with the correspondence principle, while 
for w1T » 1 

Wtl'; / ll.w2 ) 2W, = --exp1 ---
Tll.wD \ ll.wD2 

(5.3b) 

in spite of that this already appeared in (4.10b). How­
ever. in the present case in contrast to the previous one 
saturation does not start until w 1 is no longer compar­
able with D.wn, i.e., always in the limits where (5.3) is 
applicable the absorption of light is determined by the 
general formula 

which must be replaced by (5.2) as soon as w1 becomes 
larger than D.wn. Since, however, at that moment already 
w 1 T » 1 the limit w 1 = D.wD is the boundary of saturation 
proceeding further exactly in the same way as in the 
previous case (Fig. 3): 

N = wonowt2T 
2 [ll.w2 + Ult21'2] 

(5 .5) 

This is natural as when w 1 >> D.wn the position of all 
lines in a non-uniform spectrum is identical. 

Since broadening by collisions always takes place this 
result is obtained when the light power increases with­
out limit and when T 0 ~ ro after the width (4.4) narrowed 
by radiation becomes less than 1/T and neglecting the 
latter. as was assumed in the preceding section. ceases 
to be valid. Hence. when r = 1/T and further, i.e .. 
when w, > D.wbT/2. the limiting expression (4.7) must 
yield place to (5.5), and the width of the spectrum starts 
again to increase appreciably and all resonance sections 
that are further away will be saturated up to the limiting 
magnitude Nmax = Wono/2T. 
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