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We investigated parametric transformation (amplification and generation) of light in nonlinear 
crystals. The quantum -transition method was used. The obtained kinetic equations make it possible 
to investigate the conditions for excitation and generation of light, to study the dependence of the ef­
ficiency of conversion on the pump-field radiation in the entire pump region. In a number of limiting 
cases this dependence is represented in very lucid form. In particular, it is shown that the conver­
sion efficiency exhibits saturation at large pump values. The calculation results are applicable to the 
case of radiation that has no time coherence in the stationary or quasi-stationary generation regime. 

1. INTRODUCTION 

UNTIL recently, the theory of parametric transfor­
mation of light waves in nonlinear crystals was de­
veloped predominantly for the case of monochromatic 
ideally-coherent radiation~!-?]. By coherent state of 
the field we mean the eigenstates of the photon annihi­
lation operator [ 8 ~. It is precisely in the case of such 
states that the classical nonlinear Maxwell's equations 
for the amplitudes of the field can be obtained from the 
equations of quantum electrodynamics by simply re­
placing the field operators with quantum -mechanical 
mean values of the operators. In the general case, the 
transition from the quantum Maxwell's equations to the 
classical ones is not obvious, even in the case of 
strong fields, without making special assumptions con­
cerning the properties of the field. 

In the case of stationary fields, as is well known ~ 8 J, 
the condition of field coherence presupposes that the 
field is monochromatic. In this case, the finite width 
of the emission spectrum is to a certain degree a 
measure of the incoherence of the field. With the aid of 
the classical equations, written for coherent fields, it 
is obviously possible to investigate fields that are not 
ideally coherent, provided the deviations from the ideal 
character are small. Such a situation takes place, ap­
parently, in the case of gas lasers. On the other hand, 
if these deviations are not small, then the solution of 
the nonlinear-optics problems holds for either deriva­
tion of corresponding classical Maxwell's equations 
from the quantum ones, and an investigation of their 
solution, or else the development of another convenient 
approximate method. One of such methods may be the 
method of quantum transitions (the kinetic method) de­
veloped and used for the investigation of generation of 
optical harmonics '- 9 - 10 ~. As will be seen from the fol­
lowing, the kinetic method is applicable to the case of 
essentially incoherent radiation. Of course, we are 
dealing here with the absence of coherence in the 
sense of :8 ]. Spatial coherence can take place. Such a 
situation can apparently be realized in the case of 
powerful solid-state lasers. 

The availability of results of the wave and kinetic 
methods in the theory of radiation transformation, 
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which pertain, strictly speaking, to different situations, 
makes it possible to investigate in detail coherent and 
statistical properties of the radiation of different 
sources. The convenience of using the kinetic method 
lies also in the fact that in this method it becomes 
possible to investigate the transformation of the radia­
tion in all the intervals of values of the applied-field 
intensities, including the region of quantum noise in the 
converterl 11 • 12J, which is beyond the framework of the 
classical theories. The purpose of the present paper 
is to investigate the efficiency of parametric conver­
sion of incoherent optical radiation by a kinetic method 
in the entire interval of values of the intensities of the 
electromagnetic field applied to the crystal. 

2. THE METHOD OF KINETIC EQUATIONS 

If we analyze the phenomenon of frequency conver­
sion by the quantum-transition method, then we calcu­
late the radiation intensity at any particular frequency 
by using the kinetic equations based on elementary 
cons ide rations of the transition probabilities. The 
transition probabilities are calculated in accordance 
with the following scheme. We consider a certain con­
verting device, containing a nonlinear element and 
placed in an electromagnetic field. The field is nor­
malized at a certain volume, the dimensions of which 
are large compared with the dimensions of the appa­
ratus. If we neglect the nonlinear properties of the 
system, then the normal oscillations of the field in this 
system will be waves satisfying the linear Maxwell's 
equations and the corresponding boundary conditions. 
The quantization of these waves leads to photons, un­
derstood to mean the occupation numbers of the indi­
cated normal oscillations of the field. The spatial con­
figuration of such a photon is determined by the linear 
dispersion properties of the apparatus. Account of the 
interaction of the field with the matter in the higher 
order of perturbation theory leads to interaction of the 
normal oscillations, i.e., to interaction between the 
photons. The probability of the process in which the 
interaction between the photons creates one photon in 
the j -th state with annihilation of an arbitrary pair of 
photons in the i -th and k -th states can be calculated in 
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third-order perturbation theory by known methods [ 13J. 
In this case 

W; = 2.; B;k;(q; + 1)q;q"b(w; + w"- w;), 
ik 

where in the dipole approximation 

( 1) 

(2) 

X~c is the tensor of the quadratic polarizability of the 
nonlinear medium; 

Fii<J = N'(4~c2 ) 3 I~ fi(ra)fk(ra)f;'(ra) \
2

, (3) 
a 

N is the density of the atoms in the crystal, fi ( ra) is 
the solution of the linear Maxwell's equation for the 
i-th state of the field, taken at the point where the 0! -th 
atom is situated; qi,k,j are the numbers of the photons 
in the corresponding states. 

It is possible to calculate in similar fashion the 
probabilities of all the remaining processes that are 
conceivable in the three -photon interaction. The equa­
tions describing the time variation of the quantum­
mechanical mean values of the photon numbers (the 
kinetic equations) can be written by starting from the 
expressions for the probabilities of these transitions 
and by introducing in suitable manner pumping of the 
states of the field and their losses. For the case when 
in three -particle interaction there is pumping at two 
frequencies, the kinetic equations take the form 

xq5(qi + 1) (qk + l)b(wi + w"- w;) + iV;- a;q;, (4a) 
dqi dt = L; Bi>Jq;(qi + 1) (qk + 1)6(wi + w"- w5) 

'" 
jk 

- l;Bihi(qJ+ 1)ruqhb(wi + Wn- w5)- U!;QI;, (4c) 
ij 

where q must be taken to mean the average numbers 
of the photons in the states; N j and Ji -pumping of the 
j -th and i -th states (number of photons entering per 
unit time); q -number of photons vanishing from the 
system per unit time as a result of all the processes 
not connected with the transitions in question, so that 
a-losses of the corresponding state or the reciprocal 
lifetime of the photon in the system. If there is no ab­
sorption in the system, then a-reciprocal photon life­
time relative to escape from the system, i.e., a = c/ L, 
where c-speed of light, and L-length of region of 
normalization of the field. 

Equation (4) can be proved rigorously with the aid 
of equations for the density matrix of the matter plus 
a quantized radiation field system, if the following 
conditions are satisfied: (a) the regime is stationary, 
(b) perturbation theory is applicable, (c) the diagonal 
elements of the density matrix can be separated, i.e., 
the diagonal elements of the density matrix of higher 
order can be represented in the form of a product of 
diagonal elements of lower order. 

Condition (a) makes it possible to exclude non­
diagonal density-matrix elements, by equating the time 
derivatives of these elements to zero. If we forego the 
condition of strict stationarity, then we must require 
in place of condition (a) satisfaction of the following in­
equalities: 

t > cj L, 

t!'.w > 1, 

(5a) 

(5b) 

where t is the observation time (the duration of the 
radiation pulse) and ~w is the spectral width of the 
radiation. Condition (5a) indicates that the stationary 
regime can be realized if the duration of the pulse ex­
ceeds the damping time of the natural oscillations of 
the system L/ c. The arbitrariness of condition (5a) 
connected with the arbitrariness of the choice of L 
can be avoided by taking into account the fact that the 
definition of the normal oscillations holds true under 
the condition L >> lo, where lo is the length of the 
converting device. Therefore (5a) can be written in the 
form t » Z0 /c. The latter is the condition for the 
establishment of stationary waves in the converting 
device, which are taken as the unperturbed states of 
the field. This condition is not connected with the 
character of the radiation conversion. 

Condition (5b) can be regarded as the condition of 
nonmonochromaticity of the radiation, necessary for 
the existence of time -independent transition probabili­
ties per unit time. In real pulsed solid-state lasers, 
this condition can be satisfied at least in those cases 
when no special selecting devices are used, to greatly 
narrow down the radiation spectrum. 

Condition (c) is a definite assumption regarding the 
statistical properties of the field. It can be shown, 
using the results of 9 -. that this condition signifies the 
following connection between the square of the average 
number of photons ( q) 2 and the mean square ( q 2 ) 

number of photons in the mode: q2 = 2 (q) 2 + q;/2. This 
condition is satisfied by radiation from a laser whose 
operation can be described by the kinetic method- 14!. 
The statistics of such radiation is close to the statistic 
of incoherent radiation - 14 ~. 

3. EFFICIENCY OF PARAMETRIC TRANSFORMATION 

By parametric interaction we mean, in analogy 
with 4 - • an interaction in which only one of the several 
interacting frequencies has a powerful pump. We shall 
consider the case of transformation of frequency down­
ward. putting Nj >> Ni· 

In the study of the interaction of spectral lines of 
finite width. interest attaches to the number of photons 
in the lines. From (4) we can go over to equations for 
the numbers of the photons in the lines, provided these 
lines are sufficiently narrow, so that within the limits 
of the line widths it is possible to neglect the disper­
sion of the quantity Bikj. The condition of narrowness 
of the line width is not too stringent here. It is neces­
sary only to simplify the calculations. For the KDP 
crystal in the transparency region, this condition is of 
the form lc -1 ~w " 102 • so that when l "" 10 em we 
get ~w < 10 11 sec 1 • This condition can be satisfied in 
the case of laser sources. It is possible to find a 
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region in which this condition does not contradict the 
condition (5b). For example, at a pulse duration 
t = 10-7 sec we have, in accordance with (5b), ~w 
>> 107 sec-1• 

If we regard the propagation direction and the photon 
polarization in each line as fixed, then the summation 
over i, k, and j in (4) reduces to summation over the 
frequencies within the limits of the corresponding lines, 
which can be replaced by integration, introducing the 
density of the states p of the field with respect to the 
frequency. For plane waves P = L/21Tc. The groups of 
states numbered by the indices j, i, and k will be de­
noted respectively by the indices p ( pump), s ( signal), 
and d (difference frequency). The numbers of photons 
in these groups (lines) are 

qp= ~ qj, q, = ~ q;, qd= ~ q,,. 

" 
Summing (4a) -(4c) respectively over j, i, and k 

under the indicated assumptions, we obtain 

dqp/dt=B[q,qd- qp(q, +qct+ M)]- apqp+ Np. 
dqs I dt = B[qp(q, + qct-1- M) - q,qct] -1- N,- a,q,, 

dqct/ dt = B[qp(q, + qd + M) - q,qct]- adqd, 

where 

Np=~N1, N = ~N;, M=pr, B=B;kJP 
J 

(6a) 
(6b) 
(6c) 

with i, k, and j taken for the centers of the correspond­
ing lines: a~p,d-1osses at the central frequencies ws, 
Wd, and Wp~Wp = Ws + Wd); r-effective Width of the 
spontaneous emission spectrum at the signal frequency. 
It is obviously defined as the maximum frequency inter­
val in which Bikj changes little. In the simplest case 
of the degenerate regime ( ws = Wd = wp/2) and nor­
mal incidence of the light on the crystal, the estimate 
for r has the simple form: 

r~2ncfdn(wl?..-w;lj J-1 ( 7) 
lwp L cluJ; m1=m~ ' 

where l is the length of the linear crystal and 
n ( wp - wi) is the refractive index. It is assumed, 
naturally, that the frequency of the applied signal field 
falls in the region of allowed spontaneous transitions. 
The system (6) in the stationary regime reduces to a 
quadratic equation for qs, the root of which 
vanishes when Ns- 0 and Np- 0, will be 

q, = (6/Ja)-'{(2/JNp- a2 ) 2 + 12/Ja[Ns (a2 -BNp)a-1 
+BNpM]}'"+ (2BNp-a2 )/6Ba. (8) 

We took into account here the fact that Ns « Np, and 
we put as =act= ap = a. 

The radiation power at the frequencies Ws, Wd, and 
Wp is 

The signal gain coefficient JJ. = Is/liwsNs = aqs/Ns. 
The conversion coefficient (or generator efficiency) is 
defined as k = Is/liwpNp = wsaqs/WpNp. These coef­
ficients are the system characteristics of interest to 
us, for a system operating in the parametric frequency 
conversion regime. Their calculation reduces to the 
use of (8). However, for practical calculations it is 
more convenient to use approximate but simpler ex-

pressions for qs, obtained from (8) for a number of 
interesting regions of variation of Np· 

We note first that qs differs from zero also when 
Ns = 0. This fact is connected with the quantum de­
scription of the field. In the case of weak pumps, 
satisfying the condition 2BNp « a 2, we have for Ns 
= 0: 

(9) 

This radiation is connected with the spontaneous transi­
tions, i.e., with the quantum noise of the converter 1l. 

When Ns > BNpMa-\ the quantum noise can be 
neglected and we obtain 

when 2BNp « a 2 • Accordingly 

11 ~ 1 + BN p/ a2. 

(lOa) 

(lOb) 

Thus, we are dealing here with a weak amplification 
regime. 

We represent the corresponding results for the 
following pump regions: 

( a•- 2BNp)2 ~ 12/JN ,a (a• - BNp), 

IBNp- a2 1 ~ a2, 

BNp':$>a2• 

(lla) 

(llb) 

(llc) 

We assume that the signal is sufficiently weak, so that 
the condition 

3BN,/a2 ~ 1 (12) 

is satisfied. 
In the region (lla) we have 

VN,( 2/JNp-. a2 ') q, ~ - 1----'---:-
GB '/GIJNsa2 · 

Np( v2BN,) 
qp ~ --;; 1 - 3a2 ' 

1/~ 
II~ f !iBN,. (13) 

From (12) and (13) we see that this is a region of ap­
preciable gain, although the pump may be assumed as 
specified ( qp R: Np/ a). 

In the region (llb) we have 

q, ~ Np (i- 3BN,(a•- BNpL ')' qp ~ -~~)!_' 
3a a• .3u 

1 Np k ~ ~( 1 _ 3/JN,(u•-BNp) J (!4) 
11 ~ 3 N s • 3(o)p \ a• I 

Here we are dealing essentially with generation. We 
note that it is possible also when Ns = 0. The cause of 
the excitation of the generation, as seen from (4), is 
the spontaneous transitions. In the classical descrip­
tion of the field, the analog of the spontaneous transi­
tions are the proposed fluctuations, in the presence of 
which excitation of generation becomes possible C4J. 

The region (llc) is the region of extremely strong 
pumping. Here 

(15) 

1louring the course of revising this article, the authors learned that 
this radiation has been observed and called parametric luminescence [ 15]. 
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Thus, the transformation coefficient reaches saturation. 
An analysis of the degenerate regime entails no dif­

ficulty. To this end it is necessary to replace Bikj in 
(4b) by 2Bikh, and Eq. (4c) can be discarded. We then 
obtain in the region of extremely strong pumping 

k ~ (tls / (t)p = 0.~. ( 16) 

Investigating in detail qs ( Np) and dqs / dNt, we 
can show that the generation of the subharmonics is a 
threshold process. The value of the threshold pump 
Np lies between the regions ( lla) and ( 11b). This makes 
it possible to present estimates for the threshold pump-
ing: 

( 17) 

The left side of this inequality is similar to the corre­
sponding ine~uality obtained by the wave method: 4 ~. 
Putting (Np)g~~""' a 2/B and using (9), we write down 
an equatwn for the power of the spontaneous radiation 
in the case of weak pumping 

_ A'r tz,.,,r 
Is= B!vpMil<u 5a-t ::::;; -.----. ( 18) 

(i\p) ~~~ 2n 

This expression makes it possible to determine ex­
perimentally ( Np )~~~ by measuring the width of the 
radiation spectrum and the power Is as functions of 
the pump Np without realization of the generation 
process itself. 

The amplification process can also be a threshold 
process. It can be shown that if the weak-signal condi­
tion (12) is satisfied, then there exists a very narrow 
pump interval, in which the main part of the change 
vqs I dNp takes place when the pump is varied in the 
interval from N '~ a 2 · 2B to Np :S a 2 2B. This fact is 
evidence of the threshold nature of the process. The 
threshold region is close to the region Np ""' o 21 2B. 
The latter makes it possible to estimate the threshold 
value of the pump for the amplification: 

(Np) ~~pl::::;; a'/2/J. ( 19) 

Of course, the signal should exceed the quantum noise 
in the system at these values of the pump. 

In conclusion we note that the stationary solution of 
the system (6) is stable. This can be demonstrated 
in analogy with= 16 :J • 

1 R. Kingston, Proc. IRE 50, 472 (1962). 
2 N. Kroll, Phys. Rev. 127, 1207 (1962). 
3 S. A. Alikhanov and R. V. Khokhlov, Zh. Eksp. 

Teor. Fiz. 43, 351 (1962) [Sov. Phys.-JETP 16, 252 
(1963)]. 

4 S. A. Akhmanov and R. V. Khoklov, Problemy 
neline1no1 optiki (Problems of Nonlinear Optics), AN 
SSSR. 1964. 

5 S. A. Akhmanov and R. V. Khokhlov, Usp. Fiz. 
Nauk 89., 437 (1966) [Sov. Phys.-Usp. 9, 525 (1967)]. 

6 N. Bloembergen, Nonlinear Optics, Benjamin, 1965. 
7 V. M. Fa1n and Ya. I. Khanin, Kvantovaya radio­

fizika (Quantum Radiophysics), Nauka, 1965. 
8 R. Glauber, Quantum Optics and Quantum Radio­

physics (Lecture at Summer School of Theoretical 
Physics, Grenoble University, France). [Russ, Transl. 
Mir, 1966, p. 91]. 

9 1. A. Marushko and V. S. Mashkevich. Ukr. Fiz. 
Zh. 10, 312 (1965). 

10 L A. Marushko and V. S. Mashkevich, Opt. Spek­
trosk. 20. 118 (1966). 

11 W. Louisell. A. Yariv, and A. Siegman, Phys. Rev. 
124. 1646. (1964). 

12 W. W~gner and R. Hellwarth, Phys. Rev. 133, 
A915 ( 1964). 

13 W. Heitler, The Quantum Theory of Radiation, 
Oxford, 1954. 

14 V. S. Mashkevich, Osnovy kinetiki izlucheniya 
lazerov (Principles of Laser Radiation Kinetics), 
Naukova Dumka. 1966. 

15 Abstracts of papers delivered at Third All-Union 
Symposium on Nonlinear Optics (Erevan, 20-27 
October 1967). Moscow State Univ. Press, 1967, Sec. 
IV, Papers 1-4. 

16 V. S. Mashkevich, Ukr. Fiz. Zh. 9, 226 (1964). 

Translated by J. G. Adashko 
129 


