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The spectr<>. of some electromagnetic waves that can propagate in a degenerate electron Fermi liquid 
in a magnetic field are considered in detail. Dispersion equations are obtained for the ordinary, 
extraordinary, and plasma waves propagated across the magnetic field. It is shown that a strong in­
teraction of oscillations with frequencies close to the limiting frequencies of excitation of the homo­
geneous field in the electron fluid is possible even at long wavelengths. Some possibilities of deter­
mining experimentally the quantities characterizing the correlation of electrons and responsible for 
the difference between the electron fluid and a gas are discussed. 

FOLLOWING the experimental observation of spin 
waves in alkali metals [1 • 2J, intense experimental in­
vestigations were initiated in a large number of labora­
tories throughout the world [JJ, aimed at observing ef­
fects due to the fact that the conduction electrons of 
metals constitute a degenerate Fermi liquid [4 • 5 J. It is 
appropriate in this connection to call attention to the 
possibility of revealing Fermi-liquid effects in the al­
ready employed experimental setup. Namely, we shall 
speak of the so-called electron cyclotron waves. 

The possibility of propagation of electromagnetic 
waves with frequency close to the gyroscopic frequency 
n of the electron in an electron gas of high density was 
pointed out by Drummond [BJ. The theory of such waves 
was developed also by others. The most complete ex­
position can be found in the paper by Stepanov [7J, where 
the necessary references are also given. In metallic 
potassium, electron cyclotron waves were observed by 
Walsh and Platz man [a, 9 J. Their experimental results 
are of particular interest to us, since they contain in­
formation regarding long-wave cyclotron waves. 
Namely, in the region of large wavelengths, the natural 
frequencies of the oscillations of the electron liquid can 
differ from the ordinary gyroscopic frequency of the 
electrons and its harmonics [lo, 11J. 

According to the Landau theory of the Fermi liquid, 
the energy of the quasiparticle (electron) depends on 
the distribution function, as is manifest in the following 
manner in the relation 

b~ =spa·~ dp'{'P(p,p'J+(aa')'i'(P,P')}Il;;(p'), 
(1) 

which connects the change of the energy operator OE 
with the change of the ·electron density spin matrix on. 
In formula (1) a is the spin operator, and the trace is 
taken over the spin states of the electron. The func­
tions cp and 1j! cause the difference between the elec­
tron liquid and a gas. With this, experiments aimed at 
the study of spin waves [1 • 2 ] afford a possibility of 
measuring the function if! (see [ll, 12]). The function cp 
has so far not been determined experimentally. We 
shall show that information concerning the function cp 
can be obtained by studying cyclotron waves and, in 
particular, attempts can be made to obtain such infor­
mation from the results of Walsh and Platz man ca, 9J. 

When speaking of electron cyclotron waves, one 
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usually has in mind electromagnetic waves propagating 
transversely to a constant magnetic field. Orienting the 
wave vector k along the x axis and the constant mag­
netic field B along the z axis, it is possible to write 
down for an isotropic electron liquid the dielectric 
tensor in the form 

Bij = (:~: ~: 0) 0 . 

Bzz 

(2) 

In accordance with (2), the dispersion equation re­
lating the frequency w and the wave vector k of the 
electromagnetic waves breaks up into two equations: 

(3) 

(4) 

Equation (3) describes the so-called ordinary waves, 
and Eq. (4) the extraordinary and plasma waves. In 
order to understand the possibility of observing the 
Fermi-liquid effects in the study of cyclotron waves in 
metals, it is necessary to consider the solutions of the 
dispersion equations (3) and (4). Inasmuch as for short­
wave perturbations with wavelength much smaller than 
the Larmor radius of the electron the difference be­
tween the Fermi liquid and a gas is negligibly small, 
we turn to the opposite limit, that of long waves. In 
this case, say for Ezz, we can write, neglecting colli­
sions, the following approximate equation: 

Wpz { k2zfo (1 + a 1) (1 + az) ) 
Bzz=1-~ 1+-- f• 

w2 10w w- Wt,z(k) 
( 5) 

where 

Wt,z(k) = (1 + az) { Q +k~2 
[ 7 (1 + a,)~:(1 +a,) (6) 

+ 1+aa ]} 
w-2(1+aa)Q ' 

Here n = eBv/pc is the Larmor (gyroscopic) frequency 
of the electron, wp = 141Te2N ( 1 + a 1 )/ m * is the plasma 
frequency of the electron liquid, N is the number of 
electrons per cubic centimeter, and m* = p/v is the 
effective mass of the electron on the Fermi sphere. 
Finally, O!n are the coefficients of the following ex-
pansion: 

2 00 ;h' (J>(p,p')= ~ (2n+1)anPn(cos8), 
Jt V n=O 

(7) 

where ® is the angle between the vectors p and p ', 
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lying on the Fermi sphere, and Pn (cos ®) are 
Legendre polynomials. 

Formula (5) makes it possible to obtain readily the 
spectrum of the ordinary waves in the vicinity of 

w = Q (1 + a 2) == w1,2(0) (8) 

Under the conditions of the experiments of [8 , 9 J, the 
following inequalities are satisfied: 

(9) 

Expression (8) represents in this case the limiting 
frequency of the ordinary wave, corresponding to the 
limit k = 0. Owing to the influence of the Fermi-liquid 
effects, this limiting frequency differs from the Larmor 
frequency of the electron Q 1 >. This fact is contained in 
the experimental data of [8 J. If we relate it with the 
theory of the predictions of an electron liquid, then it 
is possible to obtain the following estimate: 0!2 

~ - ( 0.02 - 0.03). Presumably a reliable estimate of 
a2 would call for a detailed study of the long-wave or­
dinary cyclotron waves in the direct vicinity of the 
frequency (8). 

It can be assumed that the Cl!n with n ::: 2 are small 
compared with unity. Then, neglecting them throughout, 
except in the resonant expressions, we can write the 
following solution of Eq. (3): 

-w+Q(i+az) =k2v2 /10Q, (10) 

which is obtained when the inequalities (9) are satis­
fied. 

The importance of studying the extraordinary waves 
in the vicinity of wl, 2 (0) is also due to the fact that, at 
not too large wavelengths, oscillations can arise near 
the freq\lency w 1,4 ( 0) = n ( 1 + 0!4)' which by virtue of 
the smallness of 0!4 is close to the frequency w 1 2 ( 0). 
According to the theory of the natural oscillation~ of a 
Fermi liquid [HJ, there is an infinite number of such 
frequencies. However, in order to be able to distinguish 
between them, it is necessary to satisfy the inequality 

(11) 

where T is the electron free path time. Therefore the 
determination of the parameters Cl!n with large num­
bers n cannot be carried out in samples that are not 
very pure. Bearing in mind this remark, we can use in 
the analysis of the experimental data the theoretical 
formulas obtained under the assumption that a small 
number of coefficients Cl!n differs from zero. Thus, in 
the case of an = 0 for n > 2, we gee> 

where 

3wp2 M,(w, k) 
e:zz=i- w2 D( k' " w, ) 

(12) 

1lThe Larmor frequency of an electron can be determined both by 
means of an experiment not connected with the propagation of cyclotron 
waves, and from data on short-wave cyclotron waves. 

2 >The structure of formula (12) is similar in principle to the expres­
sions for the dielectric constant obtained in [ 13 ], which differ qualita­
tively from the corresponding expressions for the electron gas in that 
the zeroes of Dzz depend on the wave vector. 

(13) 

0,0 -i, -t i,i 
D., = (1- 3a,a,,o, 1,0)[ (1- 5/s aza2,1; 21) (1- 5/s a,a,,,, 2,1) 

- ( 5/ 6 a2aic;\) 2]- 5/ 2 a,a2 (a,,~: ;:i) 2 ( 1- 5/s a,a/!\!) 

0,1 -1.-1 
-•h U1a2(a!,o; 2,1) 2(1- 5/s aza2,1; 2,1 ) 

o, -1 -1, H 1,0 - "I• a1az'at,o; 2,1 az,t; 2.1 az,t; 1,0, (14) 

v~ 1 +oo lQ C . ( kv . ) 
anm; rs == - ~ --- J dfJ Sill 8/z+v -Sill 8 

2 w-IQ Q , 
l=-oo 0 

( 15) 

(16) 

Here J t ( x) is the Bessel function and P~ (cos e) are 
the associated Legendre polynomials. We note that the 
coefficients a and b are connected by the relation 

(17) 

These coefficients determine the dielectric constant of 
the electron liquid also in the case of an arbitrary 
number of non-zero Cl!n. Formula (16) can be written 
also in the form 

~ 

v~ tCX \ 
bnm;r. '= (-1)v-.-- J sinO d8Pnm(cos 8)P,'(cos B) 

2smnx 0 

X J,,,~-·'f,v-x (~sin B )lv,~+'hv+x (~sin 8 ), (18) 

where x = wjn. 
If the inequalities (9) are satisfied, the dispersion 

equation of the ordinary wave takes the form 

M.,(w, k) = 0. (19) 

Hence, assuming that 0!2 is small compared with unity, 
we obtain for long waves 

w 1 { k2v2 
--g-1=-z az- 10Q2 (20) 

[( _ k2v2 )2-~ k•v• ( _ k'v2 ) ]'''} 
± az 10Ql 294 Q4 a2 5Q2 

When a 2 > 0, the two oscillation branches described by 
this formula, come closer together or, as is customar­
ily stated, interact strongly in the vicinity of the point 
k\-2 = 10a~.2• Outside this small vicinity, the oscilla­
tion spectra corresponding to (20) can be written in the 
form (10) and 

w az k4v4 a2 - k2v2/5Q2 

--1= (21) 
Q 1176 Q4 a2- k2v2/10Q2 

The results show that in the vicinity of cyclotron reso­
nance the number of waves propagating in the Fermi 
liquid turns out to be larger than in the electron gas of 
noninteracting particles. 
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We note that in accordance with formula (20) the 
number of waves is conserved also when aa = 0. This 
does not mean actually that both waves described by 
formula (20) are also possible in an electron gas. The 
point is that in the case of an electron gas Dzz has a 
zero of first order at w = n, so that the waves of the 
second branch are forbidden. To the contrary, in the 
case a 2 f 0, it can be easily verified that for long 
waves the zeroes of Dzz are incompatible with the 
zeroes of Mzz· It must be emphasized, however, that 
for the oscillation branch described by formula (20), 
with a minus sign in front of the square root, in order 
to be able to speak of such an incompatibility in an 
electron liquid with collisions, it is necessary to satisfy 
the inequality a~rlT > 1 or aarlT > 100. In such strong 
fields condition {11) for 0!4 may be satisfied, and, 
strictiy speaking, formula (20) may turn out to be in­
complete. In this case, however, besides the oscilla­
tion branch ( 10), there will arise also a branch with 
limiting frequency n ( 1 + a4), which apparently will 
be closer to the Larmor frequency than WI,a{O). 

Let us dwell briefly on the solution of Eq. (9) in the 
region investigated experimentally by Walsh and Platz­
manCs,9J. Namely, in the vicinity of cyclotron resonance 
at double the Larmor frequency we obtain for the ex­
traordinary wave 

k2v2 / Q = 5(2Q[1 + az]- w). (22) 

It is assumed here that the coefficients O!n are small. 
Here, too, in analogy with formula (10), the wave vector 
vanishes not when 20 = w, as follows from the theory 
of the electron gas. a 2 can be determined from the 
shifts, predicted by formula (22), of the limiting fre­
quency of the extraordinary cyclotron waves with spec­
trum (22). 

Finally, let us touch upon plasma waves, which have 
almost longitudinal polarization of the electric vector. 
Such waves are possible in the vicinity of Exx = 00 • 

Since, for example, we have in the approximation an 
= 0 for n 2: 2. 

where 

3wp2 Mxx 
Bxx = 1 +2-~k D.-, 

(I) V XX 

+ ag:;~. I { ( 1- U<ft~.0o; 0, o) (1- 3/,a,a::r !,!) 

(23) 

10 [ -1,1 0,0 0,1 -1,0]} (24) 
- 3/ 2 aoa1 (a,,i, o,o) 2 + 3/z a, a,,,, t,t (1 - aoao,o; p,o) + U<fto,o; t,tat,t; o,o , 

Dxx = [ (1- U<fto~~ o, o) (1- 3/za,a::~, u)- 3/zaoa, (a~;",, o, o) 2] 

Y.[(1- aoao~o~o.o) (1- 3/za,a,~~;-;:',)- 3/.aoai(a~:~;, t) 2] 

- (% a1) 2 [a/;,~~~ (1- aoao~~\o) + aoao~~;~:,a!·.~, o,oP, (2 5) 

it follows that the condition for the propagation of the 
plasma waves is given by 

Dxx = 0 (26) 

under the condition that Mxx does not vanish simul­
taneously. In the region of long waves, this equation 
has a solution 

w=fJ.[1+a1 +(~- 2;') k'~:J. (27) 

The shift of the limiting frequency compared with the 
Larmor frequency is determined by the value of 0!1, 
which can thus be determined experimentally. We note 
that formula (27) presupposes that 0!1 is small. As in 
the thoroughly discussed case of ordinary waves near 
the Larmor frequency, near double the Larmor fre­
quency there can also appear, in principle, other oscil­
lation branches having the limiting frequencies pre­
dicted in [uJ and given by the formula 

Wn, m (0) = mQ ( 1 + an), m ,::;; n. (28) 

However, in order for such waves to appear it is neces­
sary to have larger fields than for the waves with the 
spectrum (22), (27). On the other hand, a study of cy­
clotron waves in metals using strong fields and samples 
of high purities may make it possible to determine the 
different an, and thus obtain an appreciable amount of 
information on the properties of the electron liquid of 
metals. 

Note added in proof (12 January 1968). In a recently published 
paper (P.M. Platzman and W. M. Walsh, Phys. Rev. Lett. 19, 514 (1967)) 
an experimental study of plasma waves in potassium yielded values ao = 
-0.71 anda1 = -0.08. 
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