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We present a method of obtaining explicit expressions for the physical quantities in finite two-dimen­
sional lattices of the Ising-model type, starting from the appropriate equations of infinite lattices. As 
an example we evaluate the correlations in a finite Ising lattice with periodic boundary conditions. The 
method described here enables us to expand the region of applicability of methods involving the direct 
summation of polygons. 

KAUFMAN and OnsagerClJ found the correlation func­
tion of the infinite lattice and later on this expression 
was obtained by other methods by Montroll, Potts, and 
Ward[ 2 J and by Vdovichenko.C3 J For a finite lattice we 
only know the expression for the partition function 
which was first obtained by KaufmanC4 J and afterwards 
by Potts and Ward [sJ and by ThompsonPJ 

The aim of the present paper is to construct an 
expression for the correlation function of a finite lattice. 
We shall follow Vdovichenko's method. C3 , 7 •8 J Incidentally 
we shall show how we can obtain the partition function 
for the partition function of any finite lattice if the 
corresponding infinite lattice can be computed by the 
methods of [7 -uJ. For the simplest square lattice we 
shall write down an explicit analytical expression. 
Knowing the correlation function solves in principle the 
problem of the phase transition in a finite system. 

However, the main fact which prompted us to solve 
the problem of a finite lattice is the necessity to make 
the methods described in [7 - 11 ] more precise. The par­
tition function was in those papers written as a sum 
over loops. In the case of an infinite lattice this sum 
converges only above the transition point. The corre­
sponding results are thus, strictly speaking, valid only 
above the transition point. Using the Kramers-
Wannier C12J transformation (and similar transforma­
tions C11J) one can describe for many lattices also the 
region below the transition point. However, for more 
complicated lattices when the Kramers-Wannier 
transformation is not known, there remains one method:: 
to evaluate the partition function of a finite lattice and 
to let the number of spins tend to infinity. 

We perform the calculation using the example of the 
simplest square lattice containing L rows and M 
columns. Let the lattice be wound on a torus (periodic 
boundary conditions). If we try to use the methods 
of C 7-loJ, in contrast the case of an infinite lattice, a 
finite contribution is made by loops wound round the 
torus and not containing a single winding in the plane 
tangential to the torus. These loops as well as the 
loops which are obtained from them by a continuous 
deformation occur in the partition function with an in­
correct sign. 

In this connection we remind ourselves of the main 
result ofC7 •8 J. Let J be the energy of interaction of two 
spins, T the temperature, k Boltzmann's constant, 
x = tanh(J/kt), Z the partition function, A the matrix 
of the random walks on the lattice (with the Kac-Ward 
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factor C9J eicp/ 2 for each winding), cp the angle of rota­
tion of the tangential vector. Then 

Z=[2LM/(1-x2)LM]S, S=det'h(J-A). (1) 

The figure given below illustrates the cause of the 
inapplicability of (1) to a finite lattice. First of all, the 
Kac-Ward factors C9 J from windings on long (long in the 
figure) bonds (- 1 from each bond) are not taken into 
account. Secondly, each loop occurs with a sign depend­
ing on the number of self-intersections C7 ' 8 J so that the 
intersections of long bonds give a superfluous factor 
( -1) 8 , where s is the number of such fictitious inter­
sections. We introduce the notation: Soo is the sum 
over the loops with an even number of long bonds along 
the x and the y axes, Sw the sum over loops with an 
odd number of long bonds along the x axis and with an 
even number of long bonds along the y axis, S01 the 
sum over loops with an even number of long bonds 
along the x axis and an odd number of long bonds along 
the y axis, and Su the sum over loops with an odd 
number of long bonds along the x and the y axes. 

Each configuration of loops is one of four possibili­
ties and the required sum over all loops is thus 

S = Soo + Sto +Sot+ Stt. (2) 

We now consider det 112 ( 1 - A) which according 
tq C7/•8 J is equal to the sum over all loops with factors 
e1 CfJ 2 from each turn around an angle cp (when we go 
round the loop) and with a factor ( - 1 )P where p is the 
number of loops. If the loops do not contain any long 
bonds then the factors eiCfJ/ 2 give, due to the absence 
of self-intersections, exactly ( - 1 )P and the corre­
sponding terms in det 112 ( 1 - A) will be the same as 
the analogous terms in S. 

To retain this connection in the general case for 
configurations which contain n long bonds along the 
x axis and m long bonds along the y axis we must 
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multiply each configuration by a factor ( -1)n+m (the 
Kac-Ward factor from winding along long bonds) and 
by a factor ( - 1 )S where s is the number of inter­
sections of long bonds (each intersection changes the 
sign, seeC7 •8 J), Such intersections occur in a plane, 
but not on a torus so that we need not consider them. 
The additional factor ( - 1) s compensates their con­
tribution. 

The correct sign factor for each loop has thus the 
form exp {i2::<P/2 }(- 1 )P (- 1 )n+m (- 1 )S while 
dee12 ( 1 - A) automatically takes into account only the 
first two factors. The above mentioned splitting into 
four sums allows us to take into account also the re­
maining two factors as the parity of s is the same as 
the parity of the product nm. Taking into account the 
parity of the quantity n + m + nm we get instead of ( 1) 

Soo- Sto --Sot- Su = det'i•(1- A). (3) 

We must note here that the derivation of (1) given 
in C7 , 8 J assumes that the sum over the loops converges 
and is correct only for small x. However, in the case 
of a finite lattice the original sum over loops and the 
final expression for the partition function are polynom­
ials in x of finite degree N. If these polynomials are 
the same for small x they will also be the same for all 
x. Therefore (3) is correct for all x although the cal­
culation following C7 ' 8 J refers to small x only. 

To evaluate the sum (2) which is of interest to us we 
must find all Sik· We can obtain the necessary rela­
tions using the following method. 

We assign to each step along the x axis in the posi­
tive direction a factor e11T/L ~nd to each step in the 
opposite direction a factor e-lJT/L. In the general case 
this factor is equal to ei1T~x/X where ~x is the dis­
placement along the x axis and X the dimension of the 
lattice along the x axis. After introducing this factor 
each configuration of loops will contain an additional 
factor ( -1 )l where l is the number of complete turns 
around the torus along the x-axis. The parity of the 
number l is clearly the same as the parity of the num­
ber of long bonds along the x-axis so that the introduc­
tion of this factor changes the sign of Sw and Su, but 
not that of Soo and So1· 

The random walk matrix including the just intro­
duced additional factors ei1T/L from each step along 
the x-axis will be denoted by Aw. According to what 
we said earlier we have for A10 instead of (3) 

Soo + Sto- Sot+ S, = det'"(1- Aw). 

If we introduce a similar factor along the y axis 
(the corresponding matrix will be denoted by Ao1) we 
get for Ao1 

Soo- Sw +Sot+ S,, = det''• (1- Aot) o 

If, finally, we introduce such factors for both axes 
we get for Au 

Soo + Sw +Sot- S11 = det'i• (1- Au) 0 

(4) 

(5) 

(6) 

From Eqs. (3) to (6) we find the Sik and substitute 
into (2). The quantity S we are looking for turns out to 
be equal to (A00 =A) 

S = 112( -det'i• (1- A 00) + det'/, (1 - A10) + det'" (1- A 01 ) 

+ det'/, (1-AH)]o (7) 

One can evaluate the determinants occurring on the 
right-hand side of (7) as in C7 • 8 J by making a Fourier 
transform (changing from the x,y- to the p,q-repre­
sentation). The additional factors ei1T/L and e-iJT/L, 
in Aw for i~stance, occur as factors, respectively, in 
front of e 21Tlp/L and e-21TipjL so that the introduction 
of these factors simply means replacing p by p + }'2 • 

Similarly we can evaluate dee12 ( 1 - A01) and 
dee12 ( 1 -Au). Bearing this in mind and taking the 
square roots in (7) we get for odd L = 2a + 1 and 
M = 2b + 1: 

det'"(1- Aoo) =II [ (1 + x2) 2 - 2x(1- x2) (cos 2~P +cos 2;: ) r 
Poq 

a b r ( 2 J =(1-2x-x2) II II (1+x2 ) 2 -2x(1-x2 ) 1+cos ;q) 
p=iq=i 

X [ (1 + x•) 2 - 2x ( 1 - x2) (cos 22P + 1) J [ ( 1 + x2) z 

- 2x(1- x2) (COS 2rr,:_ + COS·2;q) r > 

det'i•(1- A to)= IT [ (1 + x2 ) 2 

Poq 

( 2np + n 2nq ) ]'" - 2x(1- x2) cos L -T- cosM 

a b 2 
=(1+x2) II II [ (1+x2 ) 2 -2x(1-x2)( -1+cos :;J)J 

p=1 q=i 

x[ (1 +x2)2-2x(1-x')( COS02llp:ll + 1) ][ (1 +x2)2 

( 2np + n 2nq )]' -2x(1-x2) cos L +cosM , 

det'i•(1- Aot) =IT [ (1 + X 2 ) 2 

p,q 

( 2np 2nq + n ) ]'" - 2x(1- x2) cos-y;-+ cos--M-

a b 

=(1+x') II IT [ (1+x2) 2 

p=iq=i 

- 2x(1- x') (cos 2~P- 1) J [ (1 + x2) 2 - 2x(1- x2 ) 

1 2nq+n )]· [ t 2np 2nq + n )]' x\ 1+cos--M-. (1+x2 ) 2-2x(1-x2 ) cosL+cos M 

det''•(1-Au)= II [ (1+x2)' 
p.q 

( 2np + n 2nq + n )].''• -2x(1-x2) cos--L-+cos--M-

a b [ ( 2nq + It ) l 
=(1+2x-x') II IT (1+x2) 2 -2x(1-x2) -1+cos~ _; 

p=iq=i 

x [ (1 + x') z- 2x ( 1 - x') (cos 2npL +It - 1 ) ] [ ( 1 + x2 ) 2 

( 2np + n 2nq + n)]z ( ) 
- 2x(i- x2) cos L + cos-----;w- 0 8 

For even L and odd M, odd L and even M, and 
even L and M we get similar expressions after taking 
the square root. Up to the point where the square root 
is taken Eqs. (8) are the same for all L and M. 

The answer (7) must be completed by a rule for 
choosing the sign in front of the square roots in (3) to 
(6). For x = 0 all left-hand sides of (3) to (6) are equal 
to unity so that for small x all roots on the right-hand 
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sides and also in (8) must be taken with the plus sign. 
From writing {8) in the form of polynomials (without 
square roots) and from the analycity of S in x it is 
clear that this choice of signs in front of the square 
roots remains unchanged for all x. 

One can evaluate the partition function of different 
finite lattices in a similar way. In any case Fourier­
transformation enables us to calculate dee12 ( 1 - Aoo) 
and the remaining three terms in {7) are obtained by 
the substitution p - p + .Y2 and q - q + .Y2. 

We now turn to a calculation of the correlation. The 
correlation, like the partition function, is equal to the 
determinant of a matrix. For a finite lattice, as in (7), 
we get four determinants instead of one. For each of 
these determinants we must perform the same trans­
formations as in [3 J. In the simplest case of a square 
lattice we get for the correlation G ( t) of two spins in 
the same column at a distance t 

G(t) = S-1 [ -deL'h (1- Aoo)G00 (t) + det''• (1- A 10) Gto(t) 
+ det'" (1- A0,)Got (t) + det'" (1 - Att)Gu(t) ], {9) 

where S is determined from Eqs. (7) and {8), Grs ( t) 
= I C~~ I ( r = 0, 1, s = 0, 1) is the determinant of order 
t of the matrix elements c~r 

, "_ 1 "" . { 2niq lk -l) 1 
Ckz - M LJ /n(q)exp M }' 

q 

. 1 + yL 
!oo = 1 _ yL f(w), 

1 +zL 
lot = 1- zi" f' ( w)' 

1-g(w) 
y= 1+g(w) ' 

1- yL 
/to= 1 +yL f(w), 

1-zL 
/u = 1 + zL f'(w), 

z= 1-g'(w) 
1+g'(w) ' 

-~ (xx'- e-'"') (x'- xei"') J'h 
f(w)- L(xx'-ei"')(x'-xe-'"') ' 

- r (x'- xe'"') (x'- xe-iw ]'/, 
g(w)- L (xx'- e'"') (xx'- e-iw). ' 

J'(w)= 1( w+ ~), g'(w)=g~ w+ ~), w = 2~, 1-r 
x*=--·· 

1+x' 

Or, in other words, 

{ x'- xeiw l 
f = exp i arg xx' _ ~ I, 

-I x' -xeiw I g- ----
xx*-ei(t) · 

(10) 

The square roots in ( 10) are taken with the plus sign. 
Writing out ( 10) shows how the usual expression [3 J for 
the correlations is modified. 

We can write Eq. (10) without square roots. The 
quantities foo and fw for odd L = 2a + 1 can be put in 
the form 

a a 

~ C~8 rS ~ c~+',., 
u s=O s=O x• -xeiw 

foo=- /10 = u U= ; r= lui'. r a a xx*-eim 

~ C2s+tr' 
L 

~ c1',., 
s=O s=O 

In the case of a finite lattice the square brackets in 
{9) as in {7) are polynomials of finite degree. The 
denominators, for instance,in ckl' 

"" 2x(1 + x')- x2(1- z2)e""iq/M- (1- z2)e-2niq!M . 
X LJ e2mq(k-l)IM {11) 

p,q 
(1 + x2) 2 - 2x(1- x2)[cos(2np/L) + cos(2nq/M)] 

cancel the same factors in dee12 ( 1 - A00 ) in {9). The 
other c~~ will be 

Ck{' = L~ ~ Frs (p, q) e""iq(k-l)IM. 

p,q 

The quantities Foo(p, q) are written down in (11) 
and 

Fw(p, q) = Foo(P + 1/., q); F(J! (p, q) = Foo(p, q + 1/2); 

Fu.(p, q) = Foo(P+ 1/2, q + 1/.). 

If we let L and M in (7) to (10) tend to infinity we 
obtain the corresponding expressions for the infinite 
lattic:e. This transition is simple, but not trivial: as 
Kaufman [ 4 J has already noted, the limiting behavior of 
the separate terms of the sum (7) below and above Tc 
turns out to be different. For large L the substitution 
p - p + ?'2 changes {8) only when p ~ 0 and p "" L, but 
terms with these p occur in (8) as factors. 
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