
SOVIET PHYSICS JETP VOLUME 27, NUMBER 3 SEPTEMBER, 1968 

THE VANDER WAALS FORCES IN FERRODIELECTRICS 

V.V. GANN 

Physico-technical Institute, Ukrainian Academy of Sciences 

Submitted October 10, 1967 

Zh. Eksp. Teor. Fiz. 54, 994-1000 (March, 1968) 

The molecular forces of interaction between two ferrodielectrics separated by a narrow gap are de­
termined in the case l >> nc/kT. It is shown that allowance for the magnetic-moment fluctuations 
leads to the appearance of an additional attraction force that depends on the magnetic permeability 
of bodies, and that the electric and magnetic moment fluctuations make independent contributions of 
the same order to the general Van der Waals attraction force. 

1. Long-wave fluctuations of the electromagnetic field 
in an absorbing medium are a source of long-range 
forces, having the same nature as Van-der-Waals 
forces of attraction between molecules at large dis­
tances. The long-range character of these forces leads 
to non-additivity of the free energy, as a result of which, 
for example, the free energy of a system of solids de­
pends on the distances between them. The interaction 
forces between nonmagnetic macroscopic bodies, the 
surfaces of which are very close to one another, were 
first obtained by E. M. LifshitzC1J (see alsoC 2 , 3 J). 
These forces have the character of attraction and are 
determined completely by the dispersion properties of 
the bodies. 

It is obvious that the main contribution to the inter­
action between solids is made by electromagnetic fluc­
tuations with frequencies which are at any rate not 
larger than Wabs - the frequencies of the upper edge of 
the absorption spectrum of the given bodies, for when 
w > wabs the dielectric constants of the bodies E ( w) 
- 1. The electromagnetic fluctuations themselves 
either have the character of quantum fluctuations with 
wavelengths on the order of the distance l between the 
bodies (with frequency wq ~ c/l), or are principally 
thermal fluctuations with frequencies on the order of 
wT = kT/ n. Specifically, the character of the fluctua­
tions is determined by which of the frequencies, wq or 
wT, is higher. For condensed bodies, the characteris­
tic frequency of the thermal fluctuations WT is always 
much smaller than the frequency Wabs, which lies, for 
example, in the optical band, and therefore the depend­
ence of the attraction force on the distance is deter­
mined entirely by the location of the frequency wq 
relative to the frequencies WT and Wabs· 

As shown in [l], in the limiting case of "small" 
distances, when wq >> Wabs, the principal role is 
played by quantum fluctuations with frequencies 
w $ Wabs, the attraction force is proportional to 
F ( l) ~ tiwabs / l3 , and does not depend on the tempera­
ture. 

In the case of "large" distances and low tempera­
tures, when WT << wq << wabs, the contribution to the 
attraction force is made by quantum fluctuations of the 
electromagnetic field with frequencies w $ wq, and the 
attraction force F( l) ~ nwq/l3 ~ nc/l 4 does not de­
pend on the temperature [lJ. 

In the preceding two cases, the magnetic properties 
of the bodies did not play any role, since the magnetic 

529 

permeability of non-ferromagnetic bodies differs little 
from unity, and that of ferromagnetic bodies differs 
from unity only at frequencies not exceeding the char­
acteristic frequency of the ferromagnetic resonance 
w 0 ~ 1010 Hz, which is much smaller than the frequen­
cies wabs and Wq1). On the other hand, in the case of 
"large" distances and high temperatures, when Wq 
<< WT << Wabs, the main contribution to the attraction 
force is made by thermal fluctuations of the electro­
magnetic field in the gap between the surfaces of the 
solids, and, in perfect analogy to the fluctuations of 
density in a two-dimensional system, appreciable fluc­
tuations of the electromagnetic field with extremely 
small frequencies occur in a narrow gap, so that the 
expression for the attraction force contains the static 
values of the dielectric constant and the magnetic 
permeability, which are quantities of the same order 
in the case of ferrodielectrics. 

The present paper is devoted to a calculation of the 
Van-der-Waals force of interaction between two ferro­
dielectrics separated by a narrow gap, in the case when 
Wq « WT « Wabs· Allowance for the fluctuations of the 
magnetic moment leads to the appearance of an addi­
tional attraction force, and the fluctuations of the elec­
tric and magnetic moments give independent contribu­
tions of equal order to the total attraction force. 

2. We shall visualize the interacting photodielec­
trics in the form of two plane-parallel plates of suffi­
cient thickness, separated by a narrow gap bounded by 
the planes Z = 0 and Z = l. In order to exclude the 
dipole interaction of the magnetized plates, we direct 
the magnetic moments of the plates parallel to the gap 
in the direction of the X axis. 

The force of interaction between the plates, per unit 
surface area, is equal to the component az z of the 
stress tensor of the fluctuating electromagnetic field. 

Dzyaloshinskil and Pitaevski1 C4J obtained an expres­
sion for aik in terms of the temperature Green's func­
tions Dik( r1, r 2; wn) of the electromagnetic field. In 
the vacuum that separates the two media, the expres­
sion for aik is of the form 

( 1) 

l)The frequencies Wq <: w 0 correspond to distances I<: 1 em. At 
such distances, the Van-der-Waals forces are vanishingly small, although 
formally the magnetic effects contribute in this case to the force. 
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The summation is carried out here over the values 
Wn = 2rrnT/n, and the term with n = 0 is taken with 
half-weight. The functions D{k and D~ are made up 
of components of the operators of the electric field 
intensity and the magnetic field induction, in exactly the 
same manner as Dik is constructed from components 
of the vector potential of the field, and play the role of 
mean values of the products of the components of the 
corresponding operators: 

The temperature Green's function Dik( r, r'; Wn) satis­
fies the equation 

[ Ol'n2Ei1 (r, iron) + rot;; ftjm - 1 (r, iw n) rotml) D,. (r, r'; OJ n) 
= -4nc'l;.l\ (r- r'). (3) 

Here Ei[(r, w) is the dielectric tensor and llj~ (r, w) 
is the reciprocal magnetic-permeability tensor. 

On the boundary between the two media, the com­
ponents Dik should satisfy the boundary conditions 
corresponding to the continuity of the tangential com­
ponents of the electric and magnetic fields. Because of 
the fact that Eq. (3) does not take into account the 
spatial dispersion of the dielectric and magnetic 
permeabilities, the quantities nfk ( r, r') and 
D~ ( r, r') become infinite at r = r ', and the ref ore the 
infinite contribution of the short-wave photons must be 
cut off before these quantities are substituted in 
formula ( 1). 

Thus, the force F ( l) acting on a unit surface is 

T~, E E E 
F(l) =- .::J {Dxx (l, l; Wn) + Dyy (l, l; Wn)- Dzz(l, l; Wn) 

8n n~o 

+ D:i'x(l, l; 0n)+ n:y (I, l; Wn)- Dz~ (l, l; Wn) }. (4) 

Thus, the problem reduces to a solution of Eq. (3) with 
boundary conditions. 

To simplify the calculations we first find the force 
F (l) assuming that Ei[ ( r, w) = Oil in all of space. The 
tensor flik: (iwn) in ferrodielectrics is equal to 

where 

Tj1= 

[ti/,1 (iron) = (~ ~~ ~') , 
0 -Tj, 'lz (5) 

WoWz + Wn2 + 2w1wnA/ gMo 

w,Z + Wn 2 + WnYc 

1']2= 
w12 + Wn2 + 2w,wnA/ gMo 

w,Z + ·Wn2 + WnYc 

0!1 =roo+ 4::rgMo, 0!2 =roo+ 8ngMo, w, = )'w,w,, 

y, = ( w, + w,) 'A I gMc, 

here A. is the magnetic-moJllent relaxation constant, {3 
the anisotropy constant, H~1 > the constant magnetic 
field inside the magnet, directed along the easiest 
magnetization axis (the X axis), and Wr and Yr are the 
frequency and width of the homogeneous ferromagnetic 
resonance line. 

By virtue of the homogeneity of the problem with 
respect to the variables X and Y, the function 
Dik ( r, r') depends only on the difference X - X' and 
Y- Y'. We carry out a Fourier transformation with 
respect to these variables: 

D,k (Z, Z', p) = (2 ~)' ~ eiqe D,dZ, Z', q) dq. 

The vectors q and p lie in the XY plane, p 
={X -X', Y - Y'}. We choose a new coordinate 
system x, y, z in which the y axis is along the vector 
q and the z axis along the old Z axis. Equations (3) 
for the Fourier components Dik ( z, z ', q; wn) take on 
in the new coordinate system the form 

[ wn2 + g21']z- (sin2 a+ 1']1 cos2 a)_<!:_ ]nxk 
dz2 

- i.sin a [q1']3 _!_ + i cos a(i-111)~] Dyk 
dz dz2 

-- qsina[ q1'] 3 + icosa(1-1']1) :z ]n," = -4nl\(z-z')o,k, 

d 4:rt( d\ ' 
iqD"" +-D," =-- ·\igo"" + o,,-d ) o(z- z ), 

~ (J)~ z 

-q sin a [q1']3 + i cos a( 1 - 'lt)..::_J Dxk+iq ( cos2 a+111 sin2 a) dd Dyk 
-~ z 

+ [wn2 + q2( cos2 a+ 1']1 sin2 a)] D,k = -4:rt6 (z- z') Ozk· ( 6) 

Here a is the angle between the axes X and x. Since 
we are interested only in the Green's function in the 
region of the gap, we can immediately confine our­
selves to the case 0 < z' < l. Then the functions Dik 
in the :regions z ~ 0 and z =::: l will be determined by 
Eqs. (6) without the right sides, and in the region 
0 < z < l it is necessary to put in (6) 171 = fJ2 = 1, and 
7J3 = 0. The boundary conditions reduce in this case to 
the requirement of continuity of the functions Dik and 
d(cos aDyk- sinaDxk)/dz at the points z = 0 and 
z = l. 

3. The solution of Eqs. (6) with k = z, y, and z is 
carried out in perfect analogy, and we therefore con­
sider only the case k = x. 

In the region 0 < z < l, Eqs. (6) take the form 

( W 2 - ::,) Dxx = -4n6 (z- z'), 

d d 
iqDyx + a;_Dzx = 0, iq dz Dyx + w'D,x = 0, (7) 

where w2 = w~ + q2• From the system (7) we get 

Dxx(z, z') =- 2n e-wlz-z'l + ax(z')ewz -+- hx(z')e-wz, 
w 

Dyx (z, z') = ay(z') ewz + by (z') e-wz, 

iq iq 
D,x(z,z')= ---;_;;ay(z')e'vz +--;_;;bv(z')e-w', (8) 

here ax, bx, ay, and by are unknown functions. In the 
regions z =::: l and z ~ 0 we shall seek the solution of 
the system of homogeneous equations (6) in the form 
Dik ~ eKz. The following dispersion equation is ob­
tained for the determination of K: 

TJtX4 - [w 12 + w2'11 1 + q2 (TJ 1 -1) (1 -1'],) cos' a 

+ q'TJ32 sin2 a)x2 + w12W22 + q'l']i sin2 a= 0, (9) 

where w~ = w~ + q2 ( cos2 a + 171 sin2 a) and w~ = w~ 
+ q2 1] 2• It can be shown that Eq. (9) has only real roots 
K1 =::: Ka =::: 0, K3 = -Kh and K4 = -K 2• Simple calculations 
lead to the following result: in the region z ~ 0, the 
solution is of the form 

Dxx (z, z') = a(z') d1e"•' + ~ (z') d2e"'', 

ix1 ixz 
Dyx(z, z') = a(z')- e"•' + ~(z')- e"'', 

q q 

Dzx(z, z') = a(z')ex,z + ~(z')e"'', (10) 
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and in the region z :=:: l we obtain from (6) 

where 

Dxx(z, z') =A (z')d3e~x,z + B(z')d4e~x,z, 

ix1 ixz 
Dux(z,z')= -A(z')- e~"''-B(z')-e--x,,, 

q q 
D,(z, z') =A (z')e~x,z + B(z') e~x,z, 

d· __ x,'(cos2 a+ 1'] 1 sin 2 a)- w1' 

'- q sin a[q1']3- i(1- l'],)x, cos a] ' 
s = t,:u,4. 

(11) 

To determine the unknown functions ax, bx, ay, by, 
a, {3, A, and B, we shall use the boundary conditions 
for the Green's functions. From the condition for the 
continuity of the functions 

d 
Dxx, Dyx, Dzx, dz (Dvx cos a- Dxx sin a) 

at the points z = 0 and z = l we obtain a system of 
eight equations: 

ad, + ~d. = - 2ne~wz' I W + ax + bx, 

aix, I q + ~ix2 I q = ay + by, a + ~ = -iqay I w + iqby I w, 

ap,x, + ~P2X2 = 2nqe~wz' sin a 

+ (ay - by) wq cos a - (ax - bx) wq sin a, 

Ad,e~x,l + Bd,e-Xzl = -2ne~w(l-z') I w + axewl + bxe~wl, 
ix1 ix2 

A- e~x,, + B- e-x,,+ ayewl + bye-wl = 0, 
q q 

iq iq 
Ae-xd +Be-"''= __ ayewl +_by e~wl, 

w w 
Ap2x1e-x1l + Bp1._X2e-.,~.d = 2nq e-w(l--z') .sin a 

- (ay cos a- ax sin a) wq ewl +(by cos a- bx sin a) wq e-wl, 12) 

where 

p; = ix; cos a -- d;q sin a. 

Eliminating successively all the functions except a 
and {3, we obtain the following equations: 

aFu + pF,. = E, (w)e-wz'- E'1 ( -w)ewz' 

aF2i + pF,2 = Ez(w)e-wz'- E,( -w) ewz'. (13) 

The quantities contained here have the following struc­
ture: 

Fik = Fih(w) -F;,(-w), 
Fu(w) = (p,- P•) (x1 + w) 2ew1, 

Fl2(w) = (pz- p,) (x, + w) (xz + w)ew1; 

Fz1(w) = (p,- p,) (xi+ w) (xz + w)ew1, 

F22(w) = (p,- p,) (x2 + w) 2ew1, 

E 1 (w) = 4nq(x1 + w)e1w sin a, E,(w) = 4:rtq(x2 + w)ewl sin a, 

The functions Ci ( z 1 ) and f3 ( z 1 ), obtained from ( 13), 
must be substituted in the first four equations of the 
system ( 12). From these equations we get the unknown 
functions ax ( z 1 ), bx ( z 1 ), ay ( z 1 ), and by ( z 1 ) • Know­
ledge of these functions enables us to calculate by 
means of formulas (8) the Green's functions Dxx, Dyx, 
and Dzz in the region 0 ~ z ~ l. The Green's functions 
(8) have the following structure: 

D(z, z') = ft(z- z') + f2(z + z'). 

It can be shown that the second term makes no contri­
bution to expression (4) for the force, so that we shall 
henceforth give only the expressions for the functions 
D +, which depend only on z - z 1 • 

In addition, we must subtract the infinite parts in 
the Green's functions DE and nB. This is equivalent 
to subtraction of terms of the type -21/W -l 

exp [ -w I z - z 1 I] in formula (8) for Dxx. As a 
result of such calculations we obtain the following 
expressions for the Green's functions: 

Dx~(z- zl, q; Wn) = 2n ew(z-z') 
w 

" 7 (iwcosa-p1)(:>q+w) . , + S,,Sw . [FzzE1(w)- F 12Ez(w)]e"<<-< >, 
2qw!'1sma 

+ ~ - x 1 + w 
Dyx(Z- z', q; Wn) = iS,,Sw---[FzzE1 (w)- F 1,E2 (w)]ew(H'), 

2q!'1 

+ --x1 +w 
Dzx(z- Z 1,q; Wn) = StzSw~[F22Et(W)-F1,Ez(w)]ew(z-z\(14) 

where .:l = FuFzz- F12F21• In formulas (14), to abbre­
viate the notation, we have introduced the symmetriza­
tion operators 

S12/(x,, x,) = f(xt, x,) + f(x2, x1), 

S;wf(w) = f(w) + /(- w). 

Analogous calculations enable us to find all the re­
maining components of the Green's functions, after 
which it remains only to go over to the initial system 
coordinates X, Y, Z and substitute the obtained values 
for nfk and D~ in formula (4) for the force. As a 

result we obtain the following expression: 

T '~ oo oo' F ( )F F ( F F"(l)=-~du.\qdq~ ws,,[ "w 22- '' w)" -1]-1 
2:rt2 

0 ~ n~o F11(-w)F,,-F21(-w)F12 

(15) 

In the case nc/l « kT of interest to us, formula (15) 
takes the form 

T 2Jt oo 

F"(l)=---\ da\ x'dx 
32:rt213 • J 

0 0 

X {[ 1Wo_±_4l:'gMo(OOS2 a+ l'wowt!w~ reX- t}-1 

l"wo + 4ngMo cos' a- l<•lo<ut! wz - ( 16) 

Calculation of the force in the case E f 1 are quite 
cumbersome, so that we present only the final result: 

F(l)=F~(l1 +F,(l), (17) 

where FE( l) is the force of attraction between non­
magnetic dielectrics [l]: 

F,(l)=-T-_ fx2dx{(~)2 e"-1}-1 • 
16nZ.' e- 1 

0 

Expression ( 16) is essentially positive, therefore al­
lowance for the fluctuations of the magnetic moment 
leads to the appearance of an additional attraction 
force, which comes into play at distances 

he 
l";;J>Tr ~ to-• c.m. 

In conclusion the author is grateful to V. G. 
Bar'yakhtar and S. V. Peletminskii' for suggesting the 
topic and a discussion of the work. 
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