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We find relativistic corrections to the thermodynamic functions of a completely ionized plasma caused 
by electromagnetic interactions. The plasma itself is described by Darwin's Lagrangian which enables 
us to take relativistic effects into account up to terms of order v 2lc2 • We show that the simplified 
Darwin Hamiltonian can not be applied and that the papers by Krisan and Havas which use that Hamil­
tonian are incorrect. 

1. INTRODUCTION 

THE aim of the present paper is a study of relativistic 
effects in a plasma. It is well known that for a rigorous 
description of a system of interacting charged particles 
we must consider the electromagnetic field to be an 
independent object and must introduce apart from the 
variables rb Vi which refer to the particles also the 
generalized coordinates for the field. If, however, the 
particle velocities are small compared to the velocity 
of light and if there is no external field, in which we 
include electromagnetic waves incident from the out­
side, we can describe the system up to terms of order 
( vIc ) 2 using the Darwin Lagrangian: [ 1J 

LD =- 2} mic2 f 1- ~~2 - 2} e;e, (1-{- ~~: 6u)· (1.1) 
i t<J 'tj 

Here {3 =vic, rij = ri - rj. The dots between the ten­
sors indicate contraction over the coordinate indices, 
the caret over the characters indicates a tensor, and 
the tensor Bij is equal to (a, {3 = x, y, z) 

(1.2) 

For the first term in (1.1) we retain the exact relativ­
istic value in order to be able to compare the results 
with those for a perfect relativistic gas later on. 

The Lagrangian (1.1) contains only the variables 
ri> Vi referring to the particles while the field is taken 
into account through the second term which describes 
the interaction between the particles up to relativistic 
corrections of order (vIc )2 • There is here therefore 
no "independent electromagnetic field." This pro­
cedure is justified also by the fact that for a sufficiently 
rarefied plasma the (average) mean free path of a pho­
ton is usually appreciably larger than the dimensions 
of the system and the radiation leaves the plasma 
freely. We shall in the following consider just such 
"transparent" systems (typical example--plasma in 
thermonuclear devices). 

From (1.1) follows an expression for the generalized 
momentum 

p. = _fJ!: = . m,v, + ~ e;e; -~;__:. , ____________ L:,J v,3 

iJv, y1- ~;2 ;,.-; r, 5 2c2 

(1.3) 

and the energy conservation law 

~ mic2 '\:"! eiei 1 1 ~ - \ 
E = LJ-====- + LJ -\1 +- fl,fl;:t'i,;) = const. (1.4) 

, 1"1- fl,' i<i r,; 2 

It is convenient to introduce instead of the velocities 
Vi the simple relativistic particle momenta Pi 
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= mivi/v' ( 1 - !3f}. We can then write Eqs. (1.3) and 
(1.4) in 'ile form 

(1. 5) 

(1.6) 

Here v(p) = (plm)lv'(1 + (p/mc) 2 ). 

If we express the energy in terms of the generalized 
momenta we obtain the "total Darwin Hamiltonian" 
HD ( r, P) which is, however, difficult to write down 
explicitly. This difficulty is connected with the impos­
sibility of a simple inversion of Eq. (1. 5). Indeed, even 
if in the second term in (1.5) we put approximately 
v(p) -plm (which is legitimate by virtue of the ap­
proximation taken in (1.1)) solving through the method 
of successive approximations the relation 

(1. 7) 

we get an infinite series for p = p(Pgen): 

(1.8) 

One usually breaks this series off after the first two 
terms assuming that the others are small because of 
the higher powers of 11 c. The Hamiltonian obtained 
through such a procedure from the energy (1.6) 

H D ( P)- ~,, .z • + zp.z "' e,e; ( P;P; :bi;) (1 9) sunpl r, - £_ 1 rmt c c 1 + LJ ------:- 1- - . 
i -i<i ri3 2mimic2 

we shall call the "simplified Darwin Hamiltonian" PJ 
Landau and Lifshitz, for instance, introduced such a 
simplified Hamiltonian1 > in[ 2J and it was used in anum­
ber of papers to construct a thermodynamics and 
kinetics of a plasma. 

This procedure, however, is valid only for systems 
containing a small number of interacting particles. For 
instance, a simplified Hamiltonian of the type (1.9) with 
quantum-mechanical generalizations can be used to 
consider the positronium atom.C7 J It is, however, com­
pletely inapplicable to describe a plasma and results 
obtained using it are erroneous. To see this we con-

1lUsually the first term in (1.9) is also expanded up to terms of 
order l/c2 . 
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sider in more detail the infinite series (1.8). Neglect­
ing relativistic effects for ions we shall assume that 
the summation in (1.8) is only over the electrons and 
we write the series in the form 

~ bi.; ""' ""' 6w ii ;k P; = P;- e..:....; -·P; + e2 .LJ .LJ --·Pk 
j:#i 1'ij j¥d k'7'=j Tij1'jk 

(1.10) 

where E = e2/2mc 2• If we consider the electron com­
ponent of the plasma as a continuous fluid we can con­
sider the momenta p and P to be functions of the 
coordinates p = p ( r) and P = P ( r). Assuming in 
first approximation the particles to be independent and 
replacing the sum by an integral (~ - ne f drj) we 

J 
get 

r 6., r 6.,.~ 
p(r1) = P(r1)- (en,) .l -·P2 dr2 +(en,) 2 1 --·Padr,dra- ... 

r 12 • r 12r23 ( l.ll) 

Changing to the Fourier representation 

we have 

(1.13) 

We have here introduced 1/d~ = 41Tnee2/mc 2; the 
parameter de has the dimensions of a length. The sum 
inside the braces is equal to k2d~ / ( k2d~ + 1). The 
parameter 1/c2 occurs thus in (1.13) in combination 
with the electron density ne and the real expansion 
parameter turns out to be 1/kdc. Performing the sub-· 
sequent integration over k we see easily that it is im-· 
possible to limit ourselves in the expansion (1.13) to 
one or a few of the first terms (which all turn out to be 
diverging) and it is necessary to sum the whole series. 
It is therefore impossible to retain in Eq. (1.10) only 
the first two terms dropping the remainder and hence 
the simplified Darwin Hamiltonian (1.9) also turns out 
to be inapplicable to a plasma. In particular, the 
thermodynamic functions of a plasma determined, for 
instance, in the paper by Krisan and Havas [3 J using the 
Hamiltonian (1.9) are incorrect (see below). 

On the other hand, the initial Darwin Lagrangian 
(1.1) correctly takes into account relativistic correc­
tions connected with magnetic interactions between the 
particles and with retardation effects. 

In the following we calculate the thermodynamic 
functions of a weakly relativistic plasma on the basis 
of the Lagrangian ( 1.1). 

2. RELATIVISTIC CORRECTIONS IN A PLASMA 

Krisan and Havas [3 J determined the thermodynamic 
potential of a plasma s-2(®, V, JJ.e, JJ.i) = -pV starting 
from a grand ensemble: 

dW N ---1-exp~(Q+ ... N +nN·-HN+N\dfN N 
N.e' i -fll lf17.1 a re" e ~'""' 1 1 e i'~ e' 'L' 

('• 1• C1 

~ ~ dW N ,,N i = 1. l2.1) 
;:o.,'e,J.vi 

For HNe+Ni they used here the simplified Darwin 
Hamiltonian (1.9) which as we shall show can not be 
applied to a plasma. 

For our purpose it is convenient to evaluate the free 
energy 

1r {1 }gen 
F(Ei, V,N,,N,)=- 8lnZ, z =N,!N;! .l exp -eHN,+N; dfN,,N, 

(2.2) 

rather than the potential n ( ®, V, JJ.). We shall under­
stand here by HNe+Ni the "total Darwin Hamiltonian" 
corresponding to the original Lagrangian (1.1). In (2.2) 
the quantity dr gen = II ( ( 21rn)- 3 dPdr) is the number of 
states in the phase space of the coordinates and the 
generalized momenta. As it is difficult to write the 
"total Darwin Hamiltonian" out explicitly it is expedi­
ent to change in (2.2) from the generalized to the simple 
momenta p = mv/-./( 1 - /3 2 ) and then 

arg•n= J ( ~ )arsimP, z = N,tN,! ~ exp{- ~ EN,+N ,}1( f~ arsimp. 
(2.3) 

Here ENe+ Ni = E ( r, p) is the energy of the system 
defined by Eq. (1.6), J (P/p) is the Jacobian of the 
transition from generalized to simple momenta, and 
the quantity drsimp = II((21TI'i)- 3 dpdr) also refers to 
the simple momenta. Introducing the notation 

A"'= ~ e-•a"/9 dp, ea.0 = "fma2c4 + c2p2, a= e, i, (2.4) 

w~ can write (2.3) in the form z = z~~l zint, where 

Z~~l is the partition function .of a relativistic gas 
neglecting interactions and zmt the correction con­
nected with the Coulomb and relativistic interactions: 

Here 
U int _ ""' eke; 

Coul- .L.J r ' 
k<j kj 

(2.6) 

(the summation is over the ions and the electrons). In 
the simplest case we can restrict ourselves to take the 
relativistic corrections into account for the electrons 
only. If we write for them, moreover, Eq. (1.5) for the 
generalized momentum approximately in the form 

(2.7) 

the ,Jacobian J ( P/p) will refer only to the electrons 
and will then be independent of the momenta. Then (2. 5) 
becomes 

zint= r n dr e-u~::l 19J,. ( !__) \ Jl dp exp [-~ (L; e,0 + u.~!el ) lj. 
.l .V \p • A, . e . 

~· e e ~-~ 

We consider the last integral. As first approxima­
tion we can take the non-relativistic expression for the 
eigen energy of the electrons: 2 > E 0 = I( m 2c 4 + capa} 
= mc 2 + p2/2m. We then get 

2)Qne can show that taking the next terms of this expansion into 
account would exceed the accuracy of the Darwin approximation for 
the interaction. However, in the Appendix we give an evaluation of 
zint also with the exact value of € 0 . 
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S _ l' IT dp l- 1 ("' 0 u·int )] 
e = ·' e ~ exp - E) 7 Be + ee rel 

'"'='~IT (2n~;8)"" exp L!- 2~rn (2} Pe' + '; ~~ ~p,·: ~": )] , (2. 9) 
e e e"j":.e' ee 

0 

0 

1 
0 0 

where ro = e2/ mc 2 is the "classical electron radius." 
Equation (2. 7) corresponds to a symmetric Jacobian 
matrix: 

0 J1x, 2x ftx, 211 ltx, 2z ltx, 3:r • 

0 lty, 2x fly, 2y lt 11 , 2z lty, 3x ' 

Jlz, 2x Jlz, 2y ltz, 2z ltz, 3x • 

12;~.·, lx f2x, ly f2x,1z 

l2u, h· 12!f, Iu l2y, lz 

J2z, lx J2z, ly J2z, lz 

0 
0 

0 

1 

0 

(2 .10) 0 l2x, 3x 

0 J2u, 3x 

J 2z, 3x 

The indices A.Jl run here through the set (1x, 1y, 1z; 
2x, 2y, 2z; 3x, ... ; Nex, Ney, Nez) and the off-diagonal 
elements of this matrix are according to (2. 7) equal to 
JJlA. = Je,a;e' {3 = Y2roCBee' )a{3/ree'· 

One notes easily that we can use this matrix to write 
the index of the exponential in (2.9) in the form 

The integral (2.9) then turns out to be equal to 

S, = HI -(2 dp "')'! exp ( -2~,;:,~ ~ P'-h~p~ \ .• 
nn~o 2 ._ m\"J 1 

e ~. l.l. 

1 
= (delllh~ll)-'1' = , 

j!.,(P/p) 

(2.11) 

(2.12) 

and for the correction zint defined by Eq. (2.8) we 
have3 > 

int --
. r { Ucoul} 7/ I p ) TI dr zrnt= .l exp --e r lee \r; . v· 

i+e 

(2.13) 

As we have here implied the transition to the limits 
Ni> Ne - oo, V - oo with Ni/V = ni and Ne /V = ne the 
Jacobian Jee (P/p) is a determinant of infinitely high 
order of the form (2.10). One can show that for such 
determinants the following relation holds: 

det (1 +·;) = cxp [Spin (1 + ~)], (2.14) 

and using this we get 

lim J,,(P/p)= exp{ - 1/2 ~ L h~'"' + '/, ~ ~ ~ h"J",J,, + ... }· 
Ne-+·oo '). ~ A J.t v 

(2.15) 

In the sums which occur here, e.g., (ell e2f ••• f em) 

(2.16) 

we can approximately change the summation over the 
particles to an integration C0 -- ne f dr1) and we then 

e1 
get 

(2.17) 

The trace operation refers here to the coordinate 

3lThe square root of the determinant of a square matrix such as 
(2.11) is usually called a "Pfaffian." 

indices x, y, z of the tensor (6ee')af3· Using moreover 
the Fourier representation 

we get from (2.17) 
vr dk 

<Jm = 4n3 J (k'dc')m 
t'Jnnee2 

mc2 
(2.19) 

We shall call the length de the "relativistic Debye 
radius." 

We get thus for the Jacobian 

~ exp [- _!~ ~ dk ~ _!__ ( -:-\ )ml = cxp (- -;). (2.20) 
4n." m~z rn , k d, J 3nd,· . 

The convergence of the series which occurs here indi­
cates the screening of the transverse interactions in a 
plasma over lengths of order de· Using (2.20) we can 
write the correction (2.13) in the form 

Z int zint z int z int ,;J~(P/ ) v "6 d " = rel ~coul r~e ·rel ~ r ee' P = e- 1 rr c , (2 .21) 

while we show in the Appendix how one can evaluate the 
usual Debye correction Z~~ul 

int (" { Ucoul} fi dr ( V ) (2.22) 
Zcoul= J exp --8 · · v = exp 12rrd' ' 

i+e 

We can thus write the free energy of the plasma in 
the form 

where F~~l is the free energy of a relativistic ideal 

gas while the correction terms (Debye and relativistic) 
are equal to 

/:o.Fint=-~ 
Coul 12nd' , (2.24) 

Here de= ( 41fnee2/mc2)-112 = c/wo e is the relativistic 

and d = (I;_ 4JTnae~/ ® ) -l/2 is the ~sua! De bye radius. 
e,1 

Using Eqs. (2.23) and (2.24) one easily determines the 
corrections to the other thermodynamic functions. In 
particular, we get for the pressure 

__ aF_ _ id int 1:1 int 
P- av -Pre! + !:o.pcout+ Pre!, (2 .2 5) 

where 
/).int __ ~ 

Pcoul- 24nd3 , t.int=+~ 
Pre! 12nrlc" · 

(2.26) 

For the energy we have correspondingly 
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{) ( F \ id int int 
E =- ezae 9) =Ere!+ ~Ecoul+Mrel• 

mt ve 
~Ecoul= - -- · 

8nd3 

The correction AE~~\ turns out to vanish and this 
corresponds to dropping the radiation field in the 
Darwin Lagrangian. 

(2 .2 7) 

The authors are very grateful to Academician M. A. 
Leontovich for his interest in this paper and for a 
discussion of the results obtained. 

APPENDIX 

A MORE RIGOROUS CONSIDERATION OF THE 
RELATIVISTIC CORRECTIONS 

In Sec. 2 we evaluated the relativistic corrections in 
the first non-vanishing approximation in v/c. In par­
ticular, we used in Eq. (2.9) the non-relativistic ap­
proximation E 0 ~ mc 2 + p2/2m for the eigen energy of 
the particles. We shall now consider the original 
Darwin Lagrangian (1.1) as a model Lagrangian for the 
plasma without assuming that v / c is small. This way 
of stating the problem was used, in particular, in the 
paper by Krisan and Havas [3 ] who, however, erron­
eously used the simplified Darwin Hamiltonian (1.9) 
which made it impossible to calculate correctly rela­
tivistic effects (see below). 

Equation (2.5) remains valid and for our purpose it 
is convenient to write it in the form 

zint= <J (PIp) exp ( -uintl e)>. (A.l) 

The pointed brackets indicate here averaging over the 
Ne + Ni electrons and ions: 

(( ... )) = ~ n dr II dp e-B,'/8 II dp e-'/18( .. . ), (A.2) 
if<, V i A; e Ae 

and we assume here that the limit Ni, Ne - oo has been 
taken. 

Using the normal Ursell-Mayer method [a] we write 
the exponent with the binary interaction which occurs 
in (A.l) in the form 

cxp(-Uintje)= Jl (1+/;;)=1+~/;;+~t/+~tft+ ... (A.3) 
i<j i<j 

We shall call the quantity 

. e-e· ( 1 /". - ) /;; = exp (- Uv mt ;e) -1 ~- Sr~; 1 + 2 P; (p) P; (p): ll;; (A.4) 

an "energy bond" of two particles. From the Darwin 
Lagrangian ( 1.1) we get 

{)L ~ e;e; - ( pjm ) 
P; = -- = p; + "--" --v;(P) ·6;; v(p) = . , (A.5) 

{)vi N=i rij2c2 f1 +(p/mc) 2 • 

so that the Jacobian for the change of variables can be 
written in the form (a ~cA. = 0) 

1 +an a12 a,, 

J ( ~) = 18Pia I = a21 1 + azz CX2a = I b,~ + "'•~ J. p 8p;~ x, x,, 1 + x,,. 
(A.6) 

The indices .\ and f.l go through the set (lex, ley, 
lez; 2ex, ... ,Nez; lix, liy, liz; 2ix, 2iY, ... ,Niz) so 
that the Jacobian (A. 5) is a determinant of rank 
3 (Ne + Ni) - oo, Such a determinant can be expanded 

in powers of the quantity a (summation over y = x, y, z): 

which we shall call a Jacobian bond". Then we have 

J = 1 + 2:ft<O(a) + 2:[L<21(a) + 2:[Lt31(a) + . . . (A.8) 

Here ::0g(k)( a) is the sum of all principal minors of 
rank k of the matrix a~cg = J .\g- OA.g· 

We can then write Eq. (A.l) in the form 

zint = (J cxp ( _[Jint I e)>= 1 + (2:1-Lt'i(a) + 2:/) + (2:fL<''(a) 

+ 2:[1('1 (a) f + 2://) + (2:fL<'I( a) + 2:rt(21 (a) f + 2:[L<11 (a) If+ 2:/ff) + ... 

(A.9) 

Each term of this series is formed from "energy" and 
"Jacobian" bonds of the particles combined in a group. 
If we depict an f bond by a full-drawn and an a bond 
by a dotted line we can assign diagrams such as the 
ones drawn in the figure for the group of third order 
in f or a: 

N 
b d 

It is well known [9J that for the evaluation of the usual 
Debye corrections (without the relativistic terms) it is 
sufficient to limit oneself in the sum (A.3) to consider­
ing "eonnected loops" of the kind b. Unconnected 
chains of the kind a disappear when the quasi -neutrality 
of the plasma is taken into account. Considering the 
minors in the expansion (A.B) one can see that the bonds 
aij oecur in them necessarily in the form of connected 
loops of the kind c. Terms with intersecting bonds of 
the kind d can be dropped as taking them into account 
exceeds our accuracy. In this approximation we can 
average independently the loops with "energy bonds" 
f and "Jacobian bonds" a. In other words, we can in 
Eq. (A.l) approximately assume that 

zint= (J exp ( -uint I e))~ (J)(exp ( -·U intI e)). (A.lO) 

As we noted before the following formula holds for 
a Jacobian of the kind (A.6) 

det ( i' + ,;:) = exp [SpIn( 1 + ;)] 
= exp (~a>>- 1lz ~a,~ a~>+ 1/, ~a,~ a~v av> ... ). (A.ll) 

A similar expression is also obtained when we calcu­
late the average value of the Jacobian. Since the 
Jacobian bonds in the expansion (A.8) are averaged 
independently the factor in Eq. (A. 7) for the aAJJ. de­
pending on the momenta gives when we average over 
the momenta 

(A.l2) 

and we see easily that we get for ( J ) the expression 

( az a, a, \ 
(J) = 8X!) --+-- -. + ... I 2 :i 4 , 

(A.l3) 

where 
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(cf. Eqs. (2.17) to (2.19) in the text). Collecting the 
series in the exponent in (A.8) we get by analogy with 
Eq. (2 .20) in the text 

<J) = cxp (-VI :lnd,') . (A.15) 

We now consider the second factor in Eq. (A.10) for 
zint (see (A.3)): 

(exp (-Uint /8)) = (1 +2-f+L.ff + 2./ff+ · · .). (A.16) 

It is well known [a J that in Mayer's theory one proves 
that for a gas consisting of one kind of molecules with 
binary interactions depending only on the coordinates 
this quantity reduces to an exponent with a sum over 
irreducible integrals: 

(exp(-Uin1/El))=exp[V~ s~~ ~~---~(2.1!/)dr1 dr2 ••• dr,l, (A.17) 
s>-2 ~ 

' 

where n = N/V is the gas density. In our case of a 
plasma containing electrons and ions where the inter­
action depends on coordinates and velocities we have 

A similar expression was also obtained in the paper 
by Krisan and Havas [3 J but they determined the thermo­
dynamic potential n ( ®, V, fJ.) = - pV and the fugacities 
ze and Zi occurred therefore instead of the electronic 
and ionic densities ne and ni. The largest difference, 
however, consisted in the fact that in Eq. (A.18) the 
quantity fij is defined by Eq. (A.4) while in their case 
they had 

(A.19) 

corresponding to the "simplified Darwin Hamiltonian" 
(1.9). We draw the attention of the reader to the differ­
ence in sign in front of the relativistic corrections in 
(A.19) and (A.4) (the difference between f3 ~ v/c and 
p/ me can be considered to be unimportant). Just this 
difference in sign (a plus sign for us and a minus sign 
in [3]) made it impossible for Krisan and Havas to 
perform their calculation consistently. Indeed, using 
Eq. (A.4) for fij and considering only connected loops, 
we find4 > 

4> Because of the linearity in one of the vectors v (or p in [3 ] ) the 
unconnected chains disappear from the relativistic terms and also the 
mixed type connected chains containing Coulomb and relativistic terms. 
If the quasi-neutrality of the plasma is taken into account the con­
nected loops from the Coulomb terms disappear. 

We introduced here the usual and the "relativistic" 
Debye radii: 

= ( "' 4nn~e' )-'h a ·. LJ e , 
a=e, i 

(A.22) 

For the single-type integrals of sums occurring in 
(A.21) we find 

r = 1 1 -1 )' \ [ 1 ( 1 ) J 4n' ( ) \ dk~-, --- = dk --In 1+--- =~, A.23 
• " \ k 2d2 • k'd' k'd' . 3d' 

s=Z 

and we have thus for (A.21) 

< exp {- ~ Uint)) = exp ( ~ + ~--). 
' E> '12ml3 ond,3 

(A.24) 

It is further easy to show that when we average over 
the relativistic Maxwell distribution we get the rela­
tion (cf. (A.12)) 

(( 1 \ --) v V2 r dx s = 1-- ~2 jlf1- ~2 =- (~2) = -.-- J E 2 (x)---;;-, (A.25) 
\ \ 3 . 3 A, ( v) v ":-

where v = mc?'e, while K2 (x) is a MacDonald function 
so that therefore the length d; is the same as the 
"relativistic De bye radius" de introduced in (A.22). 
Combining the results we find 

zint= (J) <exp (- ~ umt)) = exp( ___!::_____- , V -) , . e 12nd3 6nd,3 
(A.26) 

so that we find finally for the free energy 

F =- 8ln(Z,~~ zint) = F ~~~+!'.Fe~~~+ !1F ~~. (A,27) 

where 

t.F~~ = V8/6nd,3, 

which in form is the same as Eq. (2.24) in the text, but 
now de is defined by Eq. (A.22) which only goes over 
into Eq. (2.19) of section 2 when ® « mc 2 • 

In contrast to our results Krisan and Havas C3 J 
erroneously using the simplified Darwin Hamiltonian 
and Eq, (A.19) following from it for fij, where the 
relativistic correction differs in sign from the corre­
sponding correction in our Eq. (A.4) obtain (cf. (A.21)) 
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int [ V (" ~ 1 ( 1 \' J 
Z rel = exp 8n' .\ dk -J --; k'd,' ) 

B=2 

(A.28) 

Here, in contrast to (A.21) - (A.23) the integrand has 
a singularity at k2d~ = 1 and to remove the divergence 
of the integral the authors needed to introduce arbi­
trary assumptions (they made the artificial substitution 
k 2 - k2 + ( 1/d) 2 after which the final equations of 
ref. [3 J lose their independent interest). 
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